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Abstract: With the progress of photogrammetry and computer vision technology, three-dimensional
(3D) reconstruction using aerial oblique images has been widely applied in urban modelling and
smart city applications. However, state-of-the-art image-based automatic 3D reconstruction methods
cannot effectively handle the unavoidable geometric deformation and incorrect texture mapping
problems caused by moving cars in a city. This paper proposes a method to address this situation and
prevent the influence of moving cars on 3D modelling by recognizing moving cars and combining
the recognition results with a photogrammetric 3D modelling procedure. Through car detection
using a deep learning method and multiview geometry constraints, we can analyse the state of a
car’s movement and apply a proper preprocessing method to the geometrically model generation
and texture mapping steps of 3D reconstruction pipelines. First, we apply the traditional Mask
R-CNN object detection method to detect cars from oblique images. Then, a detected car and its
corresponding image patch calculated by the geometry constraints in the other view images are used
to identify the moving state of the car. Finally, the geometry and texture information corresponding
to the moving car will be processed according to its moving state. Experiments on three different
urban datasets demonstrate that the proposed method is effective in recognizing and removing
moving cars and can repair the geometric deformation and error texture mapping problems caused
by moving cars. In addition, the methods proposed in this paper can be applied to eliminate other
moving objects in 3D modelling applications.

Keywords: oblique images; image-based 3D reconstruction; object detection; clean model

1. Introduction

Three-dimensional (3D) urban modelling is an important and basic task for smart
city applications such as city planning, autonomous driving, and emergency decision
making [1,2]. Recently, oblique image photogrammetry has been rapidly applied in urban
modelling because it can provide both geometric and texture information after auto-
matic model reconstruction processing. The efficiency of oblique image acquisition has
dramatically improved with the development of unmanned aerial vehicle (UAV) technol-
ogy [3]. In addition, many exceptional algorithms for image-based 3D reconstruction have
emerged [4–8] and have greatly increased the process efficiency and reduced the cost of 3D
city digitization.

The basic assumption of multiview stereo (MVS) vision is that objects maintain a static
state during image collection. However, this assumption cannot be easily satisfied in urban
modelling applications because there are many moving cars during image collection. Thus,
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moving cars will inevitably cause errors in the modelling results, especially in the areas
containing intersections. The problems caused by moving cars are summarized as follows:

1. Geometric Deformation. If a car is stationary and then leaves during image acqui-
sition, parts of the images will contain car information, and the other parts will not
contain car information. The texture inconsistency will lead to mismatching and mesh
deformations in the reconstructed 3D model. As shown in Figure 1a, the car in the
red selection box was stationary and then left the region during data collection, which
resulted in geometric deformations in the generated triangle mesh.

2. Error Texture Mapping. In the texture generation stage of 3D model reconstruction,
moving cars will influence texture selection. If there is no pre-processing to identify
moving cars, the incorrect moving-car texture information may be selected for mesh
patches, resulting in texture mapping errors. As shown in Figure 1b, there are many
moving cars at the intersection, and there is a large traffic flow. Due to incorrect
texture selection problems caused by the moving cars in road regions, the texture of
the reconstructed 3D model looks very disorganized and is quite different from the
3D model of a common road area (e.g., most of the white road marks in front of the
zebra crossing are contaminated by car textures).

Figure 1. The influence of moving cars on the 3D reconstruction results, in which Figure (a) displays the mesh deformation
and Figure (b) displays the texture distortion.

Currently, the existing 3D reconstruction methods using multiview images cannot
effectively solve the problems caused by moving cars, which are inevitable in metro cities.
However, the need for realistic and accurate 3D models is still very high, especially in
the applications of smart transportation, unmanned driving, etc. Therefore, manual mesh
editing is a practical solution to improve model quality [9]; however, it requires considerable
time and manpower. Therefore, we hope to resolve the issues by integrating moving car
recognition into the 3D reconstruction pipelines to prevent the need for postprocess editing
of the produced 3D models.

In this paper, we propose a moving car recognition and removal method that combines
deep learning and multiview constraints. First, we use an object detection method based on
depth learning to detect cars from oblique images. Subsequently, the car detection results
and multiview image information are combined to recognize the moving cars. Then, the
textures of the moving cars are erased from the original images, and the corresponding
local deformation meshes are flattened. Finally, the car textures recognized during error de-
tection are rejected by the random sample consensus (RANSAC) [10] method in the texture
mapping step, and the texture holes are filled using available deep learning approaches.

