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Abstract: The lack of accurate estimation of intense precipitation is a universal limitation in pre-
cipitation retrieval. Therefore, a new rainfall retrieval technique based on the Random Forest (RF)
algorithm is presented using the Advanced Himawari Imager-8 (Himawari-8/AHI) infrared spec-
trum data and the NCEP operational Global Forecast System (GFS) forecast information. And the
gauge-calibrated rainfall estimates from the Global Precipitation Measurement (GPM) product served
as the ground truth to train the model. The two-step RF classification model was established for
(1) rain area delineation and (2) precipitation grades’ estimation to improve the accuracy of moderate
rain and heavy rain. In view of the imbalance categories’ distribution in the datasets, the resampling
technique including the Random Under-sampling algorithm and Synthetic Minority Over-sampling
Technique (SMOTE) was implemented throughout the whole training process to fully learn the
characteristics among the samples. Among the features used, the contributions of meteorological
variables to the trained models were generally greater than those of infrared information; in particular,
the contribution of precipitable water was the largest, indicating the sufficient necessity of water
vapor conditions in rainfall forecasting. The simulation results by the RF model were compared
with the GPM product pixel-by-pixel. To prove the universality of the model, we used independent
validation sets which are not used for training and two independent testing sets with different
periods from the training set. In addition, the algorithm was validated against independent rain
gauge data and compared with GFS model rainfall. Consequently, the RF model identified rainfall
areas with a Probability Of Detection (POD) of around 0.77 and a False-Alarm Ratio (FAR) of around
0.23 for validation, as well as a POD of 0.60–0.70 and a FAR of around 0.30 for testing. To estimate
precipitation grades, the value of classification was 0.70 in validation and in testing the accuracy
was 0.60 despite a certain overestimation. In summary, the performance on the validation and test
data indicated the great adaptability and superiority of the RF algorithm in rainfall retrieval in East
Asia. To a certain extent, our study provides a meaningful range division and powerful guidance for
quantitative precipitation estimation.

Keywords: Himawari-8 satellite; numerical product; rainfall retrieval; random forest; precipita-
tion grades
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1. Introduction

Precipitation is one of the most important indicators that reflects global and regional cli-
mate system changes. In particular, summer precipitation plays a vital role in atmospheric
circulation, hydrological cycle, and thermal momentum exchange [1–3]. The interdecadal
variation of precipitation is tightly linked to the circulation anomaly, water vapor budget,
soil humidity, and wind speeds in East Asia [4,5]. High-resolution rainfall data have an
extensive application in the fields of agriculture, forestry, transportation, and marine mon-
itoring [6–9]. There are obvious weaknesses in traditional ground station measurement,
due to the limited coverage of rain gauges, which is confined by the complex terrain and
coastline, and the uncertainty of accuracy in the weather radar detection [10]. Contrastingly,
satellites can make comprehensive observations and provide intuitive remote sensing im-
age information; therefore, satellite rainfall products are superior and have good prospects
to improve the ability of monitoring grid rainfall [11]. Satellite rainfall products are re-
trieved by microwave remote sensing, visible/infrared remote sensing, and multisensor
rainfall estimation, with microwave sensors mainly carried by polar-orbiting satellites,
such as NOAA, METOP, and FY-3. Although the detecting precision of polar-orbiting
satellites is higher than geostationary satellites, the time sampling is low. Fortunately,
since the new generation of geostationary meteorological satellites (such as GOES, MSG,
Himawari-8, and FY-4) has been launched, visible/infrared remote sensing can provide
high spatiotemporal resolution rainfall products. However, the rainfall accuracy still needs
to be improved as a result of the indirect relationship between the infrared signal and
precipitation [12–14].

Multi-channels retrieval overcomes many shortcomings of the past and has become
the mainstream of high-quality rainfall products’ retrieval, including the Tropical Rainfall
Measuring Mission (TRMM), Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks (PERSIANN), and the Climate Prediction Center Morph-
ing Method (CMORPH), which have been used in the accuracy assessment of precipitation
at different time scales [15–17]. Global Precipitation Measurement (GPM), as the successor
of TRMM, has been equipped with more advanced passive microwave radiometer GMI
and dual-frequency radar DPR sensors, enhancing the skill of observing solid and trace
precipitation and providing a more accurate calibration reference for multisatellite precipi-
tation estimation [18,19]. The Final-Run products have been corrected by the monthly scale
of the ground station data, and the accuracy is closest to the real precipitation, which can
be well studied and applied to climate change, drought identification, flood forecasting,
and so on [20,21]. It is gratifying that the high-resolution infrared data can match the GPM
products well in both time and space, which provides a favorable condition for rainfall
retrieval systems [22,23].

Currently, many studies have established forecasting algorithms using real-time geo-
stationary Infrared (IR) satellite data to retrieve high-resolution rainfall products based on
the infrared–precipitation relationship. At an early stage, the single-channel infrared data
were considered due to technical limitations. Arkin [24] found that there was a high correla-
tion between the cold cloud coverage area and the 6 h precipitation accumulation in a large
enough area where the cloud top temperature was lower than 225 K to 255 K in the GARP
Atlantic Tropical Experiment (GATE). From this discovery, Arkin et al. [25,26] proposed a
rainfall estimation algorithm, the GOES Precipitation Index (GPI); the application of the
GPI requires a large enough spatial and temporal scale; however, with the improvement
of resolution, the accuracy of the satellite-based estimation of small-scale precipitation is
limited [27]. Todd et al. [28] combined the instantaneous value of passive remote sensing
with frequent infrared images and introduced the MIRA algorithm to optimize the relation-
ship between infrared and precipitation by using the probability matching method; they
further reduced the spatial and temporal scale of precipitation estimation. Adler et al. [29]
proposed the “inside to outside” Convective-Stratiform Technology (CST), which took
the minimum value of the local brightness temperature as the convective precipitation
center, allocated the precipitation rate and precipitation area to the surrounding points,
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and used the brightness temperature threshold value of thunderstorm anvils to determine
the stratified precipitation. Grecu et al. [30] combined lightning information into the CST
to improve the algorithm. However, Ebert et al. [31] and Fruh et al. [32] found that CST
algorithm was seriously inadequate for midlatitude tropical cyclone precipitation, limited
especially to deep convective systems in the tropics.

