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Abstract: In recent years, convolutional-neural-network-based methods have been introduced to the
field of hyperspectral image super-resolution following their great success in the field of RGB image
super-resolution. However, hyperspectral images appear different from RGB images in that they have
high dimensionality, implying a redundancy in the high-dimensional space. Existing approaches
struggle in learning the spectral correlation and spatial priors, leading to inferior performance. In this
paper, we present a difference curvature multidimensional network for hyperspectral image super-
resolution that exploits the spectral correlation to help improve the spatial resolution. Specifically, we
introduce a multidimensional enhanced convolution (MEC) unit into the network to learn the spectral
correlation through a self-attention mechanism. Meanwhile, it reduces the redundancy in the spectral
dimension via a bottleneck projection to condense useful spectral features and reduce computations.
To remove the unrelated information in high-dimensional space and extract the delicate texture
features of a hyperspectral image, we design an additional difference curvature branch (DCB), which
works as an edge indicator to fully preserve the texture information and eliminate the unwanted
noise. Experiments on three publicly available datasets demonstrate that the proposed method
can recover sharper images with minimal spectral distortion compared to state-of-the-art methods.
PSNR/SAM is 0.3–0.5 dB/0.2–0.4 better than the second best methods.

Keywords: hyperspectral image; super-resolution; deep neural networks; difference curvature;
attention

1. Introduction

Obtained from hyperspectral sensors, a hyperspectral image (HSI) is a collection of
tens to hundreds of images at different wavelengths for the same area. It contains three-
dimensional hyperspectral (x, y, λ) data, where x and y represent the horizontal and vertical
spatial dimensions, respectively, and λ represents the spectral dimension. Compared to
previous imaging techniques such as multi-spectral imaging, hyperspectral imaging has
much narrower bands, resulting in a higher spectral resolution. Hyperspectral remote
sensing imagery has a wide variety of studies from target detection, classification, and
feature analysis, and has many practical applications in mineralogy, agriculture, medicine,
and other fields [1–7]. Consequently, higher spatial-spectral resolution of hyperspectral
images allows a more efficient way to explore and classify surface features.

To ensure the reception of high-quality signals with low signal-to-noise ratio, there
is a trade-off between the spatial and spectral resolution of the imaging process [8–10].
Accordingly, HSIs are often accessed under relatively low spatial resolution, which would
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impede the perception of details and learning of discriminative structural features, as well
as further analysis in related applications. With the hope of recovering spatial features
economically, post-processing techniques such as super-resolution are an ideal way to
restore details from a low-resolution hyperspectral image.

Generally, there exist two prevailing methods to enhance the spatial details, i.e.,
the fusion-based HSI super-resolution and single HSI super-resolution approaches. For
the former category, Palsson et al. [11] proposed a 3D convolutional network for HSI
super-resolution by incorporating an HSI and a multispectral image. Han et al. [12] first
combined a bicubic up-sampled low-resolution HSI with a high-resolution RGB image
into a CNN. Dian et al. [13] propose a CNN denoiser based method for hyperspectral and
multispectral image fusion, which overcomes the difficulty of not enough training data and
has achieved outstanding performance. Nevertheless, auxiliary multispectral images have
fewer spectral bands than HSIs, which will cause spectral distortion of the reconstructed
images. To address these drawbacks, some improvements have been made in subsequent
works [14–18]. However, the premise is that the two images should be aligned, otherwise
the performance will be significantly degraded [19–21]. Compared with the former, single
HSI super-resolution methods require no auxiliary images, which are more convenient
to apply to the real scenario. Many approaches such as sparse regularization [22] and
low rank approximation [21,23] have been proposed in this direction. However, such
hand-crafted priors are time-consuming and have limited generalization ability.

Currently, the convolutional neural network (CNN) has achieved great success in RGB
image super-resolution tasks, and was introduced to restore the HSI. Compared with RGB
image super resolution, HSI super-resolution is more challenging. On the one hand, HSIs
have far more bands than RGB images and most of the bands are useful for actual analysis of
surface features, but unfortunately several public datasets have much smaller training sets
compared to RGB images. Hence, the network needs to preserve the spectral information
and avoid distortion while increasing the spatial resolution of HSI and the design needs
to be delicate enough to refrain from overfitting caused by insufficient data. To handle
this problem, there have been many attempts in recent years. For instance, Li et al. [24]
proposed a spatial constraint method to increase the spatial resolution as well as preserve
the spectral information. Furthermore, Li et al. [25] presented a grouped deep recursive
residual network (GDRRN) to find a mapping function between the low-resolution HSI and
high-resolution HSI. They first combined the spectral angler mapping (SAM) loss with the
mean square error (MSE) loss for network optimization, reducing the spectral distortion.
Nonetheless, the spatial resolution is relatively low. To better learn spectral information, Mei
et al. [26] proposed a novel three-dimensional full convolutional neural network (3D CNN),
which can better learn the spectral context and alleviate distortion. In addition, [27,28]
applied 3D convolution to their network. However, the use of 3D convolution requires
a huge amount of computation due to the high-dimensional nature of HSI. On the other
hand, there exists a large amount of unrelated redundancy in the spatial dimension, which
hinders the effective processing of images. Although existing approaches try to extract
texture features, it is still difficult to recover the delicate texture in the reconstructed high-
resolution HSI [29,30]. For example, Jiang et al. [30] introduced a deep residual network
with a channel attention module (SSPSR) and applied a skip-connection mechanism to help
promote attention to high-frequency information.

