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Abstract: Self-driving cars have experienced rapid development in the past few years, and Simulta-
neous Localization and Mapping (SLAM) is considered to be their basic capabilities. In this article,
we propose a direct vision LiDAR fusion SLAM framework that consists of three modules. Firstly, a
two-staged direct visual odometry module, which consists of a frame-to-frame tracking step, and
an improved sliding window based thinning step, is proposed to estimate the accurate pose of the
camera while maintaining efficiency. Secondly, every time a keyframe is generated, a dynamic objects
considered LiDAR mapping module is utilized to refine the pose of the keyframe to obtain higher
positioning accuracy and better robustness. Finally, a Parallel Global and Local Search Loop Closure
Detection (PGLS-LCD) module that combines visual Bag of Words (BoW) and LiDAR-Iris feature is
applied for place recognition to correct the accumulated drift and maintain a globally consistent map.
We conducted a large number of experiments on the public dataset and our mobile robot dataset
to verify the effectiveness of each module in our framework. Experimental results show that the
proposed algorithm achieves more accurate pose estimation than the state-of-the-art methods.

Keywords: Simultaneous Localization and Mapping; direct visual-LiDAR odometry; loop
closure detection

1. Introduction

The latest activity in the field of self-driving car navigation is considered to be the next
revolutionary technology that will change people’s lives in many ways [1]. It triggered
a series of reactions that aroused the automotive industry, and SLAM plays a key role in
autonomous vehicles, especially in solving positioning problems in unfamiliar environ-
ments.Traditionally, the localization of autonomous vehicles rely on Global Navigation
Satellite System, Inertial Navigation System (GNSS/INS) [2,3]. Yet, GNSS position infor-
mation is prone to jump due to signal blocking, multipath effects, and magnetic noise [4,5],
and INS may experience cumulative errors, especially in GNSS challenging environments,
such as urban canyons, boulevards, and indoor environments. Therefore, studying the use
of SLAM technology to solve the positioning problem in the GNSS-denied environment
is of great significance to the realization of autonomous driving. In particular, the fusion
method of camera and LiDAR is receiving more and more attention from scholars.

In recent years, great progress has been made in the field of visual SLAM using monoc-
ular cameras, including direct methods and feature-based indirect methods. The classical
visual feature-based methods have matured, resulting in a stable visual SLAM method.
Among them, the most popular are PTAM [6,7], ORB-SLAM [8,9]. However, the disad-
vantage of these feature-based methods is that it is difficult to finding the corresponding
feature association when the environment is a simple repetitive pattern or a featureless
condition. In Contrast to feature-based methods, direct methods have the potential to
utilize complete image information, such as LSD-SLAM [10], DSO [11], SVO [12,13]. Since
they only used a certain number of patches, or areas of image gradient magnitude above a
threshold, to reduce computation complexity, so as to ensure that the direct method runs in

Remote Sens. 2021, 13, 3340. https://doi.org/10.3390/rs13163340 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-0172-1582
https://orcid.org/0000-0001-9207-2076
https://doi.org/10.3390/rs13163340
https://doi.org/10.3390/rs13163340
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13163340
https://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/13/16/3340?type=check_update&version=2


Remote Sens. 2021, 13, 3340 2 of 39

real-time on the CPU and shows remarkable motion estimation performance despite not
using the correspondence of visual features. However, monocular images are not sufficient
to estimate the ego-motion, because movement along the optical axis of camera can only
cause little motion of visual features, so the estimation problem may be degraded.

LiDAR-based SLAM systems have gained popularity over vision-based systems due
to their robustness to changes in the environment and resistance to light illumination. Many
of them are based on the Iterative Closest Point (ICP) method [14] or its variants [15,16].
At present, many Lidar SLAM methods [17–24] have been proposed, and all of them have
achieved impressive results. Among them, the more representative one is LOAM [17,18],
which is considered state-of-the-art in 6-DOF LiDAR SLAM. Afterward, Qin and Cao [25]
simplified the feature extraction process and improved the efficiency of LOAM scan-to-
map matching. However, pure LiDAR based systems have their shortcomings. Due to the
limited number of laser beams in laser scanners, in the environment of repeated structures
such as tunnels or corridors, the distance measurement in the vertical direction is quite
sparse, they are prone to failure [26].

Since images provide rich visual texture information, and LiDAR has sparse but
precise distance measurement and 360-degree field of view, the combination of vision
sensors and lidar sensors may complement each other in motion estimation tasks. Similar
work in visual lidar odometry can be found in references [27–36]. For example, the work of
Shin et al. [30,31], namely DVL-SLAM, attempted to solve the visual laser SLAM problem
within the DSO framework. They used projected laser points as feature points instead
of using the salient gradient points extracted from the images. With the depth values of
the feature points known and fixed, they performed the same multi-frame photometric
optimization as DSO to estimate the poses of the keyframes. Since there is no need to
extract and match features, and benefit from the precise distance measurements of the
laser, it shows robust, efficient and accurate SLAM results even with extremely sparse
depth measurements in a large-scale environment. However, DVL-SLAM [30,31] only
used the laser points in the camera’s field of view, and most of the range measurements
will be discarded because laser sensors like Velodyne LiDAR can provide 360-degree
scanning. This setting makes the system less accurate and vulnerable to untextured scenes.
For V-LOAM [32], it combined the visual odometry method DEMO [28,29], and the lidar
odometry method LOAM [17,18]. The visual odometry handles rapid motion, while the
lidar odometry guarantees low drift and robustness under poor lighting conditions, so
it can handle aggressive motion including translation and rotation, as well as the lack of
optical texture in complete whiteout or blackout imagery. Since odometry integrates small
incremental motions over time, drift is bound to occur during long traversals. Therefore
V-LOAM is not suitable for large-scale environments.

To alleviate this issue, loop closure is applied as a trigger to invoke pose-graph
optimization by recognizing the revisited sites using either visual or LiDAR methods.
Visual methods involve using Bag-of-Words (BoW) [37–39] to recognize the place and
Perspective-n-Point (PnP) algorithm to estimate the posture correction. In LiDAR methods,
the places are recognized using segment-based algorithms like SegMatch [40,41], or global
descriptors based methods [42–44], and of course deep learning based methods [45,46],
and pose correction is estimated using ICP algorithm. However, a revisited place usually
varies from light illumination, weather, or viewing angle, which is difficult to be solved in
vision-based place recognition. Although LiDAR is less affected by such environmental
change. It lacks the fast and versatility of the BoW based methods, so it cannot perform
global search. A local radius search based strategy is often needed to narrow the scope of the
search to improve the efficiency of loop closure detection. However, this strategy may result
in a reduction of recall rates when the accumulated drift larger than the search radius.

In this article, we introduce a novel Direct Visual LiDAR Odometry and Mapping
(DV-LOAM) approach that combines the sparse depth measurement of LiDAR with a
monocular camera. The system consists of three main parts as follows: Firstly, in the visual
odometry part, we first use the depth-enhanced frame-to-frame direct visual odometry with
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a constant velocity motion model to estimate the initial motion of adjacent frames. As it
directly uses the projected laser points as feature points instead of using the salient feature
points extracted from the images, the efficiency is very impressive. Then, an optimization
based on a sliding window is applied to refine the motion, which not only ensures real-time
performance but also maintains the local accuracy of motion estimation. Secondly, in the
LiDAR mapping part, each time a keyframe is generated, we apply a scan-to-map based
LiDAR mapping process, which uses geometric features, such as lines and planes, to refine
motion estimation and eliminate point cloud distortion caused by visual odometry drift.
Finally, in the loop closure detection part, a Parallel Global and Local Search (PGLS) loop
closure detection (LCD) algorithm is proposed to eliminate drift errors and obtain a globally
consistent map. It first uses Bag of-Words (BoW) and LiDAR-Iris [44] technology in parallel
to find loop closure candidates, then calculates a rough estimate of the pose correction
using Truncated least squares Estimation And SEmidefinite Relaxation (TEASER) [47]
algorithm, and finally refines the rough estimate using V-GICP [48]. In summary, the main
contributions of this research are as follows:

1. We proposed DV-LOAM, which is the first framework that combines a depth-enhanced
direct visual odometry module and the LiDAR mapping module into location and
mapping. It takes advantage of the efficiency of the direct VO module and the
accuracy of LiDAR scan-to-map matching method, thereby further improving the
performance compared to existing technologies.

2. In the front end, we proposed a two-stage direct tracking strategy to ensure real-
time performance while maintaining the local accuracy of motion estimation. Firstly,
the direct frame-to-frame visual odometry is used to estimate the pose of camera,
which is more efficient than ICP-based odometry. Secondly, a thinning module based
on a sliding window is used to reduce accumulated drift. Since there is no need to
extract and match features, this method is quite fast and can work even in low-texture
environments.

3. In the back end, a PGLS-LCD module was presented, by fusing the BoW and LiDAR-
Iris techniques, our approach can not only greatly compensate for the insufficiency of
vision-based LCD capabilities, especially in the case of reverse visit, but also alleviate
the problem of not being able to find the correct loop closure when the accumulated
drift exceeds the search radius of LiDAR-methods. In addition, using TEASER’s
estimate as an initial guess, and applying V-GICP to refine the transform of pose
correction between loop pairs, more robust and accurate results can be obtained even
in the case of large drift.

4. Extensive experiments have been conducted to test and verify the effectiveness of the
system in detail from both quantitative evaluation and visualization clues, and an-
alyze the accuracy improvement brought by each module at different positions of
the baseline.

The rest of this paper is organized as follows. In Section 2, we gives a brief review of
the related works. Section 3 introduces the proposed DV-LOAM architecture. The details
of direct visual odometry, LiDAR mapping, and loop closing are presented in Section 4.
Section 5 discusses the accuracy evaluation of the proposed DV-LOAM and the compari-
son with the state-of-the-art methods. The discussion and future work are presented in
Section 6. Finally, the conclusions of this paper are presented in Section 7.