With the improvement of the resolution of spectral data from geostationary satellites,
Ba et al. [33] and Nauss et al. [34] extracted cloud radiation characteristics and physical
parameters such as cloud optical thickness, cloud top height, and cloud phase to im-
prove the algorithm. Ebert et al. [35] found that enhancing the classification of convective
and stratified precipitation helps to increase the accuracy of satellite precipitation esti-
mation, so some algorithms focus on the classification of convective-stratified regions.
Torricella et al. [36] and Cattani et al. [37] pointed out that the height of the cloud top is
representative of convective precipitation intensity, and the effective particle radius of
ice clouds is positively correlated with precipitation intensity. Thies et al. [38] used Me-
teosat Second-Generation-Spinning Enhanced Visible and InfraRed Imager (MSG-SEVIRI)
data to calculate the precipitation probability matrix at day and night to classify the
convective-stratified precipitation area and precipitation intensity. And the combination
of the brightness temperature and brightness temperature difference was introduced to
represent cloud parameter information, so did as Feidas et al. [39]. These techniques gener-
ally rely on the parameter relationship between cloud attributes and the rainfall process. A
few inputs have been used based on this theoretical background. However, the parameter
algorithm has to develop to add more input features, which will gradually be unable to
meet the assumptions of parameter testing and the conceptual model, let alone the non-
linear connections between remote sensing and precipitation in fact. Thus, more suitable
approaches need to be introduced to overcome these deficiencies.

In recent years, the machine learning algorithm has become a powerful tool to link
multichannel infrared data and rainfall. Many studies have integrated products from
different sources, including satellite remote sensing data, numerical prediction products,
ground observation station data, and satellite rainfall product data. Machine learning
techniques provide new directions for the simulation of highly nonlinear relations to
retrieval rainfall, such as neural networks [40–46], support vector machines [47], and
gradient boosting decision trees [48]. The Random Forest (RF) algorithm also has been
concerned in rainfall retrieval [49–55]. As an ensemble learning algorithm, random forest
can generate reasonable predictions from a plurality of inputs by establishing multiple
decision trees, and it is not easy to overfit compared to others and is usually superior
to a single decision tree algorithm [56]. Kuhnlein et al. [49] used MSG-SEVIRI data and
RF to differentiate convective-stratified rain and regressed the intensity in the day and
night and at twilight, respectively. Min et al. [51] integrated Himawari-8 and Numerical
Weather Product (NWP) data to separate precipitation and nonprecipitation pixels by the
RF classification method, then successfully simulated rainfall intensity. Turini et al. [52]
estimated high-resolution rainfall (i.e., 15 min and 3 km) from MSG1 and Integrated
Multi-satellite Retrievals for GPM (IMERG) from the GPM based on RF. Counting the
results of the validation set among these studies, the probability of detection and false-
alarm rate can roughly reach about 0.6 and 0.5 when discriminating precipitation areas.
However, when estimating precipitation intensity, the imbalance of samples often leads to
the underestimation of higher-intensity rainfall, which is a universal problem that remains
to be solved.

In summary, promising results were obtained in the previous study through the
training dataset and validation set for the same period, while validation datasets for
different periods have not been tested yet, resulting in an insufficient ability to convincingly
prove the model. A significant issue was shown in that the intensity samples predicted by
regression were concentrated below 0.5 mm/h, and the higher rate was underestimated
by 3 mm/h in GPM [49,51,52,54,55]. To solve the above problems as much as possibly,
the test dataset was extracted from an independent period, which differed from both
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the training and validation dataset with no overlap. For the purpose of testing, the data
used in this paper consisted of real-time Himawari-8/AHI multispectral observations,
the NWP from the Global Forecast System (GFS), and GPM IMERG data. The RF model
was trained for East Asia throughout the whole day, and then, the grades of precipitation
rather than the rainfall intensity were estimated to improve the accuracy of moderate rain
and heavy rain prediction, expecting to further promote the application of rainfall retrieval
in nowcasting systems.

The remainder of this paper is arranged as follows. The training, testing, and vali-
dation datasets used in the RF model are carefully recommended in Section 2. Section 3
describes the implementation of two-step RF model and the process of feature selection
and tuning. The classification performance of the training, validation, and testing of RF are
thoroughly displayed in Section 4. Section 5 provides the summary and discussion.

2. Materials and Methods
2.1. Materials
2.1.1. Satellite Observations and Numerical Products

The Himawari-8/AHI multispectral data, which have the high spatial and temporal
resolution, were used in our study. The satellite “Himawari-8” was successfully launched
by the Japan Meteorological Agency (JMA) on 7 October 2014 and commenced operation in
2015. The equipped AHI instrument has a full-disk observation over 16 spectral channels
from 0.47 to 13.3 µm including 3 visible, 3 nearinfrared, and 10 infrared channels every
10 min; the satellite data can be obtained from http://www.eorc.jaxa.jp/ptree/index.html
(accessed on 20 September 2020). To decrease the impacts of sunlight, only the brightness
temperature of water vapor and the longwave infrared channels were considered. The cen-
tral wavelengths of the former are 6.2, 6.9, and 7.3 µm, and those of the latter are 8.6, 9.6,
10.4, 11.2, 12.4, and 13.3 µm. Moreover, the cloud properties’ information that allows a
reliable identification of a deep convective area can be inferred by appropriate combina-
tions of brightness temperature differences. Commonly, differences between the water
vapor-IR channels (4T6.2−11.2 and4T7.3−12.4) are sensitive to different cloud top height,
while the information of the cloud phase referring to ice or water cloud types of the upper
parts of the cloud is acquired by differences between 8–11 µm and 11–12 µm (4T8.6−11.2
and4T11.2−12.4) [48,49]. It has been shown that the combination of these differences can
supply useful information to determine convectively dominated precipitation areas [38].
The Satellite Zenith Angle (SAZ) was also included.

Beyond that, taking into account the auxiliary effect of atmospheric environmental
variables on rainfall retrieval, the meteorological variables in the NCEP operational GFS
forecast products were used to enhance the performance of the algorithm, which can be
obtained daily at 0000, 0600, 1200, and 1800 UTC with time steps of 3 h at a horizontal
resolution of 0.25◦ × 0.25◦. To conduct the real-time rainfall retrieval, we used the real-time
GFS forecasting products. For real-time access, we set the forecast timeliness as 48 h, refer-
ring to the initial forecast time as 0000 UTC two days beforehand. The historical product
can be downloaded at the National Center for Atmospheric Research, Computational
and Information Systems Laboratory (https://rda.ucar.edu/datasets/ds084.1/index.html)
(accessed on 15 October 2020). The meteorological factors in terms of the temperature
index, thermodynamic stability parameters, moisture indices, momentum were involved.
The parameters revealed various aspects of the atmospheric characteristics. The Land
Surface Temperature (LST) indicated the thermal state, Convective Inhibition (CIN), Con-
vection Available Potential Energy (CAPE), and Best 4-layer Lifted Index (LI) described the
instability of the atmosphere, Precipitable Water (PW) and Relative Humidity (RH) were
empirical parameters for moisture, U-component of the planetary boundary layer wind (U)
and V-component of the planetary boundary layer wind (V) were dynamic parameters for
rainfall, these variables were bound up with the cloud and precipitation physical mech-
anism [1,3–5]. The study region (Figure 1) was East Asia (80◦E–135◦E and 15◦N–55◦N)

http://www.eorc.jaxa.jp/ptree/index.html
https://rda.ucar.edu/datasets/ds084.1/index.html
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from June to August in 2018 and 2019. The predictors applied in the two-step model after
feature selection were listed in the Table 1.