To deal with the hyperspectral image super-resolution (HSI SR) problem, we propose
a difference curvature multidimensional network (DCM-Net) in this paper. First, we group
the input images in a band-wise manner and feed them into several parallel branches. In
this way, the number of parameters can be reduced while the performance can also be
improved as evidenced by the experimental results. Then, in each branch, we devise a novel
multidimensional enhanced block (MEB), consisting of several cascaded multidimensional
enhanced convolution (MEC) units. MEC can exploit long-range intra- and inter-channel
correlations through bottleneck projection and spatial and spectral attention. In addition,
we design a difference curvature branch (DCB) to facilitate learning edge information and
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removing unwanted noise. It consists of five convolutional layers with different filters and
can easily be applied to the network to recalibrate features. Extensive evaluation of three
public datasets demonstrates that the proposed DCM-Net can increase the resolution of HSI
with sharper edges as well as preserving the spectral information better than state-of-the-art
(SOTA) methods.

In summary, the contributions of this paper are threefold.

1. We propose a novel difference curvature multidimensional network (DCM-Net) for
hyperspectral image super-resolution, which outperforms existing methods in both
quantitative and qualitative comparisons.

2. We devise a multidimensional enhanced convolution (MEC), which leverages a
bottleneck projection to reduce the high dimensionality and encourage inter-channel
feature fusion, as well as an attention mechanism to exploit spatial-spectral features.

3. We propose an auxiliary difference curvature branch (DCB) to guide the network
to focus on high-frequency components and improve the SR performance on fine
texture details.

The rest of the paper is organized as follows. In Section 2 we present the proposed
method. The experimental results and analysis are presented in Section 3. Some ablation
experiments and a discussion are presented in Section 4. Finally, we conclude the paper
in Section 5.

2. Materials and Methods

In this section, we present the proposed DCM-Net in detail, including the network
structure, the multidimensional enhanced block (MEB), the difference curvature-based
branch (DCB), and the loss function. The overview network structure of the proposed
DCM-Net is illustrated in Figure 1.

Grouped MEBs

CA

MEB

MEB

MEB

MEB

MEBs

C
oncatenation

conv

MEBs

U
psam

ple

U
psam

ple

IN
PU

T MEC MEC MEC MEC

O
U

TPU
T

R
elu

R
elu

conv

CURVATURE
EXTRACTION

Figure 1. The overall architecture of the proposed DCM-Net, where MEB denotes the multidimen-
sional enhanced convolution.

2.1. Network Architecture

The network of DCM-Net mainly consists of two parts: a two-step network for deep fea-
ture extraction and a reconstruction layer. Given the input low-resolution HSI ILR ∈ Rh×w×c,
we want to reconstruct the corresponding high-resolution HSI ISR ∈ RH×W×C, where H
and W (h and w) denote the height and width of the high-resolution (low-resolution) image,
and C represents the number of spectral bands.

First, we feed the input ILR ∈ Rh×w×c to two branches, a difference curvature-based
branch (DCB), which is designed to further exploit the texture information, and a structural-
preserving branch (SPB), which can be formulated as follows:

FDCB = HDCB(ILR), (1)

FSPB = HSPB(ILR), (2)
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where FDCB, FSPB, HDCB, HSPB stand for the output feature maps and the functions of
DCB and SPB, respectively. The two branches both use MEB as the basic unit while in the
SPB a group strategy inspired by [24] is adopted: we channel-wisely split the input image
to several groups, by which we can reduce the parameters needed for the network, thus
lowering the burden on the device. More importantly, given the strong correlation between
adjacent spectral bands, we adopt such group strategy to promote the interaction between
channels with strong spatial-spectral correlation to a certain extent.

Given that the input is ILR, it can be divided into multiple groups: ILR = I(1)LR , I(2)LR , . . . , I(... )LR .

Let the number of groups be S, we feed these groups I(S)LR into multiple MEBs to obtain
the deep spatial-spectral feature, where we use a novel convolutional operation that can
promote channel-wise interaction as well as exploit the long-range spatial dependency:

F(s)
MEB = HMEB(I

(S)
LR ) + I(S)LR , (3)

where HMEB(·) denotes the function of the MEBs, which we will thoroughly demonstrate
in the following part.

After obtaining the outputs of both branches, we concatenate them for further global
feature extraction and this can be written as Fconcate. To lower the parameters needed and
computational complexity, a convolutional layer is applied to reduce the dimension. It is
worth noting that, considering that the pre-upsampling approach not only brings about
the growth of the number of parameters but also brings about problems such as noise
amplification and blurring, and post-upsampling makes it difficult to learn the mapping
function directly when the scaling factor is large, we adopt a progressive upsampling
method, hoping that through such a compromise, we can avoid the problems brought
about by the above two upsampling methods [31–33]. The up-sampled values will be noted
in the implementation details.

Finally, after obtaining the output of the global branch, we use a convolution layer for
reconstruction:

ISR = frec(FGB), (4)

where frec(·) denotes the reconstruction layer and ISR denotes the final output of the network.

2.2. Multidimensional Enhanced Block (MEB)
2.2.1. Overview

The structure of MEB is shown in Figure 2, which is designed to better learn the
spectral correlation and the spatial details. Denoting Fn−1

MEB and Fn
MEB as the input and

output of the block, and fs1 and fs2 as the stacked multidimensional enhanced convolution
(MEC) layers, we have:

Fn
MEB = fs2( fs1(Fn−1

MEB) + Fn−1
MEB), (5)

where fs1 and fs2 stand for the two steps of the block. The details of MEC will be thoroughly
discussed as follows.
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Figure 2. The architecture of MEC.
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2.2.2. Multidimensional Enhanced Convolution (MEC)

The residual network structure proposed by He et al. [34] has been widely used
in many image restoration tasks and achieved impressive performance. However, as
mentioned before, dealing with HSI is more tricky, since standard 2D convolution is
inadequate to explicitly extract discriminating feature maps from the spectral dimensions,
while 3D convolution is more computationally costly. To address this issue, we introduce an
effective convolution block to better exploit spectral correlation and reduce the redundancy
in the spectral dimension while preserving more useful information.