2. Related Works

Because the focus of this article is to study the fusion method of vision and LiDAR,
only methods of vision LiDAR fusion are introduced here. The combination of visual
sensors and lidar sensors as a visual LiDAR odometry realizes the advantages of the two
sensors, so it has been more and more researched, which is of great help to modern SLAM
applications. The common work of visual LiDAR odometry can be divided into three
groups: visual odometry based approaches, point cloud registration based approaches,
and tightly coupled fusion methods.
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2.1. Visual Odometry Based Methods

The visual odometry based method attempts to apply a visual odometry pipeline with
known pixel depth information from laser scanning. In LIMO [27], LiDAR measurement is
used for depth extraction. After projecting the point cloud on the frame, motion estimation
and mapping are performed using a visual keyframe based bundle adjustment. The work
in DVL-SLAM [30,31] proposed a direct visual-SLAM using a sparse depth point cloud
from LiDAR. They use the projected laser points as feature points instead of using the
salient gradient points extracted from the images. With the depth values of the feature
points known and fixed, they perform a multi frame photometric optimization the same as
the DSO to estimate the poses of the keyframes. The work of Zhang et al. [28,29], named
depth enhanced monocular odometry (DEMO) is similar. The method associated the visual
feature with depth measurement and uses it to estimate the camera motion. Recent of the
development of the low cost solid-state LiDAR, there are also emerging in large numbers
visual LiDAR fusion approaches using the Field of View (FoV) LiDAR, such as R2LIVE [49],
and CamVox [50]. Compared with the traditional mechanical LiDAR, although the FoV
is smaller, the solid-state LiDAR is relatively cheap and has a higher point cloud density.
CamVox [50] was built upon the framework of ORB_SLAM2, and it used Livox as the
depth sensor to implement a new “RGBD” SLAM method. Since the accuracy and range
of the lidar point cloud is superior compared to other depth cameras, CamVox showed
higher efficiency and robustness even in an outdoor strong-sunlight scene. However, those
methods did not taking the uncertainty of the fused information into consideration, such
as the extrinsic calibration errors. In order to overcome these problems, Voges et al. [51]
proposed to use interval analysis to model all errors, and introduced a bounded error
model for the camera and LiDAR, so that the depth of feature points and the uncertainty
of the depth can be estimated more accurately. However, a common problem of visual
odometry based methods is that they do not consider the laser points that are outside the
camera’s field of view, and most of the range measurements of LiDAR will be discarded.
Such setting renders the system less accurate and vulnerable to texture-less scenes.

2.2. Point-Cloud-Registration Based Methods

Compared with the method based on visual odometry, the point-cloud-registration
based approaches try to align the whole point cloud with the help of image information
in various aspects. For example, the method in [33] and V-LOAM [32] simply uses the
visual odometry result as an initial guess to the ICP process, making the ICP less likely to
be trapped in local minima. Those algorithms follow the odometry framework without
using SLAM techniques such as bundle adjustment and loop closure. However, the visual
odometry used in these methods is a feature-based method, which means that features need
to be extracted, but in a low-texture environments, it it difficult to extract enough features.
Besides, using LiDAR for feature depth extraction is time-consuming and complicated,
especially when the beam of LiDAR is limited, such as VLP-16. Besides, in order to
deal with failures of ego-motion estimation, Reinke et al. [52] proposed an integrated
visual-LiDAR odometry system that uses multiple odometry algorithms in parallel in
frame-to-frame tracking stage. Then it selected the pose that best meets the constraints,
including the dynamic and kinematic constraints of the vehicle, the Chamfer distance-
based score calculated between the current LiDAR scan and a local point cloud map, thus
exploiting the advantages of different existing ego-motion estimating algorithms. It showed
great robustness and is resilient to failure cases. It also provided us a new idea to improve
the robustness of the front-end odometry. In addition to calculating the pose transformation
between adjacent frames, vision can also be used for loop closure detection, such as [53].
The BoW was used to detect loop closure candidates firstly. Then a LiDAR-based geometry
certification strategy was conducted to validate the loop closure. Finally, a Pose Graph
Optimization (PGO) was applied to obtain the global consistent trajectory. Although this
method achieved good results, only relying on visual BoW to detect loop closure cannot
solve the problem of reverse visits.
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2.3. Tightly Coupled Fusion Methods

The tightly coupled fusion methods attempt to use vision and lidar measurements
for more effective odometry estimation. Huang’s work in [35] proposed a lidar-monocular
visual odometry approach using point and line features. Line features have conditional
benefits, that is, they are less sensitive with problems such as noise [54], wide range of
view angle [55], and motion blur [56], which are the main drawbacks for the point-only
systems such as LIMO [27]. By leveraging more environmental structure information
into pose estimation and a robust method for feature depth extraction, it greatly reduces
the features’ 3D ambiguity, thereby improving the accuracy of pose estimation. Since
LiDAR point cloud may contain occluded points that will reduce the estimation accuracy.
The work in [36] solves this problem by proposing a direct SLAM method with an occlusion
point detector and a coplanar point detector. Besides, to achieve high estimation accuracy,
a two-stage registration strategy is adopted, which optimizes a joint objective that rewards
both tight point cloud alignment as well as consistent image appearance. In order to
maximally utilize the measurements from cameras and lidars, TVLO [34] independently
operates two mapping pipelines to construct two different maps, namely the lidar voxel
map and the visual map. The input lidar points are matched to a lidar voxel map to
formulate lidar geometric residuals, and visual features are matched to the visual map
to compose stereo projection residuals. By maintaining visual and lidar measurements
separately, TVLO is not affected by the potential problems of assigning the depths of lidars
to non-corresponding visual features and incorporates more geometric constraints than
the existing methods [27,28,32] when to solve odometry residuals. However, each frame in
TVLO requires the above-mentioned feature extraction and pose optimization, which is
vary time-consuming.

Similar to the proposed method is DVL-SLAM [30,31]. Compared with DVL-SLAM,
our method has made the following improvements. Firstly, a frame-to-frame tracking
strategy is used to estimate the motion of adjacent frames. In comparison with the frame-to-
keyframe approach, it shows better robustness in various complex environments, such as
highway and residential areas. In addition, the sliding window optimization module refines
the pose of each frame instead of the keyframe in DVL-SLAM to maintain a higher local
accuracy. Secondly, beacuse DVL-SLAM only uses the LiDAR points in the camera’s field
of view, the system is less accurate and vulnerable to scenes with less texture. In this paper,
we use a LiDAR based scan-to-map matching method to reduce the drift accumulated
by the VO module, which greatly improves the accuracy and robustness of positioning,
in particular an urban environment with rich structural information. Finally, compared
with the BoW based place recognition module adopted by DVL-SLAM, our PGLS-LCD
method takes both advantages of BoW and LiDAR-Iris, thus acquiring better performance,
especially in reverse visit events.

In addition, V-LOAM [32] also shows similarity to our method to some extent. How-
ever, there are also several obvious differences as follows. Firstly, we use direct-based
visual odometry instead of a feature-based tracking method to estimate rough motion.
Since we directly use the projected laser points as feature points instead of using features
extracted from the image, and without fitting the depth of features using laser scan like V-
LOAM, our method performs better robustness, efficiency, and accuracy in the VO module.
Moreover, since most SLAM methods assume the world is static, moving objects in the real
environment may reduce the accuracy of scan matching. In order to alleviate the influence
of dynamic objects, the LiDAR mapping module of our method adopts two additional
strategies. First of all, we use the feature extraction method described in LeGO-LOAM [19],
which avoids features extracted from noisy areas such as vegetation and small clusters.
The second is a two-stage LiDAR registration strategy used in [57]. We first perform pose
optimization using a small number of iterations. Then, the optimization results are used to
calculate residuals, and after removing the largest residuals, a complete posture optimiza-
tion is finally performed to obtain a more accurate posture. Finally, the consistency of the
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trajectory in a large-scale environment of our method is maintained by incorporating our
PGLS-LCD and pose graph optimization module.

3. System Overview

An overview of the proposed method is illustrated in Figure 1. The system consists of
a front-end and a back-end module, similar to the general SLAM approaches. The input
of the algorithm is time-synchronized sequential image data and sequential LiDAR scans
(for example, by using hardware trigger), and their relative transformation on the robot is
known. At the front end, there are two main parts, a Visual Odometry (VO) module and a
LiDAR mapping module. Firstly, when a new frame, an image with an associated sparse
depth, is coming, the direct frame-to-frame tracking module (Section 4.2) is applied to esti-
mate initial motion at first. Once the tracking process is successfully executed, the sliding
window optimization module (Section 4.3) will refine the initial pose to maintain local
accuracy while ensuring real-time performance. Then, if the criterion for generating the
keyframe is met, the pose is further refined through the LiDAR Scan-to-Map Optimization
method (Section 4.4). The back-end includes a loop closure detection module and a pose
graph optimization module. The proposed PGLS-LCD (Section 4.5) is used for place recog-
nition. When a loop closure is detected, the global pose graph optimization (Section 4.6)
will be conducted to maintain global consistency, and the local LiDAR map used by lidar
scan-to-map optimization module will be updated simultaneously.

Figure 1. Algorithm overview of proposed Direct Visual LiDAR Odometry and Mapping. Our main contributions in this
paper are highlighted in green.
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4. Methods
4.1. Notation

A frame Fi contains a gray image Ii and a sparse LiDAR point cloud Pi. Note that the
LiDAR point cloud Pi is transformed into camera coordinate. Each point pk ∈ Pi can be
projected to image pixel coordinate uk ∈ R2 using a projection function π(pk).

π(pk) =

 fx 0 cx
0 fy cy
0 0 1

xk
yk
zk

 =

[
uk
vk

]
(1)

We use a transformation matrix Tn
cw ∈ SE(3) to represent the pose of a frame in the

world coordinate, where n represent frame index. Thus the relative pose transformation
between Fm and Fn can be obtained as:

Tn
m = Tn

cwTm
cw
−1 (2)

And it can be applied for coordinate transformation of points between the different
coordinates, as shown below:

pn = Tn
m pm = exp(ξ̂)pm =

[
Rn

m tn
m

0T 1

]xm
ym
zm

 (3)

where pm and pn are points in each frame, Rn
m ∈ SO(3) and tn

m ∈ R3 are a rotation matrix

and translation vector, respectively. Lie algebra ξ =

[
φ
ρ

]
∈ R6, φ and ρ are angular and

linear velocity vector, respectively.

4.2. Direct Frame-to-Frame Tracking

The direct frame-to-frame tracking module performs the tracking process for fast mo-
tion estimation without using visual features. Since the use of the entire LiDAR point will
reduce the efficiency of frame-by-frame calculation, and the point in the low-texture area
has a limited role in motion estimation. While maintaining the accuracy of motion estima-
tion, in order to reduce the computational complexity, it is necessary to first down-sample
the laser points effectively. Then a patch-based direct tracking method is being conducted
to estimate motion between adjacent frames. Unlike indirect methods, the tracking occurs
at a fast rate without requiring corner-like feature extraction and matching. In addition,
using only LiDAR-associated points eliminates a triangulation phase to estimate the depth,
this simplicity benefits various robotics systems with cameras and LiDAR. Similar to other
direct approaches [11,12], image pyramids and constant motion model strategies are also
used to speed up the tracking process. The details are shown as follows.