Table 1. The predictors used in the RF model for rain area determination.

Products Variable Unit

Himawari-8

SAZ (Satellite Zenith Angle) ◦

4T6.2−11.2 K
4T7.3−12.4 K
4T8.6−11.2 K
4T11.2−12.4 K

T6.2 K
T6.9 K
T7.3 K
T9.6 K

GFS

LST (Land Surface Temperature) K
CIN (Convective Inhibition) J/kg

CAPE (Convection Available Potential Energy) J/kg
LI (Best 4-layer Lifted Index) K

PW (Precipitable Water) kg/m2

RH (Relative Humidity) %
U (U-component of the planetary boundary layer) m/s
V (V-component of the planetary boundary layer) m/s

2.1.2. Satellite-Gauge Product

The quantitative precipitation data from the Final-Run of the integrated multisatellite
retrievals for the Level-3 gridded product GPM IMERG (Version V06B) were introduced,
which is a satellite-gauge product that is published about 3.5 months after observation,
provided by NASA (https://disc.gsfc.nasa.gov/datasets, accessed on 17 October 2020).
Rainfall estimates with 0.1◦ × 0.1◦ resolution and a 30 min interval were produced from a
variety of precipitation-related satellite Passive Microwave (PMW) sensors, IR estimates,
rain gauge observations, and so on. The final merged data from multiple fields pro-
vided the calibrated precipitation variable: precipitationCal (unit: mm/h), defined as the
multisatellite precipitation estimate under gauge calibration. Then we considered the
precipitationCal values as the ground truth when training the machine learning model.
For the purpose of rainfall retrieval, four grades of precipitation were divided based on
rainfall intensity according to meteorological standards [57], and the list of grades used in
our study is presented in Table 2.

Table 2. Classification of precipitation grades based on meteorological standards.

Class Grades Range

1 No rain <0.1 mm/h
2 Light rain 0.1 mm/h–1.5 mm/h
3 Moderate rain 1.6 mm/h–6.9 mm/h
4 Heavy rain ≥7.0 mm/h

2.1.3. Rain Gauge Observations

Ground-based data used for the comparison and validation were acquired from the
China Integrated Meteorological Information Sharing System (CIMISS). The rain-gauge
data were collected from observations at approximately 2500 national weather stations
every hour. A quality control program was developed which take into account the historical
extremes and differences between adjacent sites. The observation datasets of August 2018
and summer 2019 in study area were applied. The distribution of these stations in the
study region was demonstrated in the Figure 1.

https://disc.gsfc.nasa.gov/datasets
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Figure 1. Distribution of the rain gauge stations in the study area.

2.1.4. Data Processing

Different characteristics of spatial–temporal-resolution satellite observations and nu-
merical products match the satellite-gauge products. The temporal matching between
the instantaneous state image and the precipitation rates needs to consider the relevant
factors about the physical mechanism of cloud precipitation, such as the development and
evolution of cloud, the phase change of water matter, the drop and growth of droplets,
and the influence of turbulent dynamic process. To cover the rain process, we applied
the median for the instantaneous image of the geostationary satellite over half an hour,
corresponding to the calibrated precipitation value of multiple satellites within the same
period. For example, the instantaneous values of Himawari-8 at 0120 UTC and 0150 UTC
are parallel to the precipitation rates of GPM IMERG from 0100 UTC to 0130 UTC and
from 0130 UTC to 0200 UTC, respectively. Meanwhile, we integrated the GFS data with
6-h temporal-resolution into 30 min intervals by adopting the cubic-spline-interpolation
method and the spatial matching technique was used on GFS variables and GPM data,
keeping the same spatial-resolution as Himiwari-8. After the preprocessing, a series of
datasets (0.05◦× 0.05◦, 30 min) was established to build the RF classification model.

2.2. Methods
2.2.1. Random Forests

The Random Forests technique is an ensemble algorithm initially proposed by
Breiman [56] and has been developed for numerous nonlinear classifications and regression
estimations. Based on the bootstrap sampling method and random feature selection, a vast
unrelated forest composed of a great number of decision trees was established, with the
final output the category with the most votes in the classification or the average predic-
tion among all decision trees in the regression model. Notably, it enables great speed for
highly parallel computing on large samples or multidimensional vector training with a
high prediction accuracy. As a result of the random sampling, the generalization ability of
the training model is enhanced and stable, showing that the adaptability is high in other
circumstances with similar characteristics [56].

A remarkable advantage is that it can be evaluated internally due to the bootstrap
sampling technique, eventually giving the importance score of each input feature to the
model. An unbiased estimation of the error in the process of training with the Out-Of-Bag
(OOB) score using out-of-bag samples was calculated to evaluate the model performance.
For the classification algorithm, with the judgment of all the trees, the category with the
highest votes was identified as the predicted category of this sample [56,58].
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In this study, the mature scikit-learn toolkit (http://scikit-learn.org/stable/, accessed
on 1 April 2021) in the ML Python module was used to implement the RF algorithm.

2.2.2. Resampling Technique for Imbalanced Data

Resampling technique is one of the most common methods to adjust the distribution
of the training samples with unbalanced data. In the field of machine learning, the number
of training samples in each category has varied greatly in some situations such as disease
detection and fraud monitoring [59]. There are some problems that researchers have
focused on, such as minority classes, where the classifier tends to predict the majority
classes under this circumstance even if a high accuracy is acquired. The same phenomenon
is also described in precipitation classification, which suffers from category imbalance.
Random undersampling and oversampling are found to modify the distribution; however,
the former randomly discards the partial data in the majority samples, but has the risk of
removing the potentially useful information, while the latter duplicates samples from the
minority and tends to overfit [60,61]. An improved scheme based on random oversampling,
named the Synthetic Minority Oversampling Technique (SMOTE), has been proposed to
synthesize new minority samples on the basis of the original sample to reduce the impact
of excessive fitting [60]. The key steps of this method are as follows: (i) for each sample
xi in the minority class, the Euclidean distance is taken as the criterion to compute the
distance from it through all samples to obtain its k-nearest neighbor; (ii) determine the
multiplier Y based on the sampling ratio, and the nearest neighbor sample x̂i is randomly
selected around xi; (iii) a point x̄i on the line between xi and x̂i is randomly selected as the
new synthesized minority samples, expressed as:

x̄i = xi + |xi − x̂i| ∗ rand(0, 1) (1)

In the above equation, the function of rand(0,1) is to generate random numbers from
0 to 1. However, there are still imperfections that need to be explained. If the selected
minority samples are also encompassed by minority samples, the newly synthesized
samples cannot offer more useful characteristic information. Conversely, when the selected
minority samples are encompassed by majority samples, this may produce noise, and then,
the synthesized samples will overlap most of the surrounding majority samples, which
makes the classification difficult [62].