Specifically, given the input X, we first channel-wisely split it into two groups to
reduce the computational burden. Furthermore, we add a branched path in one of the
groups; in this path, 1× 1 convolution is applied as cross-channel pooling [35] to reduce
the spectral dimensionality instead of spatial dimensionality, which indeed performs a
linear recombination on the input feature maps and allows information interaction between
channels. Besides, the structure builds long-range spatial-spectral dependencies, which
can further improve the network’s performance. In addition, the parameters can also be
reduced, which allows us to apply 5× 5 convolution and enlarge the fields of view. Given
the input X, the formulation is presented as follows:

F1 = F2 = f3×3(X
C
2 ×H×W), (6)

F3 = σ( f1×1( f5×5( f1×1(X
C
2r×H×W)))), (7)

Y = fconcate((F2 × F3), F1), (8)

where f1×1 and f3×3 denote 1× 1 convolution and 3× 3 convolution, respectively. F1 and
F2 are the outputs of the upper and lower branches in Figure 2. σ is the sigmoid function;
the setting of r will be mentioned in the implementation details.

2.2.3. Attention-Based Guidance

The attention mechanism is a prevalent practice in CNNs nowadays. It allows the
network to attend to specific regions in the feature maps to emphasize important features.
To further improve the ability of spectral correlation learning, we apply the channel attention
module proposed by Zhang et al. [36] in the final part of the MEB. Specifically, with the
input Fn

MEB, a spatial global pooling operation is used to aggregate the spatial information:

z = HGP(Fn
MEB), (9)

where HGP denotes the spatial global pooling. Then, a simple gating mechanism with a
sigmoid function is applied:

s = fCA(z), (10)

where fCA denotes the gating mechanism. s is the attention map, which is used to re-scale
the input Fn

MEB via an element-wise multiplication operation:

Fn
MEB = s× Fn

MEB. (11)

2.3. Difference Curvature-Based Branch (DCB)

In the field of computer vision, there is a long history of using the gradient or curvature
to extract texture features. For example, Chang et al. [37] simply concatenated the first-
order and second-order gradients for feature representation based on the luminance values
of the pixels in the patch. Zhu et al. [38] proposed a gradient-based super-resolution
method to exploit more expressive information from the external gradient patterns. In
addition, Ma et al. [39] applied a first-order gradient to a generative adversarial network
(GAN)-based method as structure guidance for super-resolution. Although they can extract
high-frequency components, simple concatenation of gradients also brings undesired noise,
which hinders feature learning. Compared with the gradient-based method, curvature is
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better for representing high-frequency features. There exist three main kinds of curvature:
Gaussian curvature, mean curvature, and difference curvature. Chen et al. [40] proposed
and applied difference curvature as an edge indicator for image denoising, which is able to
distinguish isolated noise from the flat and ramp edge regions and outperforms Gaussian
curvature and mean curvature. Later, Huang et al. [41] applied difference curvature for
selective patch processing and learned the mixture prior models in each group. As for the
hyperspectral image, due to its high dimensionality and relatively low spatial resolution, it
is necessary to extract fine texture information efficiently to increase the spatial resolution.

To efficiently exploit the texture information of HSI, we designed an additional DCB
to help the network focus on high-frequency components. Compared with traditional
gradient-based guidance, which cannot effectively distinguish between edges and ramps,
difference curvature combines the first- and second-order gradients, which are more
informative. Consequently, it can effectively distinguish edges and ramps together whiling
removing unwanted noise. The difference curvature can be defined as follows:

D = ||fε| − |fµ||, (12)

where fε
i and fµ

i are defined as:

fε =
f2

xfxx + 2fxfy + f2
yfyy

f2
x + f2

y
, (13)

fµ =
f2

xfxx − 2fxfy + f2
yfyy

f2
x + f2

y
. (14)

As demonstrated in Figure 3, the curvature calculation is easy to implement by using five
convolution kernels (fx, fy, fxx, fyy, fxy) to extract the first- and second-order gradients. The
five kernels are fx = [0,−1, 0; 0; 0, 1, 0], fy = [0;−1, 0, 1; 0],

fxx = [0, 0, 1, 0, 0; 0; 0, 0,−2, 0, 0; 0; 0, 0, 1, 0, 0], fyy = [0; 0; 1, 0,−2, 0, 1; 0; 0], and fxy =
[1, 0,−1; 0;−1, 0, 1].

Figure 3. The convolution kernels for curvature extraction.

Based on these, the calculated difference-curvature has the following properties in
different image regions. (1) |fε| is large but |fµ| is small for edges, so D is large; (2) for
smooth regions, |fε| and |fµ| are both small, so D is small; and (3) for noise, |fε| is large
but |fµ| is also large, so D is small. Therefore, most parts of the curvature map have small
values, and only high frequency information is preserved. After the extraction module,
we feed the curvature map into multiple MEBs to obtain higher-level information. Then,
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as shown in Figure 1, the output of the branch is fused with the features from the main
branch. In this way, DCB guides the network to focus on high-frequency components and
improve the SR performance on fine texture details.