4.2.1. Salient Point Selection

Although the measurements of LiDAR are already sparse, the points we use to estimate
motion are even less, thus improving computational efficiency. The detailed process of
selecting salient points is described in [30,31]. It is worth mentioning that this similar
strategy is widely used in various SLAM methods, including direct [11,12] and indirect
methods [8,9]. Figure 2 shows an example of selected salient points.
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Figure 2. Salient point selection result. (a) All LiDAR points projected to the image plane without
selection. (b) The result of selected salient points.

4.2.2. Patch Pattern Selection

Compared with pixel-by-pixel tracking, the patch-based tracking method [11] guaran-
tees sufficient performance and robustness, while requiring slightly fewer pixels. However,
the computational complexity increases with the size of the patch. The patch pattern we
used in this paper is shown in Figure 3a.

Figure 3. (a) The patch pattern used in our approach, the colored cells are pixels used in direct
tracking process, and all pixels share the same depth with the intermediate dark grid obtained from
the LiDAR points. (b) Illustration of the patch based direct tracking problem.

4.2.3. Frame-to-Frame Tracking

Unlike DVL-SLAM [30,31], in the tracking phase, we use a frame-to-frame tracking
strategy instead of frame-to-keyframe tracking for the following reasons: Firstly, the over-
lapping field of view between adjacent frames is larger, which means that more constraints
can be incorporated to solve odometry residuals. Secondly, the shorter the time interval,
the smaller the change in environmental illumination, and the more consistent the assump-
tion of luminosity consistency of the direct method is. Finally, the shorter the time interval,
the smaller the robot movement changes, and the more it conforms to the constant velocity
motion model.

As showed in Figure 3b, the salient point pm of the last frame Fm is projected to the
image In of the current frame Fn through a initial transformation Tn

m obtained by the
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constant motion model. Then the photometric residual of the corresponding point can be
defined as:

r(pm) = In(π(Tn
m pm))− Im(π(pm)) (4)

In addition, changes in exposure setting, or ambient light of environment may have
a large impact on direct-based methods. To address this issue, we add the photometric
parameters to the equation, namely a gain α and a bias β parameters, which can be

represented as: I ′a(·)
de f
= αIa(·) + β. Both α and β are unknown parameters, and will be

estimated during the optimization, the details can be found in [10]. Therefore, the new
photometric residuals can be defined as:

r′(pm) = In(π(Tn
m pm))− I ′m(π(pm)) (5)

Thus, the object function used to estimate motion between the adjacent frames can be
defined as below:

Etracking =
1
2 ∑

pk∈Pm

∑
pi∈Ωpk

w(r′(pi))
(

r′(pi)
2
)

(6)

where Ωpk is the sparse pattern patch of the salient point pk, shown in Figure 3a and the
weight function w(·) we use is described in [58], which is calculated in each iteration.

w(r)
de f
=

ν + 1
ν + ( r

δr )
2 (7)

Here, the degree of freedom ν is set to 5, and the variance of residual δr is obtained
in each iteration while performing the Gauss-Newton optimization. The impact of the t-
distribution based weighting function can be found in [58]. It should be noted that, for more
efficient calculations, an inverse compositional strategy is also adopted here. For more
information about the strategy, please refer to [12]. Besides, we also use a coarse-to-fine
strategy to avoid optimization from local minimums and to handle large displacements in
the optimization as shown in [30]. In this paper, the number of layers of the image pyramid
is set to Np, and the maximum number of iterations for each layer is Nmi.

4.3. Sliding Window Optimization

The sliding window maintains a fixed number of keyframes to achieve the constant
processing time of the VO module, improve local accuracy, and reduce computational load.
Compared with the sliding window optimization in DVL-SLAM [30,31], there are two
main differences in this paper are as follows. On the one hand, the sliding window in our
approach is used to refine the pose of each frame instead of the keyframe. On the other
hand, the poses of the keyframes in the sliding window are fixed, and only the pose of the
current frame will be refined during the optimization process. The specific processes are
introduced in the following sections.

4.3.1. Window-Based Optimization

This section details the pose refinement through a sliding window-based optimization
process. In the previous section, the tracking process estimates 6-DOF relative motion
by frame-to-frame. Once the tracking process is successfully performed, the pose of the
current frame will be further refined through the sliding window optimization process
to reduce drift and improve local accuracy. Like the frame-to-frame tracking module,
we also use the photometric error model. The main difference from the frame-to-frame
tracking process is that the sliding window optimization is performed on the global map
coordinates. And we use the patches of the multiple keyframes in the sliding window to
refine the pose of current frame.

As we can see from the Figure 4, each keyframe KF i in the sliding window WKF
has its own associated image Ii, salient LiDAR points Pi, and pose Ti. A point p1

k in the
first keyframe KF 1 of WKF is projected into the image I f of current frame through the
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coordinate transform matrix Tc
1. Given that the poses of the keyframes are defined in the

map coordinate, we can obtain the initial transform Tc
1 through the equation:

Tc
1 = TcT1

k f
−1

(8)

where Tc is the pose of current frame obtained from the frame-to-frame tracking, and T1
k f

represents the pose of the first keyframe in WKF . Thus the residual of the point p1
k between

the current frame and the first keyframe is defined as follows:

r(p1
k) = I f (π(Tc

1 p1
k))− I

1
k f (π(p1

k)) (9)

Figure 4. Illustration of sliding window-based optimization, the light blue area represents the local keyframes window
(WKF ) which consists of N keyframes, and each keyframe has its image data and LiDAR points. Black dots represent the
salient LiDAR points and colored rectangles represent the patches lying in the image. A point p1

k in the first keyframe of
(WKF ) is projected into current frame with the transform Tc

1. A photometric residuals are then calculated between the
patch at the existing point and the other patch at a projected point.

Then, for each salient LiDAR point in each keyframe in the sliding window, the photo-
metric residual can be acquired by the above Equation (9).

Eventually, we can update the pose of the current frame using the object function (10)
shown as below:

Ere f ine =
1
2

i=1:N

∑
KF i∈WKF

∑
pk∈Pi

∑
pj∈Ωpk

w
(
r(pj)

)(
r(pj)

)2 (10)

where N is the number of keyframes in the window, pk indicates the salient points of the
keyframe shown in Figure 2b, and Ω means the patch of the sparse pattern as shown in
Figure 3a. The weight function w(·) uses t-distribution, as described in the previous section.
The complete two-staged depth-enhanced direct visual odometry algorithm is summarized
in Algorithm 1.
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Algorithm 1 Two-stage based Direct Visual-LiDAR odometry.

Input: The current image In of frame Fn and the last image Im of frame Fm; The salient
lidar points Pm of last frame;The initial transform between current frame and last frame
obtained via constant velocity motion model: Tm

n ; The number of image pyramid levels
Np; The maximal iteration of G-N optimization in each level Nmi; The sliding window
WKF and its size Nw; The salient points Pk of each keyframe KF k in WKF ;

Output: The current frame pose Tn;
1: //(1) The first stage: direct frame-to-frame visual LiDAR odometry
2: for i = 1 to Np do
3: set flag = f alse;
4: for j = 1 to Nmi do
5: for each point pm ∈ Pm do
6: Compute photometric residual r′(pm) using Equation (5);
7: Add r′(pm) to vector Vres;
8: if flag == f alse then
9: Compute Jacobian matrix of Equation (6);

10: end if
11: end for
12: set flag = true;
13: Comute the median value µr variance δr of residual vector Vres;
14: Compute the weight of each measurement using Equation (7);
15: Calculate the incremental transform δξ ← GaussianNewtonSolver() and up-

date transformation using the equation: Tn
m ← Tn

m exp (−δξ∧);
16: if the non-linear optimization converges then
17: Break;
18: end if
19: end for
20: end for
21: Update current frame pose using: Tn = Tn

mTm

22: // (2) The second stage: Slide window optimization
23: for i = 1 to Np do
24: for j = 1 to Nmi do
25: for k = 1 to Nw do
26: Compute the relative transform between current frame Fn and keyframe
KF k using Equation (2);

27: for each point pm ∈ Pk do
28: Compute photometric residual r′(pm) using Equation (9);
29: Add r′(pm) to vector Vres;
30: Compute Jacobian matrix of Equation (10);
31: end for
32: end for
33: Comute the median value µr variance δr of residual vector Vres;
34: Compute the weight of each measurement using Equation (7);
35: Calculate the incremental transform δξ ← GaussianNewtonSolver() and up-

date frame pose using the equation: Tn ← exp (δξ∧)Tn
36: if the non-linear optimization converges then
37: Break;
38: end if
39: end for
40: end for

4.3.2. Keyframe Generation and Sliding Window Management

The number of keyframes in the sliding windown is maintained with a fixed number
Nw. The sliding window maintains a fixed number of keyframes to achieve a constant
processing time of the VO module. The criteria we use to generate keyframe and manage
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sliding window is overlap radio γk f and time interval tk f , which is same as DVL-SLAM,
and more details can be found in [30,31].

4.4. LiDAR Mapping

Since the LiDAR sensor has the advantages of high measurement accuracy, strong
anti-interference ability, and wide sensing range and viewing angle, thus each time a new
keyframeKF k is generated, the pose Tk estimated by the visual odometry is further refined
by the LiDAR mapping module. The LiDAR mapping module contains two major steps.
One is a LiDAR feature extraction and undistortion step, and the other one is a scan-to-map
registration step.

4.4.1. Feature Extraction

The feature extraction module is composed of three sub-processes shown in Figure 5.
Firstly, a fast line-fitting based ground extraction method [59] is used to segment the
original lidar point cloud to ground point cloud and non-ground point cloud. Then,
the non-ground is segmented into point clusters by a range-image-based segmentation
approach [60]. Finally, after removing those small clusters, the edge features and planar
features are extracted from the rest clusters following the process described in LeGO-
LOAM [19]. A visualization of the feature extraction processes is shown in Figure 6a–f.
It should be noted that, unlike in LeGO-LOAM, our planar feature points do not contain
ground points.

Figure 5. LiDAR feature extraction flowcart. Among them, the yellow represents the input, and the green represents the
output result. The gray rectangle represents the processing process, and the rounded rectangle represents the variable.

Figure 6. Feature extraction process for a scan (000000.bin) on sequence 00 of the KITTI odometry benchmark. (a) is all laser
points in the current frame. (b) is the result of ground segmentation. (c) is the segmentation result of non-ground point cloud
clusters, and different colors represent different point cloud clusters obtained by LiDAR segmentation. (d,e) represents the
extracted planar points and edge points respectively. (f) is the visualization of ground points, planar points and edge points.
The green ones represent the ground points, the yellow ones represent the planar points, and the blue ones represent the
edge points respectively.
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4.4.2. LiDAR Feature Undistortion

Since the laser point cloud is not acquired at the same time, some distortion will occur
during the movement of the data acquisition platform. In order to reduce the influence
of LiDAR distortion on motion estimation, we adopt a Lidar undistortion method based
on linear interpolation. The details of linear interpolation can be found in [17,18], and the
relative transfrom needed by linear interpolation is obtained by the VO module. Eventually,
we can obtain the feature point clouds of current keyframe KF k without distortion, they
are ground features Qg, edge features Qe, and planar features Qp, respectively.

