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Abstract: Identification of optimal spectral bands often involves collecting in-field spectral signatures
followed by thorough analysis. Such rigorous field sampling exercises are tedious, cumbersome, and
often impractical on challenging terrain, which is a limiting factor for programmable hyperspectral
sensors mounted on unmanned aerial vehicles (UAV-hyperspectral systems), requiring a pre-selection
of optimal bands when mapping new environments with new target classes with unknown spectra.
An innovative workflow has been designed and implemented to simplify the process of in-field
spectral sampling and its realtime analysis for the identification of optimal spectral wavelengths.
The band selection optimization workflow involves particle swarm optimization with minimum
estimated abundance covariance (PSO-MEAC) for the identification of a set of bands most appropriate
for UAV-hyperspectral imaging, in a given environment. The criterion function, MEAC, greatly
simplifies the in-field spectral data acquisition process by requiring a few target class signatures and
not requiring extensive training samples for each class. The metaheuristic method was tested on an
experimental site with diversity in vegetation species and communities. The optimal set of bands were
found to suitably capture the spectral variations between target vegetation species and communities.
The approach streamlines the pre-tuning of wavelengths in programmable hyperspectral sensors
in mapping applications. This will additionally reduce the total flight time in UAV-hyperspectral
imaging, as obtaining information for an optimal subset of wavelengths is more efficient, and requires
less data storage and computational resources for post-processing the data.

Keywords: evolutionary computation; heuristic algorithms; machine learning; unmanned aerial
vehicles (UAVs); vegetation mapping; upland swamps; mine environment

1. Introduction

Hyperspectral technology is a potential tool for the remote detection of targets and
monitoring. A hyperspectral sensor measures electromagnetic radiation reflected from the
target in a large number of spectral narrowbands. The inherent objective in target classifi-
cation and assessment using hyperspectral data is to utilize its high spectral resolution [1].
However, the large dimensionality of hyperspectral data is often attributed to the Hughes
phenomenon, the curse of dimensionality [2]. The problem is a combined consequence of
the high correlations among the adjacent bands and the inability of the algorithm being
applied to process the high-dimensional data. The problem is paramount in spectrally
complex environments such as wetlands and swamps with many diverse species to be
monitored [1,3,4]. While a common remote sensing data processing solution involves the
application of dimensionality reduction techniques or the selection of suitable narrowbands
in a post-acquisition step, a hardware-based solution involves the use of programmable
hyperspectral sensors as a pre-acquisition step. Programmable hyperspectral sensors
typically involve a snapshot-based scanning mechanism, unlike general point or line
scanning-type systems, which are non-programable and acquire a continuous spectrum
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over the operable wavelength region. Several such programmable hyperspectral sensors
have been developed in recent times, which are increasingly being used in UAV-based
remote sensing applications [5–7]. A hardware-based method, such as Fabry–Pérot inter-
ferometer (FPI) technology, acquires reflected electromagnetic radiation in pre-selected
optimal narrowbands, and it is programmed by changing the air gap between the internal
tuneable mirrors [8]. This method has the additional benefit of efficient mapping of the
environment through the selection of only the spectral features of interest, which is par-
ticularly crucial in high-resolution mapping applications using unmanned aerial vehicles
(UAVs), which have limited flight times. The technology is relatively new compared to the
traditional pushboom type hyperspectral sensors, and existing works involving the FPI
have used either (1) a set of bands for generating vegetation indices (VIs), herein referred to
as indices-based criteria [7,9,10], or (2) set of bands identified through rigorous experimen-
tal testing, herein referred to as knowledge-based criteria [11,12] of narrowband selection.
Indices-based criteria for band selection have the potential to assess the condition and/or
estimate the yield of the vegetation [7,9]; however, they are not principally suited for
multi-target classification, since the spectral variations of the target endmembers present
within the scene are subjective. Furthermore, the efficacy of indices-based narrowband
selection approach for vegetation quality or condition assessment is also subject to the
characteristic reflectance of the target, and the traditional list of indices does not always
ensure the best results for different vegetation communities or species. The knowledge-based
approach requires a thorough understanding of the spectral variability among the targets
present over the area, which is usually attained through intensive in-situ sampling and
is not always realizable over difficult terrain or in scenarios requiring urgent mapping.
Therefore, it is important to adopt a data-driven methodology for programmable hyperspec-
tral sensors to estimate appropriate narrow bands for scene classification or assessment.
Minet et al. [13] proposed an approach to adaptively maximize the contrast between the
targets by employing a genetic algorithm (GA)-based optimization of the positions and
linewidths of a limited number of filters in FPI for military applications. However, this
method is unsuitable in thematic applications of remote sensing.