For the implementation of the resampling techniques in the paper, we took advantage
of the Python toolbox Imbalanced-learn [63]. More detailed information about the above
project can be obtained at the scikit learn website at https://imbalanced-learn.org/stable
(accessed on 10 April 2021).

3. Implementation Details

The flow chart of the two-step RF-based rainfall retrieval technique is presented in
Figure 2. First, we made the spatiotemporal resolution of the whole dataset containing
the Himawari-8 scan, NWP data, and GPM IMERG uniform. Then, the first module was
established to delineate the rainfall area. We sampled a small dataset to optimize the RF
model by feature selection and parameter tuning. Then, we applied the trained model to
the independent dataset to determine whether there was precipitation or no precipitation
for the given pixels in the satellite images at a specific time. In the following step, we
removed the clear sky pixels from the dataset used in the first module, analogously, we
developed the second module to estimate the grades of precipitation, and the model
was used to confirm if the pixels were light rain, moderate rain, or heavy rain on the
geostationary satellite remote sensing images. Finally, we respectively interpreted and
evaluated the accuracy of the two-step model and compared the result with the calibrated
precipitation of GPM IMERG. The training of the two-step model in each step was carried
out independently.

After the step of data preprocessing, considering that the number of pixels of June and
July in 2018 was too large to be able to directly train the classification model, we randomly

http://scikit-learn.org/stable/,
https://imbalanced-learn.org/stable
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sampled 1% of the pixels every day in June and July of 2018 as the sample dataset covering
25,822,032 samples to capture the distribution characteristics of the summer rainfall, then
the sample dataset was split into the training (20%) and validation (80%) datasets to make
a considerably fair assessment of the module. To test the universality of the model, we
set the whole dataset in August 2018 and summer 2019 as an independent testing dataset
separately. Because a lot of pixels in the IMERG product were marked as rainy, whereas
flagged as clear sky in the H08/AHI cloud mask, we did not make use of the cloud mask
product to avoid the process error when delineating the rainfall area. In addition, we
combined random undersampling and the SMOTE technique in the training for the first
classification model, and the SMOTE technique was used independently in the second RF
model to improve the performance of the two-step retrieval algorithm.

Figure 2. Framework of the two-step RF-based precipitation retrieval model.

3.1. Model Tuning and Training

For the tuning of the two-step RF model, first, the sample balance technique was
adopted to choose the most suitable sampling method to process the training dataset.
Then, we screened the relatively important features from the initially chosen variables and
later optimized the hyperparameter of the modules. Ultimately, the model was trained
and optimized. To decrease the optimization time and enhance the overall performance,
10,000 samples were randomly sampled from the prepared sample dataset for optimization.

In regard to the first classification for rain area delineation, nonprecipitation and
precipitation pixels were divided to effectively identify the precipitation area. During the
process of model training, due to the significant imbalance of the two classes in the dataset
that lowered the number of rainy pixels, directly randomly selecting the training dataset
led to the underestimation of precipitation. To solve this problem, the sampling technique
has been introduced by several researchers [51–53,55]. Notably, reducing the number of
nonprecipitation pixels and then increasing the amount of precipitation pixels can alleviate
the effects of imbalance. Afterward the SMOTE sampling was performed after downsam-
pling to balance the number of pixels for the two classes. We selected four scenarios and
controlled the ratio of clear sky pixels to rainy pixels as 4:1, 3:1, 2:1, and 1.25:1 to test the
optimal ratio of undersampling. Then, 2000 samples were randomly selected from the
whole sample dataset as the training dataset to pick the optimal model, and 8000 samples
were used as the validation dataset. For the purpose of the second classification for the
precipitation grades’ estimation, precipitation pixels were extracted and classified into
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different grades of precipitation. Similarly, direct training can overestimate the amount of
light rain and underestimate the quantity of moderate rain and heavy rain, owing to the
extreme imbalance. The training dataset can be balanced by dramatically increasing the
amount of moderate rain and heavy rain. Later, 2000 precipitation samples were selected
to acquire the optimum parameter collocation for classification.

We eliminated relatively unimportant features to reduce the number of input variables
according to the variable importance score to increase the accuracy and efficiency of the
RF model learning and training. The classifier gave each input feature a certain weight
so that the feature importance score could be calculated from the sum of Gini impurity
reduction of all nodes split on the feature across all decision trees. We finally determined
the first 17 important predictors from the initial variables. The parameter tuned in the RF
model was the number of decision trees in the entire forest (nestimators), which played a
vital role in affecting the sensitivity of model performance, meaning the maximum number
of iterations of the weak learner in the algorithm. We determined the parameters to be
as large as possible while comprehensively taking the objective hardware conditions into
consideration. During the tuning process, the values of the OOB score were regarded as the
evaluation index for parameter adjustment. A great quantity of RF models were applied to
train with the number of trees being 10, 50, 100, 200, 300, 500, 800, and 1000.

After building the optimal model, the training dataset was shuffled out of order to
improve the generalization ability of the simulation, including 5,164,407 pixels in the first
classification sampled from the sample dataset, and 840,650 pixels were subsequently
employed in the second classification. Then, the two datasets were applied for training in
the rain area delineation and precipitation grades’ estimation separately.

3.2. Validation and Testing

For the assessment of the presented algorithm above, we independently introduced
the validation dataset including 20,657,625 pixels in the module for the rain area delineation
and 3,362,604 pixels in the module for the precipitation grades’ estimation. Moreover, we
synchronously tested the data in August 2018 and the whole summer of 2019 to further
analyze the applicability of the model.