4.4.3. Scan-to-Map Matching

So far, we have got the initial pose Tk, and the LiDAR features Qk = {Qk
g, Qk

e , Qk
p}

of the current keyframe KF k. Now, the LiDAR scan-to-map matching module matches
the features in Qt

e , Qt
p, Qt

g to a surrounding point cloud map Qk−1 = {Qk−1
e ,Qk−1

p ,Qk−1
g }

respectively , to further refine the the pose, and then merge the features Qk to local point
cloud map using the refined pose. Note that in order to improve efficiency, the feature
point cloud Qk and local feature map Qk−1 have already been downsampled with a voxel-
based filter implemented in PCL [61], and the resolution of edge features, planar features,
and ground features are re, rp, and rg , respectively. In addition, the KD-Tree [62] method is
also used to accelerate the speed of feature association.

The scan-to-map registration consists of two types of residuals, they are residuals
of point-to-line, and residuals of point-to-plane, which are shown in Figure 7b,c, respec-
tively. And the details of the registration process used in this paper can be found in
Loam_livox [57]. The only difference is that we treat the ground feature points as separate
features in the optimization, but the residuals of ground feature points are the same as
planar feature points.

Figure 7. (a) Illustration of scan to map matching and map registration. (b) Residual of point to line. (c) Residual of point
to plane.

4.5. Loop Closure Detection

Loop closure detection is an essential and challenging problem in SLAM to eliminate
drifting error. More importantly, it can also prevent the same landmark from being reg-
istered multiple times, thereby creating a globally consistent map, which can be used for
robot positioning later. This section will focus on the following parts: Firstly, we briefly
introduce the existing vision and laser-based loop closure detection methods and their
problems in Section 4.5.1. Then, in response to the existing problems, we introduce the
ideas and overall process we adopt in Section 4.5.2. Finally, the specific process of our
method will be introduced in the following sections from Sections 4.5.3–4.5.5.

4.5.1. The Existing Vision and LiDAR Based Loop Closure Detection Methods and
Its Problems

Existing works on loop closure detection consist of vision based methods and LiDAR
based methods. We evaluated the performance of the BoW and LiDAR-Iris approach on the
KITTI dataset, and the results were shown in Figure 8. The ground truth of loop closures
was generated according to protocal B strategy in [44]. In KITTI sequence 05, all closed
loops occur in the same direction, while in KITTI 08, the vast majority of closed loops occur
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in the opposite direction. In the Bow affinity matrix, the larger the value in the image,
the higher the similarity between the two frames, while in the LiDAR-Iris affinity matrix,
the smaller of the value in the image, the higher the similarity between the two frames.

As shown in Figure 8, the BoW method reported high precision on sequence 05 with
only loop closures in the same direction. However, when the sequence only contains
loop closures in the opposite direction, such as the KITTI sequence 08, it could not detect
any loop closures, while the LiDAR-Iris method achieved promising results in both same-
direction and opposite-direction loop closure events. However, LiDAR-Iris still had some
shortcomings. On the one hand, many negative match pairs also exhibited low matching
values, which would greatly increase the burden of verification. On the other hand, in the
experiments we evaluated in the KITTI sequence 05 and KITTI sequence 08, the average
computation time for extracting binary features from LiDAR-Iris image and matching two
binary feature maps was about 0.021s. Therefore, a radius search strategy needed to be
applied to ensure efficiency in the SLAM system. However, when the accumulated drift
was larger than the searching radius, this strategy may lead to missed detection.

Figure 8. Affinity matrices obtained by the Bow and LiDAR-Iris method on two sequences. The first row corresponds to
KITTI sequence 05, and the second row corresponds to KITTI sequence 08. (a) Ground Truth loop closure with trajectory.
(b) Ground truth affinity matrix. (c) BoW affinity matrix and (d) is LiDAR-Iris affinity matrix respectively.

4.5.2. Parallel Globala and Local Serach Loop Closure Detection Approach

The flowchart of proposed PGLS-LCD approach is shown in Figure 9. For each newly
added keyframe, the features will be extracted firstly, including ORB features used for BoW
and the global feature LiDAR-Iris. Then, the loop closure candidates will be extracted using
BoW and LiDAR-Iris technologies parallelly. Once loop closure candidates are successfully
extracted, a consistency verification process is used to check whether there is a true-positive
loop closure. After that, the correct transform will be estimated using the TEASER [47]
firstly, and then refined by V-GICP [48]. Finally, the accurate transformation is added as a
constraint to the pose graph. And when the pose graph optimization is completed, the loop
database and point cloud map will be updated according to the newest pose of keyframes.
The specific process is introduced in the following chapters.
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Figure 9. The proposed PGLS-Loop Closure Detection flowchart.

4.5.3. BoW Vector Extraction and LiDAR-Iris Descriptor Extraction

Each time a new keyframe KF k is inserted in the back-end, the ORB features shown
in Figure 10c and LiDAR-Iris feature shown in Figure 10b are first extracted. Then, the ORB
features will be transformed into BoW vectors vk through a vocabulary generated offline.
Besides, a binary feature map fk is extracted with four LoG-Gabor filters from the LiDAR-
Iris image Simultaneously. Therefore, a keyframe KF k can be represented with vk and fk.

Figure 10. Features extraction for loop closure detection. (a) Illustration of encoding height information of surrounding
objects into the LiDAR-Iris image. (b) Two LiDAR-Iris images (buttom row) extracted from the bird’s eye views of two
LiDAR point clouds (top row) in a 3D (x,y,yaw) pose space, respectively. (c) ORB features extract from raw image. (d) shows
the rotation invariance in matching two point clouds shown in (b) .

4.5.4. Loop Candidates Extraction

To prevent false positives, we use a dynamic similarity threshold as criteria for al-
lowing loop candidates, and the threshold is calculated using the current keyframe and
its adjacent keyframes. It is worth mentioning that ORB-SLAM2 also uses this method to
improve the performance of loop closure detection. The complete loop closure candidates
extraction process is summarized in the Algorithm 2.
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Algorithm 2 Loop closure candidates extraction.

Input: The BoW vector vb and the LiDAR-Iris feature fk of current keyframe Fk ; The
pose of current keyframe Tk; The search radius φ; Number of adjacent keyframes N;
Minimal keyframe gaps between current keyframe and candidate keyframe Ng;

Output: The loop closure candidate keyframe set Lk f ;
1: Extract the N adjacent keyframes of Fk into set Adjk f ;
2: // parallel addition for CPU with multi cores for extracting loop candidates via BoW

and LiDAR-Iris features.

3: // (1) extracting loop candidates via BoW.
4: for each keyframe Fi in adjacent keyframe set Adjk f do
5: Compute the similarity score si of BoW vector between Fi and Fk, and insert to

vector Sb;
6: end for
7: Compute maximal and minimal similarity score in Sb, smin = min(s1, s2, ..., sN) and

smax = max(s1, s2, ..., sN), where si is the i− th value in Sb;
8: Calculate local BoW threshold sth = max(smin, 0.8× smax)
9: Extract loop closure candidates using BoW database and insert those keyframes into
Lk f if the similarity score between candidate keyframe and Fk is beyond sth, and the
keyfrmae index interval is larger than Ng;

10: // (2) extracting loop candidates via LiDAR-Iris.
11: for each keyframe Fi in adjacent keyframe set Adjk f do
12: Compute the similarity score si of LiDAR-Iris feature between Fi and Fk, and insert

to vector Sl ;
13: end for
14: Compute maximal and minimal similarity score in Sl , where smin = min(s1, s2, ..., sN)

and smax = max(s1, s2, ..., sN);
15: Calculate local LiDAR-Iris threshold sth = max(smin, 0.8× smax);
16: Using RadiusSearch(Tk, φ) to extract nearby keyframes and inseart to set Nk f ;
17: for Each keyframe Fi in set Nk f do
18: if The LiDAR-Iris similarity score between Fi and Fk is smaller than sth, and the

keyfrmae index interval is larger than Ng then
19: Inseart Fi to loop closure candidate keyframe set Lk f ;
20: end if
21: end for

4.5.5. Consistency Verification

Given a new query keyframe KFm and a candidate keyframe KFn. As discussed in
previous section, the global descriptor LiDAR-Iris is a highly simplified representation of
original point cloud. Hence it is inevitable to have some features ignored, which can lead
to false positive. And similarly, if there are analogous or repeated scenes, false-positive
will easily occur when using BoW based method. Therefore it is necessary to check the
consistency before closing the loop. In this paper, we use the following two consistency
verification:

1. Temporal consistency check:
In a SLAM system, it is observed that the occurrence of single loop closure often
implies high similarity on the neighbour since the sensor feedback is continuous in
time [63]. We can verify the loop closure by measuring the BoW temporal consistency
ζbow and LiDAR-Iris temporal consistency ζiris:

ζbow =
1

Nc

Nc

∑
i=1

(ΓBoW(vm, vn−i))

ζiris =
1

Nc

Nc

∑
i=1

(ΓIris( fm, fn−i))

(11)
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where Nc is the number of frames included for temporal consistency verification, ΓBoW
and ΓIris represent the similarity of BoW and LiDAR Iris, and the specific calculation
method can be found in [37,44] respectively. Note that if the difference of viewing
angle between KFm and KFn is larger than 90 degrees, vn−i and fn−i become vn+i
and fn+i accordingly. The loop candidate can be accepted by taking threshold ζ on
the final temporal consistency score.

2. Geometry consistency check:
The geometry consistency check procedure is shown in Figure 11 below. The Fast
Point Feature Histogram (FPFH) [64] features are extracted from the local point cloud
map constructed from the neighbors of query and candidate keyframe respectively,
and then being matched to find feature correspondences. Afterwords, TEASER [47]
is used to get an initial guess of the rigid transform matrix through the feature
correspondences. Finally, starting from this initial estimate, V-GICP [48] is applied
to find minimal distance error between the local point cloud maps generated from
the query keyframe Fm and the candidate keyframe Fn. If the fitness score is lower
than a threshold η, then a loop closure is detected successfully, and the relative pose
transform Tn

m is added to the pose-graph as a loop constraint.
Note that, when using ICP based approach, or a direct tracking method (such as in
DVL-SLAM), an initial transform is required to calculate the relative pose transfor-
mation. However, the initial guess is often unknown in the loop closing module.
Therefore, those methods are easy to fall into the local extremum. In this paper, we
use TEASER to get an initial guess of the rigid transform matrix. TEASER is a global
registration method, which is invariant to initial transform, thus making our approach
more robust.