Different data-driven strategies have been proposed for the selection of optimal bands
for traditional remote sensing applications. A method of sub-optimal search strategy
utilizing constrained local extremes in a discrete binary space to select hyper-dimensional
features was presented in [14]. Becker et al. [3] used a second-derivative approximation to
identify the spectral location of inflection. A band selection method using the correlations
among bands based on mutual information (MI) and deterministic annealing optimization
was also employed [15]. Becker et al. [4] proposed a classification-based assessment for
three optimal spectral band selection techniques (derivative, magnitude, fixed interval, and
derivative histogram), using the spectral angle mapper (SAM) as a classifier. A GA-based
wrapper method using a support vector machine (SVM) was proposed for the classification
of hyperspectral images [16]. A double parallel feedforward neural network based on radial
basis function was used for dimensionality reduction [17]. Principal component analysis
for identifying optimal bands to discriminate wetland plant species was presented [1].
A semi-supervised band clustering approach for dimensionality reduction was devel-
oped [18]. A particle swarm optimization (PSO)-based dimensionality reduction approach
to improving support vector machine (SVM)-based classification was suggested by [19].
Li et al. [20] and Pal et al. [21] presented a hybrid band selection strategy based on a
GA-SVM wrapper to search optimal bands’ subsets. A method of band selection based on
spectral shape similarity analysis was put forward in [22]. Methods for nesting a traditional
single loop of PSO or 1PSO inside an outer PSO loop, termed 2PSO, have been identified
to improve the overall optimization performance in certain applications, at the expense
of computational cost [23]. Su et al. [23] implemented 1PSO and 2PSO with minimum
estimated abundance covariance (MEAC) [24], among other techniques, for the evaluation
of optimal bands. Ghamisi et al. [25] presented a feature selection approach based on
hybridization of a GA and PSO with an SVM classifier as a fitness function. Accuracies
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achieved in an optimized band selection method are influenced by the characteristics of
the input dataset, as the search strategy depends on the present classes and their spectral
profiles. Therefore, these methods need to be tested on benchmark datasets, an equivalent
comprehensive evaluation is reported in [23]. However, all these existing optimal band
identification studies involving data-driven methods were used on traditional hyperspectral
datasets after the acquisition, and are yet to be used with a hardware-based solution to
pre-tune hyperspectral sensors to acquire the optimal bands.

In this study, for the first time, an in-field data-driven approach to pre-tune a snapshot-
type UAV-hyperspectral sensor was devised for remote sensing applications. The method
employs PSO, with minimum estimated abundance covariance (MEAC), similarly to [23]
in a post-processing stage for waveband selection after hyperspectral dataset acquisition.
The significant benefits are: (1) it is an efficient approach to identifying the optimal bands
in-field before the survey; (2) it does not require a lot of spectral samples per class, which
is particularly an issue over difficult terrain when trying to establish a spectral library;
and (3) the system works perfectly when the number of observed samples is less than the
total number of potential hyperspectral bands to select from, which is an important issue
with other dimensionality reduction methods, such as principal component analysis (PCA).
Programmable UAV-hyperspectral sensors have increasingly been used in applications
such as environmental mapping, precision agriculture, phenotyping, and forestry [12,26,27].
Identification of optimal wavelengths remains crucial for mapping vegetation communities,
phenotyping functional plant traits, and identifying vegetation under biotic or abiotic
stress. Our method aims to resolve functional challenges by improving the capturing of
the spectral representation of an environment through a UAV-hyperspectral survey.