Different metrics commonly used in meteorology were calculated pixel-by-pixel sepa-
rately in the two-class and multiclass modules. In the case of the two-class classification
delineating the rainfall area, we introduced the Probability Of Detection (POD), False-
Alarm Ratio (FAR), Critical Success Index (CSI), Heike Skill Score (HSS), Equitable Threat
Score (ETS), and Bias. The POD represents the reliability of correctly classifying precipita-
tion pixels when rain is observed. The FAR shows the error rate to identity precipitation
pixels when rain was simulated. The CSI reveals the fraction of correctly classified pre-
cipitation pixels while removing the correctly classified nonprecipitation pixels. The HSS
measures the percentage of correctly classified pixels, excluding those simulations that were
correct purely due to random chance. The ETS shows the fraction of correctly classified
pixels after accounting for accidental correctness and is relatively fairer. The Bias describes
the frequency of correctly classified precipitation pixels compared to that of observed rain
and the tendency of underforecasting (Bias < 1) or overforecasting (Bias > 1). They can be
calculated for four situations: a reveals that both the IMERG product and the estimated
pixels by the RF model as rain; c indicates that the RF classification identified the pixels as
rain, but the IMERG product did not; b shows that the pixels in the IMERG product are
rain, but in the RF model are not; d displays that pixels both in the IMERG product and
the RF classification are considered as nonprecipitation. The detailed information for these
metrics is shown in Table 3.
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Table 3. Names, calculation formula, range, and optimum values of the various metrics for delineat-
ing the rainfall area.

Name Formula Range Optimum

Probability of detection POD = a
a+c [0, 1] 1

False-alarm ratio FAR = b
a+b [0, 1] 0

Critical success index CSI = a
a+b+c [0, 1] 1

Heike skill score HSS = 2(ad−bc)
(a+c)(c+d)+(a+b)(b+d)

[−∞, 1] 1

Equitable threat score ETS = a−dr
a+b+c−dr where dr = (a+c)(a+b)

a+b+c+d
[−1/3, 1] 1

Bias Bias = a+b
a+c [0, +∞] 1

With reference to the multiclass classification estimating the precipitation grades,
the Accuracy (ACC) was used to illustrate the ratio of pixels classified as the correct grades.
ACC can be computed by dividing the correctly classified pixels by the total number of
pixels and easily shows a preference for the majority in comparison to the minority; it can
be expressed as:

ACC =
1
N

N

∑
i=1

l(PRSimi = PRObsi) (2)

where PRSimi is the category of the i-th simulation of the RF model, PRObsi is the result of
the corresponding i-th GPM IMERG products, N is the total number of simulation items,
and l is the indicator function.

4. Results
4.1. Rain Area Delineation

This section summarizes the results of the tuning and training for the two-class precip-
itation to identify the rain area, and then, the metrics are applied in the validation dataset
and testing dataset to assess the model overall performance. The ratio of nonprecipita-
tion pixels to precipitation pixels in the sample set was close to 5:1, manifesting a large
quantity difference. The 2000 prepared samples for the training dataset for parameter
tuning were used to establish four scenarios to obtain the optimal ratio of random un-
dersampling. Table 4 shows the validation scores for the 8000 validation samples with
different proportions.

Table 4. Validation scores under four scenarios with different proportions of clear sky pixels to
rainy pixels.

Model Name Clear Sky/Rainy POD FAR CSI HSS ETS Bias

Scenario_0 4:1 0.70 0.16 0.61 0.56 0.39 0.83
Scenario_1 3:1 0.72 0.17 0.63 0.57 0.39 0.87
Scenario_2 2:1 0.76 0.19 0.64 0.58 0.39 0.94
Scenario_3 1.25:1 0.80 0.21 0.66 0.59 0.39 1.02

With the decrease of the ratios in the training dataset, the performance of all verifica-
tion scores improved except the FAR. The POD had the most significant alteration from
0.70 to 0.80. The Bias varied from underestimating to overestimating a little. The CSI, HSS,
and ETS displayed a slight change. Therefore, despite the FAR becoming worse due to the
reduction of nonprecipitation pixels, Scenario3 was finally comprehensively considered.

After the implementation of the sampling technology, the next step was feature
selection based on the feature importance score. The single channels of IR 8.6, IR 10.4, IR
11.2, IR 12.4, and IR 13.3 showed lower importance compared to the other input variables.
The Water Vapor channels (i.e., T6.2) and IR channel (i.e., T9.6) were retained, along with
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the differences between the water vapor-IR channels and longwave IR channels (i.e.,
4T6.2−11.2, which represents the differences between T6.2 and T11.2), and the physically
related meteorological variables were used. Table 1 shows the 17 input variables for
nonprecipitation and precipitation pixels’ classification in detail.

During the model tuning process, we tuned the number of decision trees to determine
the optimum by examining the variance of the OOB scores obtained from the out-of-bag
samples that did not participate in the training. Figure 3 displays how the values of the
OOB score changed when iteratively adjusting the parameters. The OOB score increased
significantly until the number of trees reached 200, showing that there was no longer a
decided change in scores, but a large consumption in internal storage and processing time.
Finally, we took 200 decision trees as the optimal RF classification model.

Figure 3. The parameter tuning in the RF model for rain area determination.

Next, the validation process of the RF model for the identification of precipitation
regions was carried out after the training procedure. Meanwhile, the metrics for the RF
model forecasting on each pixel were calculated and compared with the corresponding
pixels in the IMERG product. The scores of the validation dataset for rain area delineation
were POD = 0.77, FAR = 0.23, CSI = 0.63, HSS = 0.54, ETS = 0.37, and Bias = 1.01. Then,
the contributions of each feature were obtained. Figure 4 shows the ranking of these predic-
tors for the nonprecipitation and precipitation classification. Among all the variables used,
PW occupied the most important position, indicating that abundant water vapor is indeed
an indispensable element for the occurrence and development of convective precipitation.
The SAZ was the second-most important predictor. The convective instability parameter
comprising the LI, CAPE, and CIN also showed extremely high rankings, demonstrating
the favorable conditions for triggering convective precipitation. Moreover, wind speed also
showed a high importance, because the low-level jet in the planetary boundary layer may
be a crucial dynamic mechanism of convective precipitation. In addition, the brightness
temperature differences between the infrared channels, which represent the cloud attribute
information, showed a certain importance. Meanwhile, cloud top temperature belonging
to T9.6 and the single water vapor channel made a modest contribution.
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Figure 4. The ranking of the predictor variable in the RF model for rain area determination.