Figure 11. The flow chart of geometry consistency check. The source point cloud and target point cloud were stiched in the
cooridinate of query keyframe and candidate keyframe using its neighbor keyframes respectively. The yellow point cloud
represent the soure point cloud and gray represent target point cloud start from FPFH feature extraction and matching
process. In thre feature extraction and matching process, the red points and blue points represent FPFH feature points
respectively, and the green line shows the matching relationship between those points. In order to display clearly, we only
show some of the feature points and their matching relationships.

4.6. Pose Graph Optimization

When the relative pose transform Tn
m is obtained between the query keyframe and

candidate keyframe, we add it to the pose-graph as a loop constraint, and a global pose-
graph optimization implemented with CeresSolver will be conducted to reduce drift. Note
that the local point cloud map used by LiDAR mapping will be updated after pose-graph
optimization. Besides, each time we complete a pose-graph optimization, the loop closure
detection process will pause for a period of time ts to ensure efficiency.
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5. Results

To evaluate the performance of our method, the KITTI dataset [65], NuScenes dataset [66]
and field test experiments are carried out where the monocular camera and the LiDAR
sensor can be used simultaneously, respectively. The proposed method is implemented
with C++ under Ubuntu 16.04 and robot operating system (ROS) [67]. A consumer-level
laptop with an Intel Core i7-7700 and 32 GB RAM is used for all experiments. The main
parameters applied for the algorithm are introduced in Table 1. Note that the other
parameters used in our system is same as references. The experiments of our approach
are organized as follows. Section 5.1 first introduces the results on the KITTI dataset to
verify the performance of our method in large scenarios. In Section 5.2, we evaluated our
method on the NuScenes dataset to verify the robustness in various scenarios, such as rain
or dark night environments. Section 5.3 shows that our method performs better in the
real environment compared to the state-of-art LiDAR-based methods. In Section 5.4, we
analyze in detail the role of each module in our algorithm, including the depth-enhanced
direct frame-to-frame odometry, the sliding-window-based optimization module, and the
dynamic object-aware LiDAR scan-to-map registration module. Section 5.5 shows the loop
closure detection results of our approach. Finally, Section 5.6 introduces the time efficiency
of each module.

Table 1. Parameters for DV-LOAM.

Modules Parameters Description KITTI NuScenes Ours

Visual Odometry

Np Number of image pyramid levels 3 3 3

Nmi
Max iteration of direct tracking in each

level 100 100 100

γk f Ration for keyframe creation 0.7 0.8 0.8

tk f Time for keyframe creation (s) 1.0 1.0 1.0

Nw Sliding window size (number of frames) 3 3 5

LiDAR Mapping γe, γp, γg
The resolution of point cloud voxel

downsample (m) 0.4, 0.8, 0.8 0.4, 0.8, 0.8 0.3, 0.6, 0.6

Loop Closing

φ The loop closure searching radius (m) 10.0 10.0 10.0

η The geometry consistency threshold 40.0 40.0 40.0

ts
The suspend detection time after pose

graph (s) optimization 10.0 10.0 10.0

Ng
The minimal gaps between candidate

keyframe and last loop keyframe 20 20 20

5.1. Validation on the KITTI Odometry Dataset

We use the KITTI sequences 00-10 with ground truth trajectories to evaluate the
performance of our approach. And the results of these sequences without loop closure (-)
and with loop closure (*) are reported in Table 2 for comparison, including the state-of-
the-art LiDAR-based frameworks: LOAM, A-LOAM, LeGO-LOAM, and the state-of-art
visual-LiDAR fusion based methods, such as DEMO, LIMO, DVL-SLAM, and the work
of Huang et al. [35]. It should be pointed out that the results of LOAM, DEMO, LIMO ,
DVL-SLAM and Huang et al. [35] are directly quoted from articles, and no rotation error
data is provided.
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Table 2. Translation error [%]/rotation error [deg/100 m] comparison of the proposed DV-LOAM with existing methods on
the whole KITTI training dataset, where (-) represents without using loop closure and (*) represents using loop closure. Best
results of (-) in relative translational error/relative rotational error are highlighted in red and blue, respectively.

Seq.
No

Path
Len.
(m)

Environment
LOAM
[18] (-)

A-LOAM
[25] (-)

LeGO-
LOAM
[19] (-)

DEMO
[29] (-)

LIMO
[27] (-)

Huang
[35] (-)

DVL-
SLAM
[31] (-)

Ours (-) Ours (*)

00 3714 Urban 0.78/- 0.87/0.36 1.51/0.70 1.05/- 1.12/- 0.99/- 0.93/- 0.65/0.30 0.66/0.30
01 4268 Highway 1.43/- 2.64/0.55 -/- 1.87/- 0.91/- 1.87/- 1.47/- 1.74/0.43 1.74/0.43
02 5075 Urban+Country 0.92/- 4.88/1.55 1.96/0.78 0.93/- 1.38/- 1.11/- 0.97/0.33 0.84/0.36
03 563 Country 0.86/- 1.20/0.63 1.41/1.00 0.99/- 0.65/- 0.92/- 0.85/0.48 0.85/0.48
04 397 Country 0.71/- 1.23/0.40 1.69/0.83 1.23/- 0.53/- 0.42/- 0.67/- 0.39/0.62 0.39/0.62
05 2223 Urban 0.57/- 0.66/0.30 1.01/0.54 1.04/- 0.72/- 0.82/- 0.54/0.30 0.43/0.22
06 1239 Urban 0.65/- 0.62/0.28 0.90/0.47 0.96/- 0.61/- 0.92/- 0.65/0.33 0.70/0.33
07 695 Urban 0.63/- 0.58/0.43 0.81/0.56 1.16/- 0.56/- 1.26/- 0.51/0.33 0.42/0.22
08 3225 Urban+Country 1.12/- 1.18/0.43 1.48/0.68 1.24/- 1.27/- 1.32/- 0.89/0.32 0.93/0.27
09 1717 Urban+Country 0.77/- 1.10/0.45 1.57/0.80 1.17/- 1.06/- 0.66/- 0.73/0.32 0.75/0.27
10 919 Urban+Country 0.79/- 1.46/0.53 1.81/0.85 1.14/- 0.83/- 0.70/- 0.87/0.47 0.87/0.47

avg 0.84/- 1.49/0.53 -/- 1.14/0.49 0.93/0.26 0.94/0.36 0.98/0.40 0.80/0.38 0.78/0.36

The evaluation result of our method in the KITTI odometry training dataset is using
the KITTI evaluation odometry tool (www.cvlibs.net/datasets/kitti/eval_odometry.php,
accessed on 2 July 2021). The relevant trajectory error length is the mean value of 100–800 m
length: relative translational error in %/relative rotational error in degrees per 100 m. Note
that all trajectory are transformed into camera 0 coordinate and the comparison with the
ground truth is shown in Figure 12.

Figure 12. Trajectory diagram concerning the training set and the corresponding sequence error results are shown in Table 2.
The gray dotted trajectory is ground, which is collected based on differential GPS that the localization precision is around
cm level. The optimized odometry of our scheme is presented in the blue trajectory: Ours-, and the trajectory with loop
closure is drawn in orange: Ours*, all of these trajectories have been aligned with the ground truth.

5.1.1. Accuracy Comparison with Existing Methods without Loop Closure

To verify the performance of odometry, the proposed algorithm was applied on the
KITTI odometry benchmark dataset by excluding loop-closure. As we can see from the
Table 2, we have obtained an average relative translation error of 0.80% and a relative
rotation error of 0.0038 deg/m in the entire KITTI odometry training dataset, which is
outperforming than those state-of-art visual LiDAR odometry fusion approaches, such as
DEMO, LIMO, the work of Huang et al. [35], and DVL-SLAM. DEMO and LIMO are visual
odometry based fusion approach, the depths of features in DEMO are acquired simply by
using triangulation meshes, while in LIMO, a more complicated feature depth extraction
strategy of fitting local planes is applied. Besides, keyframe selection and landmark
selection are employed in the procedure of Bundle Adjustment. Therefore, LIMO obtains
better accuracy than DEMO. Compared with LIMO, although the rotation error of our
approach was larger, we achieved a higher position accuracy, the relative translation error

www.cvlibs.net/datasets/kitti/eval_odometry.php 
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dropped from 0.93% to 0.80%. The reasons are as follows. On the one hand, the extraction
accuracy of visual features can reach sub-pixel level, feature matching is relatively stable,
and is not easily affected by factors such as illumination. Therefore, feature-based methods
generally have more accurate rotation accuracy than direct-based methods. On the other
hand, compared with monocular cameras, LiDAR sensors have high-precision ranging
measurements, resulting in higher translation accuracy, especially in urban areas with
rich structural information, such as sequence 00, 05, 06, and 07 shown in Table 2. Besides,
semantic segmentation is required in LIMO to distinguish dynamic objects, such as cars
and people in the environment, thus improving the robustness, accuracy, and avoiding the
influence of moving objects. However, semantic information requires GPU computational
resources and is usually time-consuming. Huang et al. [35] improved LIMO by leveraging
points and lines for tracking and local mapping, and achieved almost the same translation
accuracy compared with LIMO without using semantic information. Compared with
Huang’s work [35], although our average rotation error was slightly higher, our translation
error was significantly reduced from 0.94% to 0.80%. Our approach was developed from
DVL-SLAM, and we achieved more accurate results by fusing the proposed two-staged
direct VO module and a LiDAR mapping module, especially for the relative translation
accuracy, which was improved considerably, and the translation error dropped from 0.98%
to 0.80%.

Besides, compared with those LiDAR based methods, our approach also showed better
performance than LOAM (translation error 0.84% in the paper), A-LOAM (translation error
1.49%, rotation error 0.0053 deg/m), and LeGO-LOAM. In addition, LeGO-LOAM failed
in sequence 01, which is a highway scene where the vehicle is driving at high speed
most of the time. The reason is that the scan matching module cannot extract sufficient
features(edge features, and planar features except for ground points) for tracking.

Furthermore, we presented the rotation and translation error analysis according
to path length and vehicle speed on the whole KITTI training dataset without using
loop closing, and the comparison curves between DEMO, DVL-SLAM, LIMO, A-LOAM,
the work of Huang [35], and ours were shown in Figure 13. As the speed increases,
the accuracy of our method decreased slowly and then gradually increased, especially
at higher speeds, the accuracy decreased very rapidly as shown in Figure 13a,b. This
is the reason why our method performs relatively poorly on sequence 01, which is a
highway environment with many dynamic cars, and the experiment platform moves very
fast. The Figure 13c,d show the error according to the length of the vehicle’s moving
path. As the cumulative path length increases, the relative translation error is decreases
steadily as shown in Figure 13c, and the relative rotational error is also reduced as shown
in Figure 13d.