The rest of the paper is arranged as follows. The Materials and Methods section
describes the experimental framework. The theoretical background of the PSO-MEAC
approach is described in relation to the elements of the proposed application. In the Results
and Discussion section, we present the results of using the PSO-MEAC method for optimal
band selection at the experimental site. In addition, the performance of the data-driven
PSO-MEAC approach has been evaluated against the traditional indices based approach
for feature selection and mapping. Finally, the concluding remarks are provided in the
conclusion section.

2. Materials and Methods

This section details the study area, ground based hyperspectral sensing system, data
processing for the hyperspectral data, workflow for identifying optimal bands in the field,
and method for UAV-hyperspectral surveying and assessment.

2.1. The Area Used for the Experiment

The test site is an upland swamp area above an underground coal mine within the
temperate highland peat swamp on sandstone (THPSS) in New South Wales, southwest
of the city of Sydney, Australia (34◦21′24.0′′S, 150◦51′51′′E). The area is located in Wol-
longong. The focus was laid on spectrally diverse vegetation communities in critically
endangered ecosystems distributed in the Blue Mountains, Lithgow, Southern Highlands,
and Bombala regions in New South Wales, Australia [28]. The NSW National Parks and
Wildlife Service (NPWS) classifies the upland swamps complexes into five major veg-
etation communities—Banksia Thicket, Cyperoid Heath, Fringing Eucalypt Woodland,
Restioid Heath, and Sedgeland [29]. The site has occasional thick vegetation cover and
steep gradients which are inaccessible.

2.2. Hyperspectral Set-Up for Ground Based Sampling

The spectra of the target classes in the environment were measured with the visible-
infrared snapshot hyperspectral (FPI) sensor (Rikola, Senop Optronics, Kangasala, Finland)
with a separate data acquisition computer. In this mode of operation, the sensor acquires
the maximum number of wavelength bands possible—i.e., 380 bands at 1 nm spectral
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steps between 500 and 880 nm. With a focal length of 9 mm and a field-of-view (FOV)
of 36.5 × 36.5 degrees, the sensor acquires 1010 × 1010 spatial channels in the snapshot
imaging mode. In contrast, in the standalone on-board UAV-based data acquisition mode
the sensor records a set of 15 programmed wavelength bands in 1010 × 1010 pixel format,
i.e., up to a total of 16 megapixels of storage per hypercube. The sensor also acquires solar
irradiance measurements—it uses an irradiance sensor for radiometric calibration; and
positional measurements using a global positioning system (GPS) for geometric corrections
(Figure 1). All sensors were installed on a handheld mount for hyperspectral imaging.
An Android mobile phone was also installed on the sensor mount and paired to the data
acquisition computer with a video telemetry feed over a WiFi link to provide a realtime
view of the scene, which was useful for bringing the target vegetation in focus before the
collection of hyperspectral data (Figure 1a). Additionally, a realtime feed of goniometric
measurements (roll and pitch) from the mobile phone’s accelerometer was relayed to the
screen of the data acquisition computer to monitor the planimetric setting of the captured
hypercubes using the FPI sensor (Figure 1b).
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Figure 1. The setup for ground-based hyperspectral data acquisition using a Fabry–Pérot interfer-
ometer (FPI) sensor (Rikola, Senop Optronics, Kangasala, Finland), an irradiance sensor, a global
position system (GPS), and an android phone as goniometer on a portable handheld sensor mount:
(a) top-side view, (b) bottom-side view, and (c) in-field hyperspectral data acquisition with a data
acquisition computer. The system was used for the collection of in-field data for rapidly identifying
optimal hyperspectral wavelengths, for applications in aerial (UAV-hyperspectral) data acquisition.