After the RF algorithm showed a better result on the validation dataset, we primarily
utilized the August data in 2018 to test the model for rain area determination. To evaluate
the continuous performance of the model over a course of the day, a boxplot of the val-
idation metrics (Figure 5) was used to express the simulation results of the model over
half-hour period. As can be seen from Figure 5, in the afternoon (0830 UTC to 1330 UTC),
the model presented a higher POD of 0.75, while the distribution of the other period was
basically around 0.68. In the same period, the FAR and Bias scores were also slightly higher
than the others, revealing that the model resulted in some overestimation. This may be
due to that the convective clouds often formed in the afternoon and gradually developed
into the deep convective precipitation in the mesoscale convective system, making the
model better at identifying precipitation, especially convective precipitation. The FAR
scores were lower than 0.30. There were no noticeable temporal variations of the CSI,
HSS, and ETS scores, and they were around 0.50, 0.40, and 0.30, respectively. It is worth
noting that the testing results were superior to the previous studies: The precipitation
region estimated by Kuhnlein et al. [49] showed a POD of 0.5, a FAR of 0.5, and a CSI of 0.3.
Min et al. [51] discriminated the raining pixels with a POD of 0.58, a FAR of 0.33, and a CSI
of 0.45. Ma et al. [48] obtained a POD of 0.6 and a FAR of 0.47 in rain area classification.
Turini et al. [52] detected precipitation areas from cloudy pixels with a POD of 0.8 and
a FAR of 0.3. In summary, the RF model can accurately classify the nonprecipitation and
precipitation pixels.

Figure 6 shows an example of identifying the rain area at 0700 UTC 21 August 2018.
Here, the rain area outline predicted by RF was largely consistent with that of the GPM,
despite some overestimation, which can also be reflected in the performance of the POD
and FAR. The most likely reason is that the undersampling for the clear sky pixels led
to the bias of the predicted precipitation samples and partly because the PW contributed
most and is large-scale, continuous, and zonal, while rainfall is locally small-scale, which
led to the mismatch between them. Perhaps adding local physical parameters such as
the convergence index could improve this, and we will try to achieve this in future work.
Therefore, to some extent, the sample balance technology will sacrifice the accuracy of the
nonprecipitation area.

Then, the model for identifying rain area was further tested with the following whole
summer in 2019. We used the boxplot (Figure 7) to describe the testing results of the RF
model at half-hour intervals. The result revealed that the evaluation metrics in each time
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period of the whole day were relatively stable. However, the overall performance was
worse than that of August 2018.

Figure 5. The diurnal variation of the evaluation scores for rain area determination on the testing
dataset during August 2018; the distributions of the statistical values by half-an-hour are interpreted
in box plots. Box diagrams indicate the 25th, 50th, and 75th percentiles, whereas the periphery of
the box extends to 1.5-times the quartile deviation (25th–75th percentile). Outliers are indicated by
black dots.

Figure 6. Comparisons of rain area delineation between the GPM (left) and RF model (right) at 0700
UTC 21 August 2018.
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Figure 7. The diurnal variation of evaluation scores for rain area determination in the testing dataset
in summer 2019; the distributions of the statistical values by half-an-hour are interpreted in box plots.
Box diagrams indicate the 25th, 50th, and 75th percentiles, whereas the periphery of the box extends
to 1.5-times the quartile deviation (25th–75th percentile). Outliers are indicated by black dots.

Figure 8 shows an example for identifying rain area at 0630 UTC 1 July 2019. The rain
area profile predicted by RF was still similar to that of the GPM precipitation with a
certain overestimation of the rain area, which was also caused by the characteristics
of the undersampling algorithm and the possible influence of the PW, which had the
main contribution.

Figure 8. Comparisons of rain area delineation between the GPM (left) and RF model (right) at 0630
UTC 1 July 2019.
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4.2. Precipitation Grades’ Estimation

This section analyzes the results of the tuning and training of the three-class classifica-
tion to estimate precipitation grades after fixing the rain area, and the accuracy was applied
to evaluate the performance. There was also a large difference with respect to the ratio of
light rain, moderate rain, and heavy rain in the sample dataset, close to 20:6:1. Therefore,
the training model could not detect heavy rain. To solve this, the SMOTE sampling was
used to keep the number of samples of the three classes consistent. Twenty-thousand
samples were randomly selected from the sample dataset after removing nonprecipitation
pixels and then used for feature selection and tuning. The 17 variables ultimately chosen
were the same as those in the RF model for rain area determination, and then, the number
of decision trees was also optimized. Figure 9 depicts how the values of the OOB score
changed when iteratively adjusting the parameters. The results showed that the model
was subtle for the number of decision trees, and there was also no noticeable variation in
the scores over 200 iterations, so the 200 iterations were considered as optimal.

Figure 9. The parameter tuning in the RF model for the precipitation grades’ estimation.

The trained RF model through the tuning process was applied to the validation
datasets. Moreover, the metrics were calculated on each pixel, then the results were com-
pared with the IMERG products. The ACC of the validation dataset was 0.70. Figure 10
shows the ranking of the variable importance scores in the RF model for measuring precip-
itation grades. The PW had the most contribution to the classification model due to the
effect of sufficient moisture on precipitation. The importance of the CAPE, which represents
the convective instability condition, increased. SAZ also showed plenty of contribution.
Next were the other meteorological variables of the environmental background field in the
NWP model and the Himawari-8 longwave spectral channels, including the brightness
temperature and their difference, which reflects the cloud property information.

We continued to test the RF model with nonprecipitation pixels removed in August.
To evaluate the effect of the RF model throughout the whole day, a boxplot (Figure 11) of
ACC is used to present the performance at half-hour intervals. ACC fluctuated markedly
throughout all the day with an average of 0.60, exhibiting a promising result for forecasting
the strength of precipitation regarding the accuracy of heavy rain prediction. The inho-
mogeneity may be caused by the large proportion of light rain samples at some time, e.g.,
0730 UTC. For unbalanced samples, the accuracy of the model will be higher when the
number of samples in majority classes is large.
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Figure 10. The ranking of the predictor variable in the RF model for the precipitation grades’ estimation.

Figure 11. The diurnal variation of ACC for the precipitation grades’ estimation in testing dataset
during August 2018; the distributions of the statistical values by half-an-hour are interpreted in box
plots. Box diagrams indicate the 25th, 50th, and 75th percentiles, whereas the periphery of the box
extends to 1.5-times the quartile deviation (25th–75th percentile). Outliers are indicated by black dots.

To visualize the classification results for light rain, moderate rain, and heavy rain in
space, Figure 12 gives an example for identifying rainfall intensity at 0700 UTC 21 August 2018.
In this case, the distribution of light rain areas was consistent, and heavy rain areas could be
detected. A direct cause was that the oversampling algorithm led to the prediction results
being biased towards majority classes for heavy rain samples. There was a some overesti-
mation for heavy rain areas with a concentrated distribution, while an underestimation for
heavy rain areas with a scattered distribution.
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Figure 12. Comparisons of the precipitation grades’ estimation between the GPM (left) and RF model
(right) on 0700 UTC 21 August 2018.