The position and orientation of the proposed method changes on the KITTI odometry
sequence 00 are shown in Figure 14. Our approach has significantly reduced the localization
error of translation and orientation. Especially for the 2D pose components (x, z, yaw),
which are approachable to the precision of ground truth. It should be noted that the
position and orientation error of DV-LOAM mainly comes from the convergence accuracy
of altitude, roll, and pitch, which have little impact on the navigation mission on flat terrain.
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Figure 13. The error analysis performed on the KITTI training dataset between A-LOAM, DEMO, DVL-SLAM, LIMO,
Huang et al. [35], and Ours. Since we only obtain error curves related to vehicle speed (a,b) of LIMO, we show A-LOAM,
DEMO, DVL-SLAM, Huang [35], and our error curves in terms of path length (c,d). The (e,f) show the percentage of
different path segment length and vehicle speed in.

Figure 14. Change of position and orientation compared with ground truth on the KITTI sequence 00. The trajectories have
been transformed to the coordinate system of Camera 0 through extrinsic parameters (xyz→zxy). (a) represents the position
change of the camera. (b) represents the change of the Euler angle of the camera.

5.1.2. Accuracy Analysis and Global Maps Displaying with Loop Closure

Loop closure detection can help to correct the drift and maintain a global consistent
map. In addition, these maps can be used for vehicle localization in GPS denied environ-
ments. As we can seen from Table 2, the average translation error and rotation error of
our approach are 0.78% and 0.38 deg

100 m respectively. The globally consistent maps are built
with keyframes, and more details can be seen from the LiDAR feature maps, as shown
in Figure 15 bellow. It should be noted that to ameliorate the display effect, the ground
LiDAR features are not shown in Figure 15.
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Figure 15. Mapping results of our approach on (a) sequence 01, (b) sequence 05, (c) sequence 06, (d) sequence 07 and
(e) sequence 00 of the KITTI Vision Benchmark, also shown are some representative regions.

5.2. Evaluation on NuScenes Dataset

We also evaluate our approach on the nuScenes dataset, which is a public large-scale
dataset with many dynamic objects in the scene, such as cars and people. The results
shown in Table 3 are obtained using nuScenes full dataset (v1.0) part 1. There are a total of
85 scenes, and none of those scenes have a loop closure. Besides, the trajectory length of
each scene is shorter than 200 m, thus we calculate the average rotation and translation
errors by dividing the trajectory into segments using 5 m, 10 m, 50 m, 100 m, 150 m, 200 m
as did in [35]. In summary, we achieved an average translation error of 3.03% and an
average rotation error of 0.0399 deg

m . The maps shown in Figure 16 are constructed using
the poses estimated by our approach.



Remote Sens. 2021, 13, 3340 23 of 39

Table 3. Translation error [%]/rotation error [deg/100 m] comparison of the proposed DV-LOAM
with existing methods on the NuScenes full dataset (v1.0) part 1. Best results in translational
error/rotational error are highlighted in red and blue, respectively.

Scene No. Environment LeGO-LOAM [19] A-LOAM [25] Ours

77–91 Urban 5.19/12.58 3.53/3.44 1.68/3.28
111–119 Urban 9.60/15.09 3.20/3.02 1.77/3.74
140–148 Country 8.90/16.32 5.71/5.38 3.85/3.69
265–266 Urban 3.55/11.46 5.74/4.83 1.54/3.45
279–282 Country 8.05/17.74 3.08/3.14 4.33/2.85
307–314 Country 9.03/26.23 4.40/4.83 4.10/7.0
333–343 Urban 10.70/16.46 5.51/4.27 1.98/3.3
547–551 Urban 6.34/13.28 5.42/2.73 1.24/2.17
602–604 rain,Urban 4.53/12.25 5.79/4.98 1.17/3.15
606–624 rain,Urban 6.97 /18.78 5.81/4.72 1.57/4.00
833–842 Country 9.07/22.05 4.34/4.73 4.77/6.8
935–943 Country 12.12/21.80 5.63/4.18 5.37/3.71

1026–1043 Country, Dark night 13.79/20.34 3.28/4.06 6.04/4.72
avg 8.30/17.26 4.57/4.18 3.03/3.99

Figure 16. Mapping results of some representive scenes in nuScenes dataset. In each column, from left to right are sample
image in the scene, point cloud map color-encoded with images, and total LiDAR point cloud map, respectively. Where the
red spheres in the middle represent the estimated trajectory of the camera.

5.3. Evaluation on Our Campus Dataset

To verify our algorithm’s accuracy in the real world, an on-site experiment using our
mobile robot camera-LiDAR platform shown in Figure 17b was conducted. The BUNKER
(https://www.agilex.ai/product/1?lang=en-us, accessed on 2 July 2021) mobile robot
platform was mainly equipped with an Nvidia Jetson Xavier, a ZED2 stereo camera, and a
VLP-16 3D LiDAR. The robot accumulated almost 4500 frames after 7.5 min of driving at
an average speed of 1.0 m/s. It’s worth mentioning that the data was recorded around two
o’clock in the afternoon at Wuhan University, so there were many pedestrians and vehicles
on the road.

https://www.agilex.ai/product/1?lang=en-us
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Figure 17. Data recording platform and corresponding collection environment. (a) data collection environment; (b) data
collection platform; (c,d) are sample data collected at red and yellow box respectively showed in (a) , the points are
color-coded by their depth value.

5.3.1. Camera LiDAR Extrinsic Calibration

Ours previous work CoMask [68] was used to calibrate the extrinsic parameters
between a monocular and a 3D LiDAR sensor. A matlab tool based on CoMask was
developed and open sourced to the community, and the URL was https://github.com/
ccyinlu/, accessed on 2 July 2021. Besides, since the camera internal parameters of the
ZED2 was very accurate, we directly used the internal parameters of the ZED2. The internal
parameters of left camera was as follows:

K =

529.645 0.0 639.045
0.0 529.645 356.408
0.0 0.0 1.0

 (12)

Eventually, the extrinsic parameters of the left camera to LiDAR TLiDAR
camera calibrated by

CoMask were as follows:

TLiDAR
camera =


0.041688 −0.046796 0.998034 −0.016100
−0.999124 0.001642 0.041810 0.022844
−0.003595 −0.998903 −0.046686 −0.049066

0.0 0.0 0.0 1.0

 (13)

We projected the LiDAR points to the image using the extrinsic parameters and the
results were shown in Figure 17c,d, where the laser points were color-coded by their
depth value.

5.3.2. Experiments on the Campus Dataset

The trajectories of our approach and the existing state of art LiDAR based methods,
including A-LOAM and LeGO-LOAM, were shown in Figure 18. It can be seen from
Figure 18a that our method and LeGO-LOAM achieve relatively high global accuracy in
the 2-D plane with the help of loop closing. Since A-LOAM does not have loop detection
module, the cumulative drift cannot be corrected, resulting in a large deviation. Besides,
to obtain higher accuracy of trajectory, LeGO-LOAM needs the Inertial Measurement Unit
(IMU) to provide initial transform between adjacent frames. However, in this paper, we

https://github.com/ccyinlu/
https://github.com/ccyinlu/
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only used a LiDAR sensor and a monocular camera. Therefore, the drift of LeGO-LOAM
gradually increases with time, especially in altitude, as shown in Figure 18b.

Figure 18. The trajectories of proposed method and state of art LiDAR based methods, including A-LOAM and LeGO-
LOAM, where (a) is the 2d trajectories in x-z plane and (b) is the corresponing 3-D trajectories.

Figure 19 shows the mapping results of our approach and LeGO-LOAM on our
campus dataset, and the color of point clouds are coded according to elevation in Rviz
(http://wiki.ros.org/rviz, accessed on 2 July 2021). It can be seen more clearly from the side
view that our method has higher accuracy in altitude. The rightmost column of Figure 19
is an enlarged schematic diagram of the red box shown in the top view. It can be seen that
our method has almost no cumulative error, while Lego-LOAM has a certain cumulative
error even if loop closure detection is used.

Figure 19. Top view, side view, and zoom view of the final 3D maps of campus obtained using our method vs LeGO-LOAM.
(a) is our method and (b) is LeGO-LOAM.

http://wiki.ros.org/rviz
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And the more detailed view of the final map of campus obtained from our algorithm
is illustrated in Figure 20 as follows. It can be seen from Figure 20 that our method also
has high accuracy in the details of the mapping, such as the roadside in A, the pillars in B,
the building, the trees in D, the cars in E, etc.

Figure 20. Mapping result of our approach on campus dataset, also shown are some representative regions from (A–F).

5.4. Accuracy Analysis of Each Modules in DV-LOAM

To further analyze the effect of each module on the accuracy of the odometry, we
evaluated each module separately on the training set of KITTI data, including direct
frame-to-frame visual LiDAR odometry (Ours FF), direct frame-to-keyframe visual LiDAR
odometry and frame-to-frame visual LiDAR odometry with slide window optimization
module (Ours FF_SW). Since the strategy of creating a keyframe is different in each SLAM
system, we divide the frame-to-keyframe visual LiDAR odometry into three types. The first
one is generating a keyframe every 3 frames (Ours FK_3), while the second is generating
a keyframe every 5 frames (Ours FK_5), and the last one (Ours FK_*) is generating a
keyframe according to the strategy used in DVL-SLAM. Besides, the LiDAR scan matching
based frame-to-frame odometry (A-LOAM FF) is also included for comparison. The quan-
titative evaluation result on the whole KITTI training dataset is shown in Table 4.

In addition, there are also several representative motion tracking trajectories by our
system with different modules and the LiDAR frame-to-frame odometry on KITTI training
dataset sequences are shown in Figure 21.
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Table 4. Translation error [%]/rotation error [deg/100 m] comparison of the different direct visual odometry with ICP-based
LiDAR odometry on the whole KITTI training dataset.