The simplistic design of the handheld hyperspectral imaging system was important
for carrying it around in regions with dense shrub-type vegetation cover (Figure 1c). The
hyperspectral data were acquired with a downward nadir orientation over the shrub type
swamp vegetation. The data were acquired at a distance of approximately 0.5 m from the
top of the canopy (Figure 1c). In this study, the FPI sensor was used as a tool for in-field
spectral acquisition to demonstrate an independent form of operation. Nevertheless, the
field spectral measurements could also be obtained from other spectroradiometers, such as
ASD FieldSpec3 (Analytical Spectral Devices, Boulder, CO, USA). However, special care
should be taken to establish proper radiometric calibration to remove any inter-sensor
response mismatch, which is addressed by using the same FPI sensor for both in-field
spectral data collection for identifying the optimal bands and later UAV-hyperspectral
data acquisition.
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For identifying the optimal bands through PSO-MEAC, the hyperspectral measure-
ments were collected for a total of three target vegetation classes, covering eight up-
land swamp species, including Grass tree (Xanthorrhoea resinosa), Pouched coral fern
(Gleichenia dicarpa). and Sedgeland complex (Empodisma minus, Gymnoschoenus sphaerocephalus,
Lepidosperma limicola, Lepidosperma neesii, Leptocarpus tenax, and Schoenus brevifolius). In addition,
spectral measurements were also collected for background vegetation, which contained a
mixture of other species which were present in small patches and not selected in this study.
Finally, a background bare-earth spectrum was also collected. To obtain a proper un-mixed
spectrum for a single species, field sampling was performed over a region of interest with
local homogeneity.

2.3. In-Field Ground-Based Hyperspectral Data Processing

Vegetation in an upland swamp environment is highly diverse, and species can
exist in homogenous and heterogeneous patches. Data collected through the portable
handheld FPI system caused minor spectral misalignments due to unavoidable handheld
movement of the sensor and due to slight movements of the canopy caused by wind. This
happened as the data in the FPI sensor were acquired in a snapshot, bandwise manner
with a small delay and sensor movement [26]. The hyperspectral bands were aligned using
a previously developed band alignment workflow described in [26]. The data were first
flat-field corrected using dark current removal and a white calibration panel; then they
were converted to the reflectance measurements using previously computed calibration
coefficients with an integrating sphere [7]. A band-averaged hyperspectral signal was
calculated from the hypercube and used in the optimal band identification workflow.
The spectrum was further treated using a Savizky–Golay [30] smoothing filter with a
polynomial order of 3 and a frame length of 17 to remove spectral noise. A PSO with
MEAC as the criterion function was employed to identify the suitable bands in the field; the
details of the theory of operation are in Section 2.4. The entire process of spectral signature
retrieval and PSO-MEAC workflow for suitable band identification was implemented
as MATLAB (ver. 9.5) routines, and a graphical user interface (GUI) was designed for
user-friendly and seamless operation in the field.

2.4. Optimal Band Identification Using PSO-MEAC

Particle swarm optimization (PSO) was originally used to simulate the social be-
haviour (movement and interaction) of the organisms (particles) in a flock of birds or a
pool of fishes [31]. It has, however, been used as a robust metaheuristic computational
method to improve the selection of candidate solutions for an optimization problem. The
optimization operates iteratively over a swarm of candidate solutions with a criterion
function as a given measure of quality. In our approach, the selected set of bands are called
particles, and a recursive update of the bands is called a velocity. The particle position xid
denotes the selected band subset of size k, and velocity vid denotes the update for the
selected band. A particle updates [31] as shown in Equation (1).

vid = ω× vid + c1 × r1 × (pid − xid) + c2 × r2 ×
(

pgd − xid

)
xid = xid + vid

(1)

where pid is the historically best local solution; pgd is historically the best global solution
among all the particles; c1 and c2 control the contributions from local and global solutions,
respectively; r1 and r2 are independent random variables between 0 and 1; and ω is the
inertia weight to improve the convergence performance.