We then removed nonprecipitation pixels in summer 2019 and tested the RF model for
precipitation grades’ estimation. To examine the simulation result of the RF model for the
whole day, the boxplot (Figure 13) of ACC was used to present the performance at half-hour
intervals. ACC maintained the prominent fluctuation trend throughout all the day, which
was consistent with August 2018, and the average ACC was approximately 0.60. The
inhomogeneity at certain moments (e.g., 0730 UTC) may also be due to the large number of
light rain samples.

Figure 13. The diurnal variation of ACC for the precipitation grades’ estimation in testing dataset in
summer 2019; the distributions of the statistical values by half-an-hour are interpreted in box plots.
Box diagrams indicate the 25th, 50th, and 75th percentiles, whereas the periphery of the box extends
to 1.5-times the quartile deviation (25th–75th percentile). Outliers are indicated by black dots.

To visualize the classification results for light rain, moderate rain, and heavy rain
in space, Figure 14 draws the example for identifying precipitation grades at 0630 UTC
1 July 2019. In this situation, the prediction accuracy of light rain areas was still high,
and heavy rain areas could basically be estimated. This was still caused by the feature of
the oversampling algorithm. The spatial overestimation was in high-density heavy rain
areas, and underestimation was in thin heavy rain areas.
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Figure 14. Comparisons of the precipitation grades’ estimation between the GPM (left) and RF model
(right) at 0630 UTC 1 July 2019.

4.3. The Rainfall Retrieval Integrated Model

To assess the overall performance of trained rainfall retrieval model, RF classification
model was used for rain area determination and precipitation grades’ estimation to assess
the final fusion product. The boxplot (Figure 15) of ACC is used to demonstrate the fusion
testing results at half-hour intervals during August 2018. The average ACC was about 0.65,
and the ACC from 0230 UTC to 0530 UTC was about 0.70, which was higher than other
times. It may be that the convective precipitation in this period was weak, and the samples
tended to be nonprecipitation and light rain, which made the forecasting accuracy higher.

Figure 15. The diurnal variation of the accuracy for rainfall retrieval in the testing dataset during
August 2018; the distributions of the statistical values by half-an-hour are interpreted in box plots.
Box diagrams indicate the 25th, 50th, and 75th percentiles, whereas the periphery of the box extends
to 1.5-times the quartile deviation (25th–75th percentile). Outliers are indicated by black dots.

To visualize the classification results for the whole rain area in space, Figure 16
describes the example for identifying rainfall intensity at 0700 UTC 21 August. In this
scenario, the spatial distribution distinctly revealed that the errors of the previous two RF
classification models were accumulated in the integrated model. What is more remarkable
is that the strength of rainfall predicted by the RF model was overestimated, especially for
the moderate rain and heavy rain in the densely distributed areas of heavy rain; however,
the model underestimated rainfall in areas with a sparse distribution of heavy rain. The
results were mainly affected by the imbalance of the rainfall data, which can be improved
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by using sampling method to some extent. A more suitable sampling method may be
introduced to deal with this situation and improve the algorithm in the future. For instance,
subsequent study can take into account the EasyEnsemble algorithm, which conducts
multiple downsampling to generate multiple training sets and finally fuses the trained
model together, can make up for the possible loss of important information in the random
downsampling technique. Beyond that, adding more important input variables may also
result in better performance. Besides the local small-scale climate variables mentioned
above, the topographic types and texture features can also be introduced into the model
because of their effects on precipitation distribution, like the mountain can block and guide
the movement of water vapor.

Figure 16. Comparisons of the rainfall retrieval integrated model between the GPM (left) and RF
model (right) at 0700 UTC 21 August 2018.

We then tested the final merged product on the basis of the rainfall retrieval integrated
RF models in summer 2019. The boxplot (Figure 17) of ACC is used to demonstrate the
fusion testing results at half-hour intervals. The average ACC of the testing dataset was
about 0.65, and the tendency of the ACC to vary with time became smooth and steady com-
pared to that of August 2018, the possible causes being that the model’s adaptability was
lower in the following summer, as well as the number of samples being more than before.

Figure 17. The diurnal variation of the accuracy for rainfall retrieval in the testing dataset in summer
2019; the distributions of the statistical values by half-an-hour are interpreted in box plots. Box
diagrams indicate the 25th, 50th, and 75th percentiles, whereas the periphery of the box extends to
1.5-times the quartile deviation (25th–75th percentile). Outliers are indicated by black dots.
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To visualize the classification results for the whole rain area, Figure 18 shows the
circumstance for identifying precipitation grades at 0630 UTC 1 July 2019. In summary,
the accuracy of the rainfall retrieval still needs to be improved, due to the overestima-
tion of rain areas on the whole area. However, when compared with previous research,
great progress has been made in the identification of moderate rain areas and heavy
rain areas. Therefore, the two-step model can provide an important reference for fur-
ther quantitative precipitation estimation and forecasting of the key weather systems and
meteorological elements.

Figure 18. Comparisons of the rainfall retrieval integrated model between the GPM (left) and RF
model (right) at 0630 UTC 1 July 2019.

4.4. Comparison with Rain Gauge Stations

To further validate the performance of the RF model on independent datasets, the
ground-based data from August 2018 and summer 2019 (Figure 1) were applied as a
reference. The near-neighbor algorithm was implemented to interpolate the pixels of the
testing datasets to the corresponding station, and we compared the model results of the
second 30 min with the precipitation grades of the station in one hour. To assess the
continuous performance of the RF model in August 2018 against rain gauge data over
a course of the day, the boxplot of validation metrics (Figure 19) was used to express
the simulation results of the model over one hour period. The results display the same
characteristics as before. The values of POD scores from 0600 UTC to 1200 UTC are higher
than that of other times and generally distribute above 0.6. The FAR and Bias in the same
period are also a litter higher, however, the accuracy becomes lower in this period, which
displays that the overestimated precipitation samples cause great deviation to the final
results of the model. The CSI, HSS, and ETS don’t change significantly over time, they
are around 0.5, 0.38, and 0.2. The overall performance indicates the RF model has shown
expecting behavior in rainfall retrieval.
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Figure 19. The diurnal variation of evaluation scores for rain area determination and precipitation
grades estimation on RF model against gauge stations during August 2018, distributions of statistical
values at one hour intervals are interpreted in box plots. Box diagrams indicate the 25th, 50th, and
75th percentiles, whereas the periphery of the box extends to 1.5 times of the quartile deviation
(25th–75th percentile). Outliers are indicated by black dots.

We used the boxplot (Figure 20) to describe the testing results of RF model in summer
2019 against gauge data at one hour intervals. The results shows that the evaluation scores
are relatively stable throughout the whole day and the performance is worse than that of
August 2018.
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Figure 20. The diurnal variation of evaluation scores for rain area determination and precipitation
grades estimation on RF model against gauge stations during summer 2019, distributions of statistical
values at one hour intervals are interpreted in box plots. Box diagrams indicate the 25th, 50th, and
75th percentiles whereas the periphery of the box extends to 1.5 times of the quartile deviation
(25th–75th percentile). Outliers are indicated by black dots.