2.4. Loss Function

In previous image restoration works in recent years, L1 loss and MSE loss have been
two widely used losses for network optimization. In the field of HSI super-resolution,
previous works have also explored other losses, such as SAM loss [24] and SSTV loss [30],
considering the special characteristics of HSI. These losses encourage the network to
preserve the spectral information. Following the practice, we add the SSTV loss to the L1
loss [30] as the final training objective of our DCM-Net, i.e.,

LSSTV =
1
N

N

∑
n=1

(‖∇hIn
SR‖1 + ‖∇wIn

SR‖1 + ‖∇cIn
SR‖1), (15)

L1 =
1
N

N

∑
n=1

(‖In
HR − HDCM−Net(In

LR)‖1), (16)

Ltotal(θ) = L1 + αLSSTV , (17)

where In
LR and In

HR represent the n-th low-resolution image and its corresponding high-
resolution one. HDCM−Net denotes the proposed network. ∇h, ∇w, and ∇w denote the
horizontal, vertical, and spectral gradient calculation operators, respectively. The setting of
the hyper-parameter α that balances the two losses follows the previous work [30], i.e., it is
set to 0.001 in this paper.

2.5. Evaluation Metrics

We adopted six prevailing metrics to evaluate the performance from both the spatial
and spectral aspects. These metrics include the peak signal-to-noise ratio (PSNR), struc-
ture similarity (SSIM) [42], spectral angle mapper (SAM) [43], cross correlation (CC) [44],
root mean square error (RMSE), and erreur relative globale adimensionnelle de synthese
(ERGAS) [45]. PSNR and SSIM are widely used to assess the similarities between images,
while the remaining four metrics are often used to evaluate the HSI: CC is a spatial mea-
surement, SAM is a spectral measurement, RMSE and ERGAS are global measurements. In
the following experiments, we regard PSNR, SSIM, and SAM as the main metrics, which
are defined as follows:

PSNR =
1
L

L

∑
l=1

(10 log10(
MAX2

l
MSEl

)), (18)

MSEl =
1

WH

W

∑
w=1

H

∑
h=1

(ISR(w, h, l)− IHR(w, h, l)), (19)

SSIM =
1
L

L

∑
l=1

(2µl
ISR

µl
IHR

+ c1)(2σl
ISRIHR

+ c2)

a× b
, (20)

a = (µl
ISR

)2 + (µl
IHR

)2 + c1, (21)

b = (σl
ISR

)2 + (σl
IHR

)2 + c2, (22)

SAM(xi, x̂i) = arccos(
〈ISRIHR〉

‖ISR‖2‖IHR‖2
), (23)

where MAXl denotes the maximum pixel value in the l-th band, and µISR , µIHR represent
the mean of ISR and IHR, respectively. σl

ISR
and σl

IHR
denote the variance of ISR and IHR in

the l-th band while σISRIHR is the covariance of ISR and IHR in the l-th band. 〈·〉 denotes
the dot product operation.
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2.6. Datasets

1. Chikusei dataset [46]: the Chikusei dataset (https://www.sal.t.u-tokyo.ac.jp/hype
rdata/ accessed on 29 July 2014) was taken by the Headwall Hyperspec-VNIR-C
imaging sensor over agricultural and urban areas in Chikusei, Ibaraki, Japan. The
central point of the scene is located at coordinates 36.294946N, 140.008380E. The
hyperspectral dataset has 128 bands in the spectral range from 363 nm to 1018 nm.
The scene consists of 2517 × 2335 pixels and the ground sampling distance was 2.5 m.
A ground truth of 19 classes was collected via a field survey and visual inspection
using high-resolution color images obtained by a Canon EOS 5D Mark II together
with the hyperspectral data.

2. Cave dataset [47]: the Cave dataset (https://www.cs.columbia.edu/CAVE/databas
es/multispectral/ accessed on 29 April 2020) was obtained from Cooled CCD camera
and contains full spectral resolution reflectance data from 400 nm to 700 nm at a
resolution of 10 nm (31 bands in total), covering 32 scenes of everyday objects. The
image size is 512 × 512 pixels and each image is stored as a 16-bit grayscale PNG
image per band.

3. Harvard dataset [48]: the Harvard Dataset (http://vision.seas.harvard.edu/hyperspe
c/index.html accessed on 29 April 2020) contains fifty images captured under daylight
illumination from a commercial hyperspectral camera (Nuance FX, CRI Inc. in U.S.),
which is capable of acquiring images from 420 nm to 720 nm at a step of 10 nm (31 bands
in total).

2.7. Implementation Details

Because the numbers of spectral bands in the three datasets are different, the experi-
ment setting varies. For the Chikusei dataset, we divided 128 bands into 16 groups, i.e.,
8 bands per group. For the Cave and Harvard datasets, which both have 31 bands, we put
4 bands in one group with an overlap of one band between each group (10 groups). The
number of MEBs was set to 3 for Chikusei and 6 for Cave and Harvard. As for the MEC
module, we applied two 1× 1 convolutions to reduce the dimension by half. For the 3× 3
convolution, to keep the spatial size of feature maps, the padding size was set to 1. We
implemented the network with PyTorch and optimized it using the ADAM optimizer with
an initial learning rate of 1× 10−4, which was halved by every 15 epochs. The batch size
was 16.

3. Results

In this section, we describe the experiments conducted to evaluate the effectiveness of
the proposed DCM-Net and compare it with existing single HSI super-resolution methods
on three public datasets, which will be discussed in detail in the following sections.