Seq.
No

Path
Len. (m) Environment A-LOAM [25]

FF
Ours

FF
Ours
FK-3

Ours
FK-5

Ours
FK-*

Ours
FF-SW

Ours
FF-SW-SM

00 3714 Urban 4.11/1.70 1.08/0.52 1.00/0.50 1.67/0.88 1.12/0.55 0.95/0.43 0.65/0.30
01 4268 Highway 3.94/0.95 1.39/0.41 -/- -/- 1.54/0.45 1.30/0.35 1.74/0.43
02 5075 Urban+Country 7.48/2.51 0.98/0.33 1.23/0.50 1.79/0.76 1.08/0.40 0.98/0.33 0.97/0.33
03 563 Country 4.54/2.15 1.19/0.48 1.14/0.53 1.53/1.12 1.08/0.50 0.95/0.88 0.85/0.48
04 397 Country 1.74/1.13 0.74/0.43 0.68/0.39 0.77/0.67 0.63/0.38 0.61/0.26 0.39/0.62
05 2223 Urban 4.13/1.75 1.20/0.58 0.88/0.42 0.96/0.50 0.98/0.48 0.79/0.36 0.54/0.30
06 1239 Urban 1.04/0.55 1.32/0.45 1.19/0.40 0.91/0.36 1.27/0.41 0.91/0.31 0.65/0.33
07 695 Urban 3.14/1.99 1.26/0.85 1.12/0.70 1.39/0.88 1.39/1.55 0.88/0.55 0.51/0.33
08 3225 Urban+Country 4.85/2.09 1.60/0.68 1.49/0.62 1.68/0.81 1.47/0.61 1.39/0.51 0.89/0.32
09 1717 Urban+Country 5.73/1.85 0.95/0.46 0.87/0.46 1.30/0.65 0.93/0.46 0.71/0.33 0.73/0.32
10 919 Urban+Country 3.61/1.78 1.05/0.49 0.96/0.42 1.29/0.66 0.87/0.43 0.77/0.36 0.87/0.47

avg 4.03/1.68 1.16/0.51 -/- -/- 1.12/0.57 0.94/0.43 0.80/0.38

Figure 21. Our motion tracking trajectories on several representative KITTI training dataset, with results by our direct
frame-to-frame visual LiDAR odometry (Ours FF), the direct visual LiDAR odometry with slide window optimization
module (Ours FF_SW) and LiDAR scan matching based frame-to-frame tracking odometry (A-LOAM FF) comparing with
the ground truth (Ground Truth) trajectory separately.

5.4.1. Frame-to-Frame vs. Frame-to-Keyframe Direct Visual LiDAR Odometry

We first evaluated the performance of direct frame-to-frame visual LiDAR odometry
versus direct frame-to-keyframe visual LiDAR odometry. As we can see from the Table 4,
although the average translation accuracy of Ours FF (1.16%) is slightly worse than Ours
FF_* (1.12%), but Ours FF has better accuracy in terms of rotation error than Ours FF_*,
they are 0.51 deg

100 m and 0.57 deg
100 m respectively. Besides, Ours FF_3 and Ours FF_5 failed to

localize themselves in the KITTI sequence 01, which is a highway environment and the
vehicle moves at a high speed. To further quantify the impact of speed and distance on
the accuracy of the visual LiDAR odometry, an error analysis according to path length and
vehicle speed on the whole KITTI training dataset is shown in Figure 22.
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Figure 22. The visual odometry error analysis performed on KITTI training dataset.

Firstly, we analyzed the influence of distance on the accuracy of the odometry. It can
be seen from Figure 22a that although the overall translation error of the frame-to-keyframe
is better than the frame-to-frame, in a shorter distance, such as 200 m, the frame-to-frame-
based odometry has a lower translation error. Besides, frame-to-frame visual LiDAR
odometry always achieves better rotation error as path length increasing from 100 m to 800
m which can be seen from Figure 22b.

In terms of the impact of vehicle speed on the accuracy of the odometry. From Figure 22c
we can see that the translation error of the frame-to-frame method is more stable than
the frame-to-keyframe method in different speeds, especially in high-speed situations,
such as highway environments. As we can see from Table 4, in sequence 01, Ours FF
achieve the translation error and rotation errors are 1.39% and 0.41 deg

100m , respectively, which
are more accurate than Ours FK_* in both translation and rotation, while the other two
frame-to-keyframe approaches are both failed. Moreover, as we can see from Figure 22d,
the frame-to-frame odometry has higher rotation accuracy than the frame-to-keyframe
approach no matter at high speed or low speed.

Therefore, we can claim that the direct frame-to-frame visual LiDAR odometry can
achieve better performance both in translation and rotation than frame-to-keyframe visual
LiDAR odometry in a shorter path, which is more suitable for odometry to obtain robust
and accurate initial transform.

5.4.2. Direct Frame-to-Frame Visual LiDAR Odometry vs. LiDAR Scan
Matching Odometry

We also evaluated our approach on the performance of frame-to-frame tracking (Ours
FF) with LiDAR scan matching based frame-to-frame tracking approach (A-LOAM FF).
As shown in Table 4, using frame-to-frame visual LiDAR approach achieves significantly
lower relative translation error (1.16%) than the LiDAR frame-to-frame scan-matching
baseline (4.03%), and relative rotation error (0.51 deg

100 m ) than (1.68 deg
100 m ). The reasons that

may lead to this situation are as follows. Firstly, the patch-based direct tracking approach,
combing with the precise LiDAR range measurements, has the abitility to obtain accurate
motion estimation even with image degradation. What’ more, compared with those scan-to-
scan registration based LiDAR odometry, like A-LOAM, and LeGO-LOAM, Ours FF does
not need feature matching between adjacent frames. This is very important, especially in
degraded scenes, such as highways. Because the lidar measurements are relatively sparse
and the surrounding environment is very open, it is difficult to detect enough obvious
features, which brings great challenges to feature association, thus leading to a significant
drift or failure of motion estimation.
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5.4.3. The Effect of Sliding Window Optimizaiton

We also performed an evaluation on the sliding window optimization module
(Section 4.2) by comparing the accuracy with our direct frame-to-frame visual LiDAR
odometry (Section 4.1) as shown in the Table 4. The comparison results show that the
sliding window optimization module plays an important role to obviously reduce the
translation error, with about 18.9% relative translation error reduced (from 1.16% down to
0.94%), and rotation error, with about 15.7% relative rotation error reduced from 0.51 deg

100 m

down to 0.43 deg
100 m . Therefore, we can conclude that the sliding window optimization

module can significantly reduce the pose estimation error in our system.

5.4.4. The Effect of LiDAR Scan-to-Map Optimization

The scan-to-map matching strategy is used widely in LiDAR-based SLAM
systems [17–19,25,32] to improve the quality of points and compensate the loss of ac-
curacy caused by frame sparsity. To maintain local accuracy while keeping efficiency,
the scan-to-map optimization module (Section 4.4) is only applied when a new keyframe is
generated in our system. One can see from Table 4, the LiDAR mapping module dramati-
cally reduced the translation error and rotation error, and the average relative translational
error reduced from 0.94% to 0.80% while the average relative rotation error reduced from
0.43 deg

100 m to 0.38 deg
100 m . The reasons can be categorized into the following aspects. On the

one hand, LiDAR sensor is insensitive to light illumination, weather or viewing angle,
and more importantly, benefiting from the high-precision ranging accuracy and the wide
range measurement, our approach achieves impressive robustness and low-drift in various
environments, especially in urban regions that consist of plenty edge features, planar fea-
tures, and ground features, such as the sequences 00, 05, 06, and 07 of KITTI dataset. On the
other hand, the two-stage registration of scan-to-map matching also largely eliminates
the influence of dynamic objects on motion estimation. For example, in KITTI sequence
04, there are many moving vehicles in the road, compared with LOAM, ours relative
translational error dropped from 0.71% to 0.39%.

5.5. Loop Closure Results

To further demonstrated the performance of the proposed PGLS-LCD method, we
evaluated the algorithm on the KITTI dataset which is commonly used for place recognition.
The proposed method was tested with multiple recordings such as sequences 00, 02, 05,
and 08. Sequence 00 and 05 are commonly used for place recognition since most of loop
closure places are forward visited. Sequence 02 contains both forward and reverse visit,
and the loop closure in sequence 08 are almost always reverse visit, thus being considered
more challenging for place recognition.

The loop closure detection results of our proposed approach on the above sequences
are shown in Figure 23. And the results are also compared with existing works such as
LeGO-LOAM [19] and stereo ORB-SLAM2 [8,9]. Note that the loop closure detection
module of stereo ORB-SLAM2 is based on DBoW2 [37,38] which is the state-of-the-art
vision based place recognition method.

In most SLAM approach, the system will suspend the detection for a period of time
after detecting a loop closure and optimizing the pose graph successfully. The reasons are
as follows. Firstly, the optimization of the pose graph is time-consuming, and frequent
pose graph optimization will reduce efficiency. Secondly, in practice, it is not that the more
loop closures and the more times the pose graph are optimized, the higher the accuracy
of trajectory. On the contrary, if the wrong loop closure is introduced, the system would
broken down immediately. Therefore, the recall rates of different LCD methods can not be
quantitatively evaluated.
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Figure 23. The loop closure detection results of partial KITTI sequeces, where (a) is sequence 00, (b) is sequence 05, (c) is
sequence 08 and (d) is sequence 02. The trajectory of Ground Truth is plot in dash gray line, the blue line and red line
represent stereo ORB-SLAM2 and ours trajectories respectively. The loop closures detected by our approach are drawn
with red circle, and the detected loop closures of LeGO-LOAM and stereo ORB-SLAM2 are drawn with triangle and
pentagon respectively.

In order to address this issue, we divide the individual loop pairs to segments ac-
cording to time. That is those continuous loop closures in time will be regarded as a
integral loop closure segment L = {li, li+1, ..., lj}, where li is the i-th loop pair. The ground
truth result can be seen in Figure 24, each colored box represented a loop closure segment.
And the precision and recall rate can be calculated as Algorithm 3 in this situation:
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Algorithm 3 The precision and recall rate calculation.

Input: The detected loop closure pairs set CL = {l1, l2, ..., lN1}; The number of detected loop
closure pairs N1; The ground truth loop closure segments group SL = {L1,L2, ...,LN2};
The number of ground truth loop closure segments N2; The number of true positive
detected loop closures NTP; The number of true detected loop closure segment NTS;

Output: The precision p and recall rate r;
1: Initialize parameters, NTP = 0, NTS = 0;
2: for each ground truth loop closure segment Lj in SL do
3: static f lag = f alse;
4: for each loop closure Li in CL do
5: if Li ∈ Lj then
6: if flag == false then
7: NTS = NTS + 1;
8: f lag = true;
9: end if

10: NTP = NTP + 1;
11: Break;
12: end if
13: end for
14: end for
15: Calculate the precision of loop closure detection: p = NTP

N1 ;
16: Calculate the recall rate of loop closure detection: r = NTS

N2

Figure 24. The ground truth loop closure segments of partial KITTI sequences. (a) KITTI sequence 00 with 4 loop closure
segments. (b) KITTI sequence 02 with 3 loop closure segments. (c) KITTI sequence 05 with 3 loop closure segments.
(d) KITTI sequence 08 with 3 loop closure segments. The top row is the GPS trajectory plotted from light to dark with
time going, and the bottom row is the corresponding ground truth affinity matrices. We use the same color to indicate the
correspondence between trajectory and affinity matrix.