Figure 2 shows the comparison results before and after processing the moving cars
using the method proposed in this paper. The rest of this paper is organized as follows:
Section 2 is a brief introduction to object detection and multiview 3D reconstruction.
Section 3 elaborates on the method presented in this paper. Section 4 provides an evaluation
and analysis of the experiments. The discussion is presented in the last section.



Remote Sens. 2021, 13, 3458 3 of 19

Figure 2. A comparison of the results before and after the optimization of the moving car regions (Figure (a) was obtained
using the traditional reconstruction method, and Figure (b) was obtained with our method).

2. Related Work
2.1. Object Detection

Object detection methods mainly include three steps: region selection, feature extrac-
tion [11–16] and classification [17–22]. For example, paper [23] adopted the deformable
part model (DPM [21]) classifier with a histogram of oriented gradient (HOG [14]) to detect
street-view cars, and it achieved robust car detection. However, traditional object detection
using rule or texture patterns has two main defects: (1) artificially designed features are
subjective, usually only designed for specific detection tasks, and lack robustness to the
diversity of targets; (2) when making region proposals, using a sliding window generates
redundant windows, resulting in low efficiency. Thus, traditional object detection methods
have low performance and high computational costs [24].

With the development of deep neural networks and the continuous improvement
in GPU performance, convolutional neural networks (CNNs) have been widely used in
image recognition and object detection [25]. An object detection method based on a region
proposal, called R-CNN [24], was proposed to solve the problem of window redundancy
in traditional methods and improve window quality while guaranteeing the recall rate. To
improve detection efficiency, Fast R-CNN [26] and Faster R-CNN [27] were subsequently
proposed. However, these approaches consist of two separate stages: bounding box
detection and classification, and the demand for real-time detection still cannot be achieved.
Therefore, a method named “you only look once” (YOLO) [28] was proposed. This method
can generate a region proposal box during classification. The entire detection process
has only one stage, and the speed is greatly improved. To solve the issue of inaccurate
locations determined by YOLO, the single-shot detector (SSD) [29] network applies the
anchor mechanism of Faster R-CNN, but SSD is not effective in detecting small objects.
Similar approaches have been proposed to further improve the effectiveness [30–33] and to
reach a better balance between detection accuracy and efficiency. Recently, a novel fully
convolutional method named ImVoxelNet [34] was proposed, and it can obtain state-of-the-
art results in car detection on KITTI [35] and nuScenes [36] benchmarks among all methods
that accept RGB images.

In summary, object detection methods based on deep learning are far superior to
traditional algorithms in terms of accuracy and efficiency. On the other hand, the tex-
ture patterns of cars are relatively simple and easy to detect. The reference geographic
information of an image can be used to solve the scale issue of car detection because the
images were collected by a drone with GPS information. Both pieces of information can
improve car detection recall. In this paper, we apply the deep learning-based algorithm in
reference [37] to detect car information in oblique images.
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2.2. Moving Object Detection

Moving objects are unavoidable interferences in real-world scenes. In order to build
clean scene models, some researchers have proposed image-based methods to detect and
remove moving objects in video sequences. The related algorithms can be summarized
into two types: optical flow algorithm [38] and background subtraction [39]. The general
idea of the optical flow method to detect moving objects is using the concept of flow
vectors in two subsequent images. The background subtraction method detects moving
objects by evaluating the difference of pixel features of the current scene image against the
reference background images. However, such algorithms require the camera to be fixed.
Some extensions are able to handle moving cameras by registering the images against the
background model [40,41]. However, this class of algorithms needs information about
the appearance of the background scene, and in most cases, this assumption does not
hold [42]. Moreover, other deep learning approaches to detect moving objects have also
been proposed [43].

Recently, some researchers have proposed methods to detect and remove moving
objects in laser data [42,44,45]. In these works, the authors exploit Dempster-Shafer The-
ory [46] to evaluate the occupancy of a lidar scan and discriminate points belonging to
the static scene from moving ones. The differences of these works are the methods to
calculate the occupancy probability, which will seriously influence the detection results.
In this paper, combined with the overlap redundancy of oblique images in multiview 3D
reconstruction, we introduce a method to detect moving cars using multiview constraints.

2.3. Multiview 3D Reconstruction

As shown in the green wireframe in Figure 3, multiview image-based 3D recon-
struction pipelines can be divided into four stages: structure from motion (SfM) [4,8],
MVS [5,47,48], surface reconstruction (mesh) [6,49] and texture mapping [7,50]. Currently,
these 3D reconstruction methods can generate high-quality 3D models, but they cannot
effectively solve the geometric deformation and error texture mapping problems caused by
moving cars.

Figure 3. Pipelines of the multiview 3D reconstruction method that integrates moving car recognition and removal.