3.1. Results for the Chikusei Dataset

Taken by the Headwall Hyperspec-VNIR-C imaging sensor over agricultural and
urban areas in Chikusei, Ibaraki, Japan, the hyperspectral dataset has 128 bands in the
spectral range from 363 nm to 1018 nm [46]. To be consistent with previous works [30], we
followed the the same setup and crop four images with 512 × 512 × 128 pixels for testing
and used the rest for training (3226 pics for scale factor of 2, and 3119 pics for ×4, 757 for
×8). The results for the different methods are summarized in Table 1. As can be seen, at a
scale factor of 2, we have the greatest advantage, with psnr 0.58 dB higher than the second
best result and SAM 0.09 lower than the second best result; when the scale factor is 4, the
(PSNR/SAM/SSIM) is (0.18 dB, 0.05, 0.005) better than SSPSR; at a scale factor of 8, we also
achieved the best performance.

To further illustrate the superiority of DCM-Net, we present the visual results in
Figure 4 as well as their spectral curves in Figure 5. As can be seen, it is obvious that
our method outperforms others. In Figure 4a, there is a thin light-colored line along the
dark black thick line in the ground truth image, which is not captured and restored by

https://www.sal.t.u-tokyo.ac.jp/hyperdata/
https://www.sal.t.u-tokyo.ac.jp/hyperdata/
https://www.cs.columbia.edu/CAVE/databases/multispectral/
https://www.cs.columbia.edu/CAVE/databases/multispectral/
http://vision.seas.harvard.edu/hyperspec/index.html
http://vision.seas.harvard.edu/hyperspec/index.html
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3DFCNN. Although it can be observed in the results reconstructed by GDRRN and SSPSR,
the line is too inconspicuous to be easily detected. By contrast, our method can preserve the
details, making it much clearer. In Figure 4b, compared with the results by other methods,
which are blurry, our DCM-Net yields a better result with clear details, e.g., the edge is
sharper and the structure is more consistent. In Figure 4c, there are two very close lines in
the ground truth image, which are hardly distinguished in the results by other methods.
By contrast, these two lines can still be observed in our result, demonstrating that our
DCM-Net can exploit the spectral interactions and benefit from the difference-curvature
guidance to reconstruct fine edges. Subsequently, we also present the spectral curves
of the three test images and their super-resolution results in Figure 5, which is yielded
by ENVI (remote-sensing software that provides hyperspectural image analysis, image
enhancement, and feature extraction). We can see that the curves of 3DFCNN, GDRRN,
and SSPSR are very close to the bicubic interpolation, implying a limited performance for
the restoration of spectral information. By contrast, the curve of our DCM-Net is close to
the ground truth, demonstrating that our network can better preserve spectral information
and avoid distortions. In addition, we show the absolute error maps of these three images
in Figure 6. Usually, the bluer the image is, the closer the reconstructed image is to the
original image; here again, it can be seen that our reconstructed method is better able to
preserve edge features.

Table 1. Quantitative comparison of different methods for the Chikusei dataset.

Scale Factor MPSNR↑ SAM↓ ERGAS↓ MSSIM↑ RMSE↓ CC↑
Bicubic 43.2125 1.7880 3.5981 0.9721 0.0082 0.9781
3DCNN 43.3474 2.0869 3.9442 0.9738 0.0082 0.9756
GDRRN 2 44.3162 1.9147 3.6428 0.9807 0.0068 0.9803
SSPSR 47.4403 1.2072 2.2805 0.9897 0.0050 0.9910
DCM-NET 48.0238 1.1160 2.1766 0.9906 0.0047 0.9916

Bicubic 37.6377 3.4040 6.7564 0.8954 0.01560 0.9212
3DCNN 37.7371 3.6217 6.9364 0.9013 0.0153 0.9197
GDRRN 4 38.0868 3.4031 6.8083 0.9151 0.0142 0.9259
SSPSR 40.3612 2.3527 4.9894 0.9413 0.0114 0.9565
DCM-NET 40.5139 2.3012 4.8584 0.9464 0.0112 0.9581

Bicubic 34.5049 5.0436 9.6975 0.8069 0.0224 0.8314
3DCNN 34.8409 4.9703 9.6065 0.8241 0.0209 0.8463
GDRRN 8 35.2210 4.6363 9.0720 0.8354 0.0202 0.7977
SSPSR 35.8279 4.0282 8.3177 0.8538 0.0192 0.8773
DCM-NET 35.9809 3.9310 8.1459 0.8580 0.0189 0.8811

3.2. Results for the Cave Dataset

Different from the Chikusei Dataset, which was obtained from a remote sensing cam-
era, the Cave dataset obtained from a cooled CCD camera contains full spectral resolution
reflectance data from 400 to 700 nm at a resolution of 10 nm (31 bands in total), cover-
ing 32 scenes of everyday objects [47]. The images are of size 512 × 512 pixels and are
stored as 16-bit grayscale PNG images per band. We randomly chose 8 scenes for testing
and used the left images during training. They were randomly cropped into the size of
32 × 32 pixels, 64 × 64 pixels, and 128 × pixels, when the scale factors were 2, 4, and 8,
respectively (1555 pics for scale factors of 2, 4, and 8).

The same as for the Chikusei dataset, we tested our method on the Cave dataset at
three scale factors and compared it with three recent approaches, i.e., 3DFCNN, GDRRN,
and SSPSR. The results are reported in Table 2. As can be seen, our DCM-Net outperforms
the second best method to varying degrees. To better illustrate that, we also show the visual
results of two test images in the Cave dataset by different methods in Figure 7, absolute maps
in Figure 8, and their spectral curves in Figure 9. By comparing the absolute error maps
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of different methods it is not difficult to find that the absolute error map generated by our
method is bluer, especially around the edges. This indicates that our ability to recover texture
information is better and the recovered image is closest to the original image. In general, the
above results show that our network not only gains better performance on HSI images with
hundreds of bands, but also outperforms other methods on the multispectral dataset.