New velocities and positions (vid and xid on the left-hand side of Equation (1)) for the
particles are updated based on the existing parameters and cost criterion upon every itera-
tion (Figure 2). The iteration process aims to minimize the underlined criterion function.
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Figure 2. The method for the PSO-MEAC system. The algorithm initializes a set of particles or a
combination of bands; at each iteration, the cost function (MEAC) associated with individual particles
is computed; trajectories of the particles are projected towards the particle with the best solution; the
loop is exited after the specified number of iterations is reached. The particle with a minimum cost
function is identified as the optimal solution.

In a traditional supervised classification, where representative class signatures are
known through exhaustive field surveying, the band-selection process can be greatly
simplified. However, in an aerial survey to determine suitable wavelength bands for a
programmable UAV-hyperspectral system, such an exhaustive exercise is tedious, cumber-
some, and not always possible. Therefore, MEAC was used as a criterion function in PSO,
as it requires only class signatures and no training samples. The efficacy of this technique
has been previously evaluated against other existing optimization methods by Su et al. [23]
for feature selection on traditional hyperspectral datasets (airborne and satellite).

Assuming there are p classes present over an area in which the samples were collected,
the endmember matrix can be written as S =

[
s1, s2, . . . , sp

]
. According to Yang et al. [19],

with linear mixing of the endmembers, the pixel r can be expressed as in Equation (2):

r = Sα + n (2)

where α =
(
a1, a2, . . . , ap

)T is the abundance vector and n is the uncorrelated noise with
E(n) = 0 and Cov(n) = σ2 I (I is an identity matrix).

Usually, the actual number of classes (p) is greater than the known class signatures;
i.e., q < p. Hence, the uncorrelated noise will have Cov(n) = σ2Σ, where Σ is the noise
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covariance matrix. Therefore, the abundance vector becomes the weighted least square
solution, as in Equation (3):

α̂ = (STΣ−1S)
−1

STΣ−1r (3)

withfirst-ordermomentbeing E(α̂) = α andsecond-ordermomentbeing Cov(α̂) = σ2(STΣ−1S)−1.
The analysis demonstrates that when all the classes are known, the remaining noise

can be modelled as independent Gaussian noise. For this application, when meeting such
sampling criteria was difficult and there were unknown classes present, noise whitening
was applied first. Yang et al. [19] and Su et al. [23] performed the optimal band selection
on traditional hyperspectral datasets, and used all the pixels for the background noise (Σ)
estimation. In this case, the background pixels’ noise was calculated using background
class spectra and bare-earth spectra collected through ground-based sampling. The back-
ground plus noise covariance is denoted as Σb+n; this estimate was used in this study.
The estimate of the unknown class pixels is based on the likelihood of the unknown class
(or the class of no interest) being present around the sampled class of interest. In scenes
where all endmembers are of known classes (or the target classes of interest), noise estima-
tion Σb+n is not required, which is an unlikely condition in a spectrally complex swamp
environment [7].

The identified optimal bands should allow minimal deviations of α̂ from actual α [23].
With the partially known classes, the criterion function is equivalent to minimizing the
trace of the covariance, as in Equation (4):

arg min
ΦS

{trace[(STΣb+n
−1S)

−1
]} (4)

where ΦS is the selected band subset. The resulting band selection algorithm is referred to
as the MEAC method [23].

The optimizer returns a suitably identified set of wavelength bands with the low-
est cost criterion values (Equation (4)), upon successful completion of the PSO-MEAC
algorithmic iterations (Figure 2).