Researchers have proposed methods to solve these problems. Reference [7] proposed
a method to remove the image patch of moving objects by texture RANSAC during
the texture mapping procedure and achieved relatively good results in some situations.
However, because the textures of moving objects are eliminated gradually using RANSAC
iteration processing, this method will fail when there are many incorrect texture samples in
the candidate images. Directly applying postprocessing to the final mesh model is another
way to address geometric deformation and error texture mapping problems. Reference [9]
proposed a postprocess editing method for a 3D model that is able to remove vehicles
in the model by object detection, mesh flattening and image completion in the selected
areas. However, this method requires manual intervention and has an image completion
instability problem. We want to provide an automatic solution for the texture and geometric
modelling problems caused by moving cars by integrating moving car recognition into a
3D modelling procedure.
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3. Method

The method proposed in this paper combines multiview 3D reconstruction with
moving car detection to achieve automatic recognition and removal of moving cars in
the process of 3D model generation. The pipelines of this method are shown in Figure 3,
and the green wireframe is the basic process of multiview 3D reconstruction. To solve the
mesh deformation and texture error problems caused by moving cars, we integrate car
detection, moving car recognition and cleaning (as shown in the red wireframe in Figure 3)
into the abovementioned 3D reconstruction procedure. Each step in this method will be
explained below.

3.1. Cars Detection Using Mask R-CNN

Aerial oblique image datasets captured by UAVs are the most widely used datasets
for city-scale 3D modelling [51]. Compared to traditional aerial images, oblique image
data have the characteristics of high spatial resolutions, a large range of scales, and large
numbers. The accuracy and efficiency of an algorithm applied on oblique images should
be considered when selecting the object detection method. To obtain accurate masks of cars
in oblique images, we select the Mask R-CNN [37] algorithm as the network framework
for car detection. Mask R-CNN adds a full convolutional network (FCN) layer to Faster
R-CNN for each region of interest (ROI) and is able to detect the target object bounding
box and predict the segmentation mask simultaneously. Thus, there is no need for further
postprocessing of the image segmentation mask based on the bounding box. The Mask
R-CNN model is shown in the green dotted box in Figure 4.

Figure 4. A schematic diagram of car information recognition based on the Mask R-CNN model.

Considering that most of the vehicles in cities are cars, we divided vehicles into
two types, cars and non-cars, without taking into account other vehicle types. In addition,
parked-car switching (PCS), which is when a parked car leaves and another car parks in
the same parking space, occurs very often in cities. We introduce a lightweight network,
called MobileNet v3 [52], to classify the colour information of the detected cars and provide
auxiliary reference information for PCS detection (as shown in the red dotted box of
Figure 4). The colours of cars in this paper are mainly divided into white, red, yellow, blue,
black, silver grey and other colours (indicated by brown in the figure). Figure 5 shows the
results of the car information detected by our network model, and the masks in the figure
represent the car locations and colour information.

3.2. Moving Car Recognition Based on Multiview Constraints
3.2.1. Definition of the Car Moving State (CMS)

Using the method described in Section 3.1, the location and colour information of
cars can be identified in each image. However, in actual applications, the moving state
of a car is more complicated than expected, and the recognition result of a car state has a
serious influence on the processing strategy selection in 3D reconstruction. Therefore, to
effectively solve the problems of mesh deformations and texture error mapping, we need
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to classify the states of the detected cars to perform a proper processing strategy according
to the CMS.

As shown in Figure 6, we divide the CMSs into the following three categories: (1) Mov-
ing: Cars that were in a driving state during image collection, as indicated by the red line
box in Figure 6a; (2) Short stay: Cars that were temporarily stationary and then left during
image collection, as shown in the yellow boxes in Figure 6b,c, and in Figure 6c, different
cars that are stationary in the same parking region; and (3) Stationary: Cars whose parking
positions never changed throughout the whole image collection process, such as the car
identified by the green wireframe in Figure 6d.

Figure 5. The recognition results of car information.

(a) 

(b)

Figure 6. Cont.
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(c) 

(d)

Figure 6. Classification diagrams of different car states, in which Figure (a) illustrates cars in the moving state, Figure (b) and
Figure (c) illustrate cars that are temporarily stationary, and Figure (d) illustrates stationary cars.

According to the above definitions, for stationary cars, we do not need to perform any
special processing in the 3D modelling. For a moving car, the geometric information of the
car cannot be generated in the dense matching stage because it is not able to find correct
correspondence pixels due to its constantly changing position in the images. Therefore,
we only need to erase the texture of the moving car in the source image to prevent the
problem of error texture mapping caused by the selected texture of the moving car. In the
same way, for a temporarily stationary car, we not only need to erase the texture of the
car in the source image but also flatten the triangle mesh of the region where the car was
temporarily stationary.