1000m

Bicubic 3DFCNN

Ours

Ground Truth

SSPSRGDRRN

167m

(a)

Ground Truth Bicubic 3DFCNN

GDRRN SSPSR Ours

(b)

Ground Truth Bicubic 3DFCNN

GDRRN SSPSR Ours

(c)

Figure 4. Visual results of the three reconstructed images (a–c) of the Chikusei dataset for different
SR methods. Scale factor is 2. Bands 70/100/36 are treated as the R/G/B channels for visualization.
As can be seen in all three figures, for the recovery of lines, especially those in close proximity to each
other, we were able to recover better.
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Figure 5. Cont.
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Figure 5. The spectral curves corresponding to the three reconstructed images (a–c) in Figure 4 by
different methods.

Bicubic 3DFCNN GDRRN

SSPSR Ours

(a)

Bicubic 3DFCNN GDRRN

SSPSR Ours

(b)

Bicubic 3DFCNN GDRRN

SSPSR Ours

(c)

Figure 6. The absolute error maps corresponding to the three reconstructed images (a–c) in Figure 4
by different methods.
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Bicubic 3DFCNN GDRRN SSPSR OursGround Truth

(a)

Bicubic 3DFCNN GDRRN SSPSR OursGround Truth

(b)

Figure 7. Visual results of two reconstructed images (a,b) of the Cave dataset for different SR methods.
Scale factor is 2. Bands 10/30/21 are treated as the R/G/B channels for visualization.
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SSPSR Ours

(a)

Bicubic 3DFCNN GDRRN
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Figure 8. Absolute error maps corresponding to the two reconstructed images (a,b) in Figure 7 by
different methods.
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Figure 9. The spectral curves corresponding to the two reconstructed images (a,b) in Figure 7 by
different methods.

Table 2. Quantitative comparison of different methods for the Cave dataset.

Scale Factor MPSNR↑ SAM↓ ERGAS↓ MSSIM↑ RMSE↓ CC↑
Bicubic 38.0603 3.2370 4.9579 0.9662 0.0147 0.9907
3DCNN 38.8706 4.0307 4.3886 0.9663 0.0131 0.9924
GDRRN 2 39.2550 3.7454 4.2106 0.9683 0.0126 0.9929
SSPSR 41.3895 3.1472 3.3333 0.9752 0.0101 0.9953
DCM-NET 41.9867 2.7051 3.1217 0.9771 0.0095 0.9957

Bicubic 33.0421 4.7962 7.8460 0.9202 0.0258 0.9767
3DCNN 33.8198 5.6688 7.6617 0.9224 0.0236 0.9780
GDRRN 4 34.4236 5.0185 6.7641 0.9361 0.0219 0.9825
SSPSR 35.3433 4.1654 6.5045 0.9434 0.0200 0.9838
DCM-NET 35.5055 3.9460 6.4092 0.9445 0.0197 0.9843

Bicubic 29.2466 6.6079 12.2687 0.8320 0.0390 0.9439
3DCNN 30.0771 7.6626 11.5550 0.8463 0.0359 0.9518
GDRRN 8 30.3026 7.1510 11.0352 0.8513 0.0353 0.9533
SSPSR 31.1290 5.5101 10.1804 0.8749 0.0325 0.9595
DCM-NET 31.3766 5.3067 9.9363 0.8822 0.0316 0.9618

3.3. Results for the Harvard Dataset

The Harvard dataset contains fifty images captured under daylight illumination from
a commercial hyperspectral camera (Nuance FX, CRI Inc., Woburn, MA, USA), which is
capable of acquiring images from 420 to 720 nm at a step of 10 nm (31 bands in total) [48].
For training, we randomly selected 90% of the images (45 images) and cropped them into
32× 32 patches, 64× 64 patches, and 128× 128 patches when the scale factors were 2, 4,
and 8, respectively. We used the other 5 images for testing (3888 pics for scale factors of 2,
4, and 8).

Table 3 summarizes the results of different approaches on the Harvard dataset for
scale factors 2, 4, and 8. As can be seen, the results here are different from our performance
on Chikusei and Cave; our method is slightly behind the SSPSR when the scale factor
is 2, while we have a clear advantage when the scale factor is 8. To better illustrate the
superiority of our DCM-Net, we present the super-resolution results of a test image from
the Harvard dataset by different methods in Figure 10. Here we chose the scale factor 8
to illustrate the robustness of our method. From Figure 10b, we can see that the super-
resolution images by 3DFCNN and GDRRN are very blurry. Besides, white grid artifacts
can be found in their zoom-in results. As for SSPSR, it recovers sharper images at the first
glance. However, many structures in the original images have been lost. For such a large
scale factor, although our DCM-Net does not recover the fine structures of the words, it
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indeed captures the outline of the words without causing geometry-inconsistency, which is
closest to the ground truth. As for Figure 10a, it is also obvious that among all the methods,
DCM-Net yields a super-resolution image with few structural distortions.

Table 3. Quantitative comparison of different methods for the Harvard dataset.