2.5. UAV-Hyperspectral Survey and Assessment

After the identification of a set of optimal bands through the data-driven PSO-MEAC
approach, the FPI hyperspectral sensor was programmed to acquire using the suitable
narrow wavelength bands. A UAV-hyperspectral mission was carried out in pre-planned
waypoint acquisition mode with 85% forwards and 75% lateral overlap from a flying
altitude of 50 m. The sensor exposure time was set at 10 ms per band to provide good
radiometric image quality for the existing illumination conditions. The UAV-hyperspectral
survey was performed around two hours of local solar noon and in clear weather conditions
with no clouds. This was done to avoid both the effect of significant illumination variations
and shadows cast by clouds during the aerial image acquisition. However, due to the
experimental site being situated in a low latitudinal region in the southern hemisphere
(34◦21′24.0”S, 150◦51′51”E) with the sun projecting a shallow incidence angle, the issues
of the shadows projected by trees and other tall vegetation was unavoidable. In addition
to the data-driven PSO-MEAC tuned survey, another aerial survey was performed with
an indice-based [7] wavelength selection approach, using the same UAV flight character-
istic and sensor exposure configuration. A band stabilization workflow was adopted to
co-register spatial shifts between bands in hypercubes, from both the aerial acquisition
modes [26]. Further, the regular radiometric, illumination adjustment, mosaicking, and ge-
ometric correction procedures for hypercubes were carried out [7]. The UAV-hyperspectral
orthomosaics achieved a high spatial resolution of 2 cm in ground sampling distance.

A supervised support vector machine (SVM) classifier was used to classify the hyper-
spectral datasets into constituent classes. The SVM is an efficient kernel-based machine
learning classifier suitable for high-dimensional feature spaces, which is well used in classi-
fying hyperspectral datasets [32–34]. The classification was performed as an evaluation
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step to compare the efficacy of wavelengths identified through data-driven PSO-MEAC and
indices-based approaches. As the fundamental objective in this study was to simply evaluate
the two methods, and not to achieve superior accuracies in classification, involving complex
classification algorithms were deemed needless. Standard parameter settings—a radial
basis function with a kernel gamma function of 0.167, a penalty parameter of 100, and a
pyramid level of 5—were used for the SVM classification. The overall and individual class
classification accuracies were computed using the ground truth training samples.

For evaluating the efficacy of PSO-MEAC-identified bands through classification, a
total of 120 ground truth measurements were collected for shrub-type swamp vegetation
through a rigorous field survey, and 120 ground truth polygons were identified through vi-
sual interpretation of high-resolution hyperspectral data. The sampled ground-based (120)
and image-based (120) polygons were randomly divided into 1:1 mutually exclusive sets
of training and test samples, i.e., 60 ground and 60 image-based polygons for each training
and test group. The ground truth training set was used to train the SVM classifier, and the
test samples were used to compute the overall accuracy (OA), kappa (κ), and confusion
matrix to evaluate the classification accuracies. The spectral data from training and test
sample polygons were obtained from the UAV-hyperspectral datasets in corresponding
data-driven PSO-MEAC and indices-based modes.

3. Results and Discussion

This section details the results and discussion of optimal band selection using data-driven
PSO-MEAC workflow, and its evaluation against the indices-based approach.

3.1. Optimal Band Identification Using PSO-MEAC

The PSO-based optimal band identification workflow determines a list of suitable
bands according to the MEAC cost criterion. The PSO-MEAC workflow was executed with
a population size of 100, an inertial weight of 0.98, and a maximum number of iterations
of 500. A total of 15 bands, i.e., k = 15, were identified, based on the maximum band
capacity of the FPI sensor for on-board UAV data acquisition mode in an un-binned setting
(1010 × 1010 pixels).