4.5. Comparison with GFS Model

The ranking of predictor variables in the RF model both reveals that the GFS mete-
orological variables are more important than the Himawari imager infrared brightness
temperatures. To prove the contribution of infrared satellite data, we compared the 6 h
precipitation predicted in the GFS model with RF model. According to meteorological
standards [57], the values less than 0.1 mm are considered as no rain. The pixels between
0.1 mm and 3.9 mm are regarded as light rain, between 4.0 mm and 12.9 mm are defined as
moderate rain, more than 13 mm are considered as heavy rain. Due to the temporal resolu-
tion mismatch, we accumulated the 30 min GPM IMERG product to 6 h, then calculated
the evaluation scores between the GFS model and GPM IMERG product, finally compared
them with the 6 h average value of the model testing dataset. The boxplot (Figure 21) to
compare the GFS model rainfall with testing results of RF model in August 2018 at six hour
intervals was showed. Compared with the GFS model, the evaluation scores of the RF
model display better performance in general, especially the accuracy, which shows that
the infrared satellite data can sufficiently reveal the information of precipitation intensity.
However, the POD scores from 0000 UTC to 0600 UTC are lower than GFS model, the
possible reason is that the GFS forecast field overestimates the precipitation area to a greater
degree than the RF model in this period, so that the FAR is also higher in this case.
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Figure 21. The diurnal variation of evaluation scores for rain area determination and precipitation
grades estimation on RF model and GFS model against GPM data during August 2018, distributions
of statistical values at six hour intervals are interpreted in box plots. Box diagrams indicate the
25th, 50th, and 75th percentiles whereas the periphery of the box extends to 1.5 times of the quartile
deviation (25th–75th percentile). Outliers are indicated by black dots.

The boxplot (Figure 22) was showed to compare the GFS model rainfall with RF model
results in summer 2019 at six hour intervals. The results still shows that the RF model is
superior as a result of the addition of infrared information. And the model performance is
worse than that of August 2018.
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Figure 22. The diurnal variation of evaluation scores for rain area determination and precipitation
grades estimation on RF model and GFS model against GPM data during summer 2019, distributions
of statistical values at six hour intervals are interpreted in box plots. Box diagrams indicate the
25th, 50th, and 75th percentiles whereas the periphery of the box extends to 1.5 times of the quartile
deviation (25th–75th percentile). Outliers are indicated by black dots.

5. Discussion

In our study, a new rainfall retrieval technique based on the RF model was proposed,
which using multichannel Himawari-8/AHI satellite observations and GFS meteorolog-
ical data. The calibrated precipitation information from GPM IMERG was regarded as
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the ground truth during the training process. We built a two-step rainfall retrieval inte-
grated model to handle high-dimensional physically associated features and precipitation
information to improve the retrieval precision of the rainfall area and precipitation grades.

The relevant atmospheric factors in the GFS product were introduced into the geosta-
tionary IR-based technique as additional variables. Their extremely high contribution to the
RF classifications demonstrated that the environmental background field of atmospheric
transportation surely has an evident effect on the precipitation forecasting. In response
to the widespread underestimation of moderate and heavy rain areas in the quantitative
precipitation estimation, the classification model was established to qualitatively estimate
the precipitation grades after determining the rain area first. In addition, the resampling
techniques were implemented on the sample dataset to increase the accuracy of the whole
classification model. We examined the which test had the best random undersampling ratio
in terms of the frequently used evaluation metrics counted pixel-by-pixel compared to the
IMERG data. Then, more important predictors were screened and the model parameters
optimized.Large validation and testing datasets were applied to train the RF model to test
the general adaptability with respect to the independent datasets. Additionaly, the RF
model was validated against independent gauge data, then compared with the forecasting
cumulative rainfall of the GFS model.

Overall, using the developed approach, the evaluation metrics obtained in the rain area
detection module were excellent in comparison with previous satellite-based [47–52,54,55].
Regarding the effectiveness of the model optimization, the results directly proved the
practicability and feasibility of the rain area delineation algorithm in forecasting summer
precipitation the next month and the next year. At the moment when convective precipita-
tion was developing vigorously, the model performed slightly better. In the next step of
the grades’ estimation, the accuracy of moderate and heavy rain prediction improved to
some extent, giving the forecasting of rainfall intensity a certain guideline and instruction.
This pixel-by-pixel model can also be rebuilt for different regions and periods after the
application of the retuning and resampling method.

The proposed technique has made progress in the field of IR precipitation retrieval.
The RF, as a popular machine learning algorithm in present research, achieved gratifying
results with samples that required only a small memory footprint in the Interdisciplinary
Course of Meteorological Research, even in the case of unbalanced data. In the future, we
hope to realize high-resolution rainfall retrieval for other seasons with new geostationary
satellite infrared information. Moreover, the presented algorithm will provide the premise
for quantitative rainfall intensity estimations.
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Abbreviations
The following abbreviations are used in this manuscript:

ACC Accuracy
CAPE Convection Available Potential Energy
CIMISS China Integrated Meteorological Information Sharing System
CIN Convective Inhibition
CMORPH Climate Prediction Center Morphing Method
CSI Critical Success Index
CST Convective-Stratiform Technology
DPR Dual-frequency Precipitation Radar
ETS Equitable Threat Score
FAR False-Alarm Ratio
GATE GARP Atlantic Tropical Experiment
GFS Global Forest System
GMI GPM Microwave Imager
GOES Geostationary Operational Environmental Satellite
GPI GOES Precipitation Index
GPM Global Precipitation Measurement
Himawari-8/AHI Advanced Himawari Imager-8
HSS Heike skill score
IMERG Integrated Multi-satellite Retrievals for GPM
IR Infrared
JMA Japan Meteorological Agency
LI Best four-layer Lifted Index
LST Land Surface Temperature
MSG-SEVIRI Meteosat Second Generation-Spinning Enhanced Visible

and InfraRed Imager
NWP Numerical Weather Product
OOB score Out-Of-Bag score
PERSIANN Precipitation Estimation from Remotely Sensed Information

using Artificial Neural Networks
PMW Passive Microwave
POD Probability Of Detection
PW Precipitable Water
RH Relative Humidity
RF Random Forest
SAZ Satellite Zenith Angle
SMOTE Synthetic Minority Over-sampling Technique
TRMM Tropical Rainfall Measuring Mission
U U component of planetary boundary layer wind
V V component of planetary boundary layer wind
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