Scale Factor MPSNR↑ SAM↓ ERGAS↓ MSSIM↑ RMSE↓ CC↑
Bicubic 48.4963 2.7820 2.8659 0.9785 0.0056 0.9721
3DCNN 49.1729 2.8882 2.6007 0.9846 0.0047 0.9775
GDRRN 2 49.2539 2.8540 2.5774 0.9848 0.0046 0.9779
SSPSR 50.2929 2.7017 2.2116 0.9871 0.0041 0.9841
DCM-NET 50.2559 2.7389 2.2166 0.9856 0.0042 0.9829

Bicubic 43.7975 3.2996 4.6179 0.9471 0.0101 0.9352
3DCNN 44.0104 3.6372 4.5179 0.9504 0.0091 0.9415
GDRRN 4 44.0918 3.5741 4.4469 0.9504 0.0091 0.9432
SSPSR 45.2164 3.4292 3.9324 0.9552 0.0082 0.9510
DCM-NET 45.4087 3.3102 3.7988 0.9557 0.0080 0.9543

Bicubic 39.5065 3.7196 6.9913 0.9083 0.0165 0.8868
3DCNN 40.3186 4.3056 6.5590 0.9131 0.0148 0.8960
GDRRN 8 40.4038 4.1746 6.4915 0.9137 0.0147 0.8989
SSPSR 40.7316 3.6438 5.9926 0.9213 0.0138 0.9169
DCM-NET 41.2203 3.6520 5.8124 0.9220 0.0135 0.9176

Bicubic 3DFCNN

Ours

Ground Truth

SSPSRGDRRN

(a)

Bicubic 3DFCNN

Ours

Ground Truth

SSPSRGDRRN

(b)

Figure 10. Visual results of two reconstruted images (a,b) of the Harvard Dataset for different SR
methods. Scale factor is 8. Bands 10/30/21 are treated as the R/G/B channels for visualization.

4. Discussion
4.1. Analysis on Loss Function

The choice of the loss function is crucial for reconstructing high-quality images, and
here we mainly experiment and discuss for L1.MSE and the SSTV loss we use. In previous
work, people preferred to use MSE loss to train their networks, because it is believed
that MSE loss converges faster and yields better metrics [24,25,49]. However, through the
experiments we conducted, it can be seen in Table 4 that MSE loss is not a good choice for
HSI SR. First, as can be seen from the loss graph in Figure 11, when it is close to optimum,
its derivatives are too small and the learning slows down, and this actually makes the
network convergence time much longer than expected. In addition, studies have shown
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that MSE loss yields images of relatively poor perceptual quality because there is a strong
penalty for large errors and a low penalty for small errors, and if a texture or mesh appears,
then optimizing MSE may smooth out this area [50]. Spatial-spectral total variation (SSTV)
was proposed by Aggarwal et al. [51] and was applied as a loss function by Jiang et al. [30],
and it is presumed to encourage the network to reserve spatial-spectral information and
avoid distortion. Through the experiment, we can confirm that although there is a certain
improvement in SSTV loss compared with L1 loss, the improvement is very limited because
the main body of this loss is still L1 loss.

Train loss/epoch Validation loss/epoch

Figure 11. The curves yielded by different loss functions. It is worth stating that because the training
loss curves of L1 and SSTV are too close, only one line can be visually observed on the tensorboard,
and the curve of SSTV is covered by the blue line.

Table 4. Ablation study of the loss function for the Chikusei dataset. Scale factor is 4.

PSNR SAM SSIM

SSTV loss 40.5139 2.3012 0.9464
L1 40.4977 2.3213 0.9453

MSE 40.1801 2.4821 0.9422

4.2. Analysis of Multidimensional Enhanced Convolution (MEC)

Before we discuss the impact that MEC brings to our network, we experimented on
MEC with two popular structures, res2net [52] and SCConv [53], which inspired our design
and modification of MEC in the initial phase of the experiment (presented in Figure 12). In
2019, Gao et al. [52] constructed a new CNN structure, Res2Net, which represents multi-scale
features at the granularity level and enlarges the perceptual field of each layer by constructing
hierarchical residual connections within a single residual block, and claimed that it can be
used in state-of-the-art backbone networks. Then in 2020, Liu et al. [53] proposed a novel self-
calibrated convolution, SCConv, which models long-range dependencies as well as enlarging
fields of view by average-pooling. It can also be plugged into any network to augment
standard convolution. However, according to the Table 5, neither structure performs well
in this experiment, and this is mainly due to the small amount of data provided by the
hyperspectral image dataset. In the res2net experiment, the loss of the training set keeps
decreasing, while the validation loss keeps failing to converge. SCConv reduces overfitting
and accelerates convergence to some extent by adding pooling but it does not get a good
result, which may be attributed to pooling again, and which deprives the network of some
information that is essential for image reconstruction [54].

Next, we performed an ablation study of MEC. In Table 6, “Our” and “Our-w/o MEC”
denote the model equipped both modules and the model without MEC, which only uses
standard convolutions instead. As can be seen, after removing MEC, PSNR drops 0.16 dB
and SAM is 0.06 higher. The results clearly demonstrate that MEC outperforms standard
convolutions and can better learn the spatial and spectral correlation. It not only improves
the spatial resolution but also avoids the spectral distortion.
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res2net SCConv

Figure 12. The structure of res2net and SCConv.

Table 5. Exploring different structures of MEC on the Chikusei dataset. Scale factor is 4.

PSNR SAM SSIM MACs(G) Params(M)

MEC 40.5139 2.3012 0.9464 41.89 10.96
SCConv 38.23495 3.731482 0.913639 110.47 48.46
res2net 33.32135 7.953455 0.749981 50.95 17.63

Table 6. Ablation study of the proposed-Net on the Chikusei dataset. Scale factor is 4.