The selected combination of bands gets re-configured at every iteration to minimize
the cost function (Figure 2). A new combination of bands is designated optimal if the
combination achieves the best (or minimum) cost. To analyze the performance of the
in-field optimal band identification and sensor tuning using the PSO-MEAC approach, a
set of internally computed parameters (criterion cost and index of runs) were logged at
every iteration (Figure 3). The PSO-MEAC approach determines the suitable combination
of bands (or band-index) using the cost criterion (Equation (4)). The reduction of the best
cost value signifies the learning curve for the optimization workflow (Figure 3a). At every
iteration, the cost associated with the previous band-index is compared with the new
band-index. A record of these parameters reveals the process of convergence to the desired
solution by the implemented metaheuristic workflow. A measure of final cost and plot
of identified optimal band combination is also produced. It can be seen that using the
PSO-MEAC method, better (i.e., smaller) values of cost criterion can be achieved. Each
iteration may produce slightly different band combinations according to the cost criterion,
as shown by the plot of the index of runs in (Figure 3b). The final cost of the PSO-MEAC
was −7.7 × 10−9. At this stage, the identified band indices were 56, 88, 101, 119, 151,
172, 211, 217, 251, 284, 303, 326, 341, 360, and 380 (Figure 3c). The corresponding FPI
wavelengths were 555.33, 587.21, 600.34, 618.21, 650.39, 671.02, 710.12, 716.11, 750.19, 783.46,
802.35, 825.28, 840.15, 859.53, and 880.43 nm with respective FWHMs of 9.81, 10.62, 9.88,
12.17, 10.78, 11.77, 9.78, 9.61, 9.58, 10.60, 10.56, 10.49, 13.69, 13.12, and 13.27 nm.
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Figure 3. Optimal band selection: (a) a plot demonstrating variation of cost criterion with the PSO-MEAC iterations,
(b) bands selected in each iteration, and (c) a plot of the identified optimal bands overlayed on the class spectra. The cost
criterion was progressively minimized with the number of iterations. The variations of band position with the index of runs
in every iteration provide insights into the functioning of PSO-MEAC. Overall, the PSO-MEAC-identified bands are well
distributed over the key wavebands with maximal variation between inter-class reflectance.

The PSO-MEAC workflow uses a complex high-dimensional search strategy, pro-
ducing several intermediate local and global combinations of bands, so the final solution
may not be the same with every execution. Previous implementations of PSO-MEAC [23]
focused on minimising the number of bands in optimal configurations, which is suitable
for dimensionality reduction techniques in traditional airborne or satellite hyperspectral
imaging, with a complete set of bands already acquired. In the proposed method, the num-
ber of bands to be identified is predefined by the user, which makes it important to use the
FPI sensor to its fullest potential (i.e., hypercube band capacity at desired spectral binning)
to acquire the maximum possible information in the optimal configuration. To evaluate
the computational complexity, the PSO-MEAC workflow was programmed in MATLAB
(ver. 9.5) and implemented as a GUI module to run on a portable field data acquisition com-
puter with 1.5 GHz processor and 512 MB memory. The module took roughly 4 to 5 min
for every 500 iterations with the selected number of class samples. This demonstrates the
operational efficiency of the system, despite having a complex search hierarchy, and it is
usable for pre-tuning the programmable FPI sensor in a UAV-hyperspectral survey for
optimised wavelength selection.

Acquisition and identification of optimal bands using characteristic spectral signatures
of individual swamp species have been traditionally performed using the separability of the
spectrum at respective wavelength bands. In this study, the employed PSO-MEAC-based
search strategy automatically analyses and identifies wavelength bands based on maximum
separability of the reflectance using the MEAC cost criterion function. The field spectrum
collected for each shrub-type vegetation species is shown in (Figure 3c), and the identified
wavelength band positions are shown using a set of superimposed vertical lines. Our
approach has been implemented using a GUI-based interface on a portable data acquisition
computer, which enabled rapid analysis of spectral signatures and identification of suitable
wavelength bands. The developed technique and tools were found to be efficient in a field
environment during surveying.

3.2. Classification

The comparative evaluation between the data-driven PSO-MEAC and indices-based
wavelength tuning approaches was performed using an SVM classifier. Two dedicated
datasets (data-driven PSO-MEAC and indices-based) were collected from the swamp. The
scene was primarily comprised of three shrub-type vegetation classes (i.e., grass trees,
pouched coral ferns, and Sedgeland complex) and two tree-type vegetation classes (i.e., black
sheoak and eucalyptus). A small portion of the area was bare of vegetation cover and
was treated as a separate “bare earth” class. Therefore, a total of six classes were used in
the classification-based comparative evaluation. The optimal bands identified using the
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data-driven PSO-MEAC approach produced better results compared to the indices-based
approach, with the SVM classifier. Combining the optimal bands identified using the
data-driven PSO-MEAC with the SVM classifier produced an overall accuracy of 85.16%
and a kappa coefficient of 0.73, whereas the indices-based approach produced an overall
accuracy of 76.54% and a kappa coefficient of 0.67. The comparative classification maps for
the indices-based PSO-MEAC and data-driven approaches produced using the SVM classifier
are shown in Figure 4.
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Figure 4. Classification map of the swamp site’s vegetation classes and species produced using a
support vector machine classifier with (a) data-driven (PSO-MEAC) optimal band identification and
(b) indices-based band selection.