The results of precision and recall rate are listed in the Table 5. All these methods
achieved competitive precision and recall rate on both sequence 00 and sequence 05, since
all loop closures occured were forward visit. On more challenging dataset sequence 08, our
approach and LeGO-LOAM achieved much higher recall rate since the LiDAR sensor is less
affected from illumination, weather or viewing angle. While vision based approach failed
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to identify the reverse visit so that the recall rate dorps significantly. As for sequence 02,
there are both forward and reverse visit loop events, and the first loop closure segment is
occuring after a long journey. Despite the large accumulative error, with the help of BoW’s
global search capability, the stereo ORB-SLAM2 detected the first two forward loop closure
segments correctly. On the contrary, LeGO-LOAM failed to detect the first loop closure
segment because the drift was beyond the searching radius. Although it successfully
detected the second loop closure segment, the error calculated corrective transform by
ICP lead to a serious error of global trajectory as shown in Figure 23d. Our approach not
only successfully detected all three loop closure segments, including the last reverse loop
closure segment, but also obtain the right and precise relative transform between the loop
pair with the help of TEASER, thus obtaining a global consistency trajectory.

Table 5. The loop closure precision and recall comparison with existing methods. The NTS in Recall
Rate represents the number of detected loop closure, and N2 is the number of all existed loop closure
segments. Best results are highlighted in bold.

Dateset Approachs Precision (%) Recall Rate (NTS/N2)

sequence 00

stereo ORB-SLAM2 100 4/4

LeGO-LOAM 100 4/4

Ours 100 4/4

sequence 02

stereo ORB-SLAM2 100 2/3

LeGO-LOAM 100 1/3

Ours 100 3/3

sequence 05

stereo ORB-SLAM2 100 3/3

LeGO-LOAM 100 3/3

Ours 100 3/3

sequence 08

stereo ORB-SLAM2 0 0/3

LeGO-LOAM 100 3/3

Ours 100 3/3

5.6. Time Efficiency Analysis

DV-LOAM showed excellent time efficiency for all the above tests. In the visual
odometry module of our scheme, there are two stages, including direct frame-to-frame
tracking, and sliding window optimization, without feature extraction and matching.
The LiDAR mapping module consists of three steps. Firstly, the linefit-based LiDAR
segmentation approach is used to segment original point cloud into ground point cloud
and non-ground point cloud. Then, like LeGO-LOAM, the edge features and planar
features are extracted from non-ground point cloud. Finally, the pose will be refined by the
scan-to-map optimization procedure using three various features. As shown in Figure 25,
in order to evaluate the time efficiency of odometry, the average runtime of each processing
stage was recorded for representative sequences 00 on the KITTI odometry benchmark [65]
(for a visual impression of the complexity, please see Figure 15e. We used ROS nodelet
package to save data transmission time between different nodes.
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Figure 25. Processing time of each module on the KITTI sequence 00 odometry benchmark.

What’s more, we evaluated the efficiency all modules of our system on KITTI, Nuscenes,
and our campus dataset with loop closing. The average runtime of each modules are shown
in Table 6. The most time-consuming part lies in two parts. The first is the scan-to-map
optimization step, which costs about 75 ms each time. The other is loop closing, which
takes about 200 ms in total. Since the scan-to-map optimization is only performed when a
new keyframe is generated, and one keyframe is selected every 3–4 frames. In addition,
loop closing occurs at a low frequency and can be implemented on another thread. Thus
our approach achieves a average frequency of 6Hz in KITTI dataset.

Table 6. Average processing time of each module on the KITTI, nuScenes, and Our campus dataset.

Modules Sub Modules KITTI (ms) nuScenes (ms) Our Campus (ms)

Visual Odometry
frame-to-frame tracking 25.24 8.52 13.24

sliding window optimization 48.34 17.76 35.73

LiDAR Mapping

ground extraction 12.19 8.57 9.46

feature extraction 27.84 11.30 10.23

scan-to-map optimization 71.72 41.89 54.81

Loop Closing

loop candidates extraction 3.98 - 3.24

consistency verification 110.37 - 102.53

pose graph optimization 81.22 - 57.78

6. Discussion

• LiDAR frame-to-frame odometry vs. visual-LiDAR fusion odometry: As shown in
Table 4, compared to the LiDAR scan-to-scan based odomtery, the visual-LiDAR fusion
based odomtery shows better performance in terms of accuracy. This is mainly due to
the following reasons. Firstly, the features (edge points and planar points) extracted



Remote Sens. 2021, 13, 3340 34 of 39

in LiDAR odometry are selected based on curvature, the distinction between them
is not as distinguishable as visual features, and easily affected by noise, especially in
unstructured environments such as country. Secondly, due to the inability to perform
feature matching, LiDAR-based odomtery often uses Kd-Tree to search for nearest
neighbors and then to associate feature points. This often leads to many incorrect
matches, which makes the optimization algorithm fail to converge or converge to
wrong position, especially when the initial pose is not good at the time. Thirdly,
since the visual image has richer textures, and the LiDAR can provide accurate
distance measurement, thus the patch-based depth enhanced direct visual-LiDAR
odometry can achieve higher accuracy even if the image is blurred. In addition, due
to the application of pyramid strategy, this method also performs better in terms of
efficiency.

• The effect of dynamic objects: At present, most SLAM methods work under the
assumption that the world is static. However, in most real environments, this assump-
tion is difficult to hold strictly. There will always be moving objects in the surrounding
environment, such as walking people and moving cars. Since the field of view of the
image is much smaller than that of a LiDAR with a 360-degree scan measurements,
moving objects have a greater impact on the visual method, especially when there
are large moving objects in the image. As shown in the Figure 26a,b, when a moving
car passing, the trajectory estimated based on the direct method has obvious errors,
while the LiDAR-based odometry method is basically unaffected. This is mainly due
to the large field of view of the lidar and the block processing of the LiDAR during
feature extraction, and finally only a small part of the features extracted from the
moving object. In order to make the algorithm more robust, especially in a dynamic
environment, we plan to use the following ideas for improvement. On the one hand,
we consider incorporating our previous work: a geometry-based multi-motion seg-
mentation approach [69] to DV-LOAM, thus eliminating the effect of moving objects
and obtaining a static point cloud map. On the other hand, we also plan to introduce
deep learning based motion segmentation [70,71] to our framework. By removing
those salient points located in dynamic objects, the tracking accuracy and positioning
accuracy can be further improved.

• The improvement of salient points selection: Currently, we use the strategy de-
scribed in DVL-SLAM [30] to extract salient points. It first projected all the laser points
of the current scan onto the image, and then selected the points with relatively large
gradient for ego-motion estimation. There are two problems here. One is that as men-
tioned in [36], the explicit occluded points often appeared at the borders of the objects,
while the gradients of the pixels laid on the borders of objects are relatively larger,
so there were many explicit occluded points being selected, which would decrease
the accuracy of tracking. On the other hand, as introduced in [51], we noticed that
the depth uncertainty of edge points is larger than planar points, and the edge points
are shown in Figure 26c. So when the extrinsic parameters are not accurate, or the
time synchronization of camera and LiDAR sensors is not precise, the selected salient
points which appear at the boundary may bring more uncertainties in the tracking
process. As shown in Table 7, we compared the tracking accuracy using different
salient points selection strategies, and FF(-) represented the tracking results using all
LiDAR points in the salient points selection stage, while FF(*) was the tracking results
of only using planar LiDAR points and ground LiDAR points. Although the overall
accuracy did not improve much, we can see that on the KITTI 06 dataset, the accuracy
of FF(*) improved significantly. The reason is that there are many isolated trees in the
KITTI 06 dataset, which will lead to many potential occlusion points. In the future
work, we plan to add depth uncertainty into the optimization process as a weight
function to improve the performance of the direct visual-LiDAR odometry.
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Figure 26. (a) The sample images in our campus dataset with moving vehicle. (b) The trajectories
of LiDAR-based odometry and direct visual-LiDAR fusion odometry. (c) Edge points extracted in
LiDAR point cloud, they are more likely to be located at the boundary of objects.

Table 7. Translation error [%]/rotation error [deg/100 m] comparison of the different salient points selection trajectories in
direct frame-to-frame visual-LiDAR odometry. Best results in translational error/rotational error are highlighted in red and
blue, respectively.

00 01 02 03 04 05 06 07 08 09 10 avg

FF(-) 1.08/0.52 1.39/0.41 0.98/0.33 1.19/0.48 0.74/0.43 1.20/0.58 1.32/0.45 1.26/0.85 1.60/0.68 0.95/0.46 1.05/0.49 1.16/0.51
FF(*) 1.01/0.50 1.29/0.40 0.96/0.32 1.08/0.46 0.77/0.41 1.06/0.50 0.97/0.42 1.29/0.93 1.60/0.68 1.02/0.46 1.11/0.46 1.11/0.50

7. Conclusions

In this paper, we propose a novel direct visual LiDAR odometry and mapping frame-
work that combines a monocular camera with sparse precise range measurements of
LiDAR. The proposed method relies on the following aspects to achieve excellent perfor-
mance: (1) The two-staged direct VO module applied for motion estimation. Since there is
no need to extract and match features, the depth-enhanced patch-based frame-to-frame
odometry shows high robustness even in highway or dark night scenes. In addition,
the pose optimization based on sliding window-based can prevent local level drift and
obtain comparable accuracy with those state-of-art visual LiDAR based methods, such
as Huang et al. [35] and DVL-SLAM. (2) Each time a keyframe is generated, the LiDAR
mapping module performs pose refinement processing to reduce the accumulated drift.
(3) PGLS-LCD approach that combines BoW and LiDAR-Iris features and pose-graph
optimizer maintain consistency at the global level.
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We evaluated the performance of our approach on the KITTI dataset, NuScenes dataset,
and our campus dataset, and compared it with the state-of-art methods, including LiDAR-
based methods and visual-LiDAR fusion methods. Experiments show that our approach
provides more accurate trajectory and point cloud maps of real-world metrics than the state-
of-art techniques by integrating a direct VO module and LiDAR mapping module. In terms
of loop closure detection, our approach can not only handle reverse visit events, but also has
the ability to search in global with all previous keyframes, thus obtaining higher precision
and recall rate in various sequences of KITTI dataset. The code of our method is open-
source on GitHub and the URL is https://github.com/kinggreat24/dv-loam, accessed on
2 July 2021.
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The following abbreviations are used in this manuscript:

SLAM Simultaneous Localization and Mapping
VO Visual Odometry
LiDAR Light Detection And Ranging
GNSS/INS Global Navigation Satellite System/Inertial Navigation System
IMU Inertial Measurement Unit
TEASER Truncated least squares Estimation And SEmidefinite Relaxation
FPFH Fast Point Feature Histogram
ICP Iterative Closest Point
PGLS-LCD Parallel Global and Local Search - loop closure detection
BoW Bag of Words
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