PSNR SAM SSIM MACs(G) Params(M)

Our 40.5139 2.3012 0.9464 41.89 10.96
Our-w/o DCB 40.4432 2.3419 0.9453 38.93 10.22
Our-w/o MEC 40.3846 2.3639 0.9447 58.98 20.3
Our-w/o CA 40.4432 2.3236 0.9458 41.28 10.76

More importantly, using MEC reduces the parameters by a factor of two and saves
nearly 10(G) of computation compared to using normal 3× 3 convolution.

4.3. Difference Curvature-Based Branch (DCB)

The additional difference-curvature branch is designed to extract the curvature and
provide guidance information for the network to preserve the texture and fine details. As
can be seen from Table 6, without DCB, the PSNR of “Our-w/o DCB” is 0.10 dB lower
than that of “Our”, demonstrating the effectiveness of the DCB. Besides, the SSIM and
SAM scores are also inferior to those of “Our”. In addition, we show the visual results after
curvature extraction in Figure 13 and from which it is clear that after curvature extraction,
the edges are well preserved and we wish to use it to guide the network to focus on the
texture and edge areas to preserve the fine details in the super-resolution results. On the
right side of Figure 13, the visual differences between our method with and without DCB
are presented and it can be seen that with the help of DCB, the lines of the image are
sharper and more detailed features are preserved. Most importantly, the module does not
bring too much computational burden.

It is worth noting that, although DCB tends to recover sharper images, this does not
usually mean a significant increase in the numerical index, but certainly improves the
visual quality.
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Figure 13. Visual results after curvature extraction.

4.4. Analysis of Channel Group Numbers

The application of grouping strategy in hyperspectral images actually exists in many
different forms [25,30,55], and they all aim at reducing the computational overhead and
making the subsequent upscaling operation feasible, especially for hyperspectral images
with a much smaller data volume than RGB images but several hundred channels; the
grouping strategy is theoretically important to ensure the network performance while
avoiding the network being too wide and too difficult to train. To better understand the im-
pact of the grouping approach on both computational overhead and network performance,
we conducted some experiments on the number of groups. First of all, the experimental
combinations we chose were 1, 16, 20, and 25. Next, we selected PSNR, SAM and SSIM as in-
dicators of image reconstruction quality. Multiply and accumulation per second (MACs(G))
and Params(M) indicate the calculating overhead and parameters needed. As we can see
from Table 7, firstly, without group strategy, although the computational overhead of the
network remains consistent with that of a grouped network, its required parameters are
greatly increased. This makes it much more difficult for the network to process hyper-
spectral data with a generally small number of training sets. Therefore, a dimensionality
reduction strategy like grouping is effective. After experimenting with multiple groupings,
we set the number of groupings to 20, taking into account the computational overhead and
the performance of the network.

Table 7. Ablation study of group number.

Group Number PSNR SAM SSIM MACs(G) Params(M)

1 40.2285 2.3795 0.9428 45.70 60.99
16 40.3846 2.3639 0.9447 38.44 10.95
20 40.5139 2.3012 0.9464 41.89 10.96
25 40.5159 2.2892 0.9464 53.76 10.95
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4.5. Analysis on Attention-Driven Guidance

Channel attention has been verified as a very effective tool for learning the channel
correlation and has been adopted by various methods in different fields [30,36,56]. We
tested this mechanism on the Chikusei dataset with a scaling factor of 4. What can be seen
from Table 6 is that, without channel attention, our network performs the worst on SAM,
which means the worst capability of learning spectral correlation. In addition, both PSNR
and SSIM have declined to varying degrees. In the case of comparing the computation with
and without CA, adding CA actually does not bring too much computational overhead,
which also shows that it does not improve the effect by blindly increasing the computation.
For hyperspectral images with hundreds of spectral bands, CA undoubtedly plays an
important role.

4.6. Complexity Analysis

As can be seen on Table 8, although the network consisting of two branches looks very
complex, we reduced the computational overhead of the model by applying some methods.
First of all, by applying parameter sharing, the number of parameters has been reduced
by at least 70 percent. The grouping strategy we used reduced the required parameters
and computational overhead while ensuring the performance of the network; without the
grouping function, the network needs to be wider and deeper to keep up the performance.
In addition, by using MEC instead of standard 3× 3 convolution, we lowered the param(M)
from 20.3 to 10.96, and MACs(G) from 58.98G to 41.89G.

Table 8. Efficient study of different methods.

MACs(G) Params(M)

3DFCNN 0.3 0.039
GDRRN 0.76 0.589
SSPSR 43.63 13.56

DCM-NET 41.89 10.96

5. Conclusions

In this paper, we proposed a deep difference curvature-based network with multi-
dimensional enhanced convolutions for HSI super-resolution. Specifically, to reduce the
redundancy as well as better exploit the spectral information, we introduced a multidimen-
sional enhanced convolution unit into the network, which can learn the useful spectral
correlation through a self-attention mechanism and a bottleneck projection. In addition, we
designed an additional difference curvature branch to extract the delicate texture features
of a hyperspectral image. This works as an edge indicator to fully preserve the texture
information and eliminates the unwanted noise. Experiments on three public datasets
demonstrated that our method is able to recover finer details and yield sharper images
with minimal spectral distortion compared to state-of-the-art methods. Despite the good
results obtained by the network, it is still difficult to apply in real-world applications due
to the heavy computational overhead. We understand the difficulty and significance of
hardware-based implementation of high-quality super-resolution, and we will next work
on making the network lightweight and able to be applied on hardware.
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