The producer’s accuracy or error-of-omission refers to the conditional probability
that certain land-cover of an area on the ground is correctly mapped, whereas the user’s
accuracy or error-of-commission refers to the conditional probability that a pixel labeled
as a certain land-cover class in the map belongs to that class [35]. The producer’s and
user’s accuracy for each class with the best classification method, data-driven PSO-MEAC,
are shown in Table 1. With the exception of the “grass tree” class, overall the accuracy
for each class was satisfactory (>70%), particularly when differentiating between swamp-
type (Sedgeland complex) and non-swamp-type (Eucalyptus) vegetation. The results also
indicate the potential of the process for distinguishing certain critical non-swamp-type
terrestrial species (black sheoak and bracken fern) within the swamp environment. In-
creases in the proportions of these terrestrial species in a swamp indicate changes in the
swamp hydrology. No changes in the proportions of terrestrial species (or changes within
equilibrium limits) indicates the stability of hydrology and peat moisture levels. These
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results, therefore, demonstrate the usefulness of the method for directly mapping the
changes induced in a swamp environment due to the fluctuation of groundwater level.

Table 1. Evaluation of classification accuracy achieved using the data-driven (PSO-MEAC) method
against indices based band selection.

Class

Data Driven (PSO-MEAC) Indices Based

Producer’s
Accuracy

(%)

User’s Accuracy
(%)

Producer’s
Accuracy

(%)

User’s Accuracy
(%)

Bare earth 91.57 98.52 22.27 89.43
Grass tree 77.00 73.54 5.92 49.45

Black sheoak 97.33 83.20 94.28 78.93
Bracken fern 71.43 78.44 13.08 70.83

Eucalyptus tree 81.55 81.13 89.10 71.16
Sedgeland
complex 88.28 80.35 41.42 61.64

4. Conclusions

Identification of optimal bands for vegetation monitoring has been an ongoing re-
search problem in hyperspectral remote sensing. The issue is significant in a spectrally
complex environment with diversity in vegetation species, such as swamps and wetlands.
Extensive surveys and post-processing solutions have been recurrently used in different
swamp-type environments. The study presents an innovative approach for in-field rapid
identification of spectrally significant wavelength bands. The developed method was
employed to tune a programmable hyperspectral sensor before UAV borne surveys. The
method was implemented through a metaheuristic workflow based on particle swarm
optimization (PSO), with minimum estimated abundance covariance (MEAC) as the cost se-
lection criterion function. A portable in-field hyperspectral signature collection system was
devised using the tuneable FPI hyperspectral sensor. The set-up improved the collection of
class spectra and background noise spectra, which were then used to identify the optimal
band configuration. The method identifies the optimal bands based on representative class
spectral signatures, avoiding the requirement of extensive in-field sampling. Additionally,
the method works perfectly when the number of sample observations is less than the total
number of potential hyperspectral bands, which is not possible with other dimensionality
reduction methods, such as PCA. The method was successfully tested to identify a set
of optimal bands for maximizing the spectral differentiation of swamp-type vegetation
species and communities. The algorithm could be tuned to robustly incorporate vegetation
trait retrieval by changing the criterion function. The approach would be valuable to
environmental mapping, precision agriculture, phenotyping, and forestry to estimate qual-
itative phenotypic traits such as chlorophyll content, photosynthetic capacity, and biomass;
and for studying vegetation under different treatments or biotic and abiotic stresses.
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