3.2.2. Moving Car Recognition

• Overview

Notably, moving cars cannot be detected by only a single image because we need
to compare content between images to find “moving” information. Therefore, combined
with the overlap redundancy of oblique images in multiview 3D reconstruction, we in-
troduce a method to detect moving cars using multiview constraints. The basic principle
of the method is shown in Figure 7. During image collection, if a car does not move, the
corresponding texture patches of the parked car among the multiview images should be
consistent. Conversely, if the texture patches of a detected car among multiview images
are different, the car has moved. The green scene area in Figure 7 shows three images
with different car texture patches, indicating that these cars moved. Therefore, a mov-
ing car can be recognized according to the texture differences of the detected car among
multiview images.

• Detailed Procedure for Moving Car Recognition

A triangular mesh is a data structure that is commonly used to represent 3D models
created by the MVS method; however, there are multiple types of mesh structures, so
in this paper, we also apply triangles as the basic computation elements. The geometric
structure of an urban scene can be represented by a triangular mesh S = { fi}(i = 1, 2, ..., n).
We denote the captured images as I = {Ii}(i = 1, 2, ..., m), and the car masks detected in
Section 3.1 for image Ii are denoted by Mask(Ii) =

{
mask j

}
. The perspective projection

determined by SfM of image Ii is denoted by ∏i : R3 → R2 , and the projection from mesh
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S onto the image Ii is denoted by ∏i,S : ∏i(S)→ Si . The specific steps for CMS recognition
are shown in Algorithm 1:

1. For each image Ii, sequentially remove the car mask (mask j) that has not yet been
processed in Mask(Ii). According to the set of triangles (Si) that is visible on Ii, we
can obtain patchj by collecting the triangles whose projected positions are within the
area of mask j (the green marked region in Figure 7).

2. Count the number of other images (denoted by nk) that are also visible to patchj but
were not processed during the previous step. Count the number of detected car masks
(denoted by n1) that overlap with the projection region of patchj in these nk images.
If ratio1 = n1/nk < δ0(0 < δ0 < 0.08), only a very small number of cars passed
by patchj during image collection, and mask j and the other n1 car masks should be
marked as moving. Then, apply this process to the next car mask mask j+1. Otherwise,
go to the next step.

3. If ratio1 < δ1(0.8 < δ1 < 0.95), there were cars parked in patchj for a period of time
during the image collection. Then, the states of these n1 + 1 car masks should be
marked as short stay, and the next car mask mask j+1 should be in the processing
sequence. Otherwise, the local region patchj is always occupied by the car; hence, go
to the next step.

4. Calculate the colour histogram of these n1 car masks and find the largest peak value
n2. If ratio2 = n2/n1 > δ2(0.75 < δ2 < 0.9), the detected corresponding texture
patches of the area of patchj in the multiview images are consistent and should
be considered the same car. Then, the states of these n1 + 1 masks are marked as
stationary. Otherwise, the car in patchj has changed, so the states of these n1 + 1
masks are recorded as short stay. Continually apply these steps to all the unprocessed
masks of cars sequentially until there are no unprocessed masks.

Figure 7. CMS identification using multiview images.

Algorithm 1. Car Moving State Recognition.

Input: The urban scene mesh S, car masks of each image Mask(Ii)
Output: The moving state of every car in each image
1. Set i = 1, δ0 = 0.05, δ1 = 0.85, δ2 = 0.8
2. while i ≤ m do
3. Get car masks of current image Ii and set j = 1
4. while j ≤ ni do
5. if the state of maskj in Mask(Ii) is unknown



Remote Sens. 2021, 13, 3458 9 of 19

6. Count the number of other visible images (nk) to patchj and count
the number of detected car masks (n1) that overlap with the projection region of patchj
7. if n1/nk < δ0
8. The CMS is moving
9. else if n1/nk < δ1
10. The CMS is short-stay
11. else
12. Calculate the colour histogram of these n1 car masks and find

the largest peak value n2
13. if n2/n1 < δ2
14. The CMS is short-stay
15. else
16. The CMS is stationary
17. end if
18. end if
19. end if
20. j = j + 1
21. end while
22. i = i + 1
23. end while
stop

3.3. Moving Car Cleaning
3.3.1. Mesh Clean

From Section 3.2.1, we know that some regions of the 3D urban scenes will contain
temporarily stationary cars during the period of image collection. If these regions con-
taining short-stay cars were captured from multiple positions and directions by cameras
during flight, some geometric errors will be introduced into the reconstructed meshes, as
shown in the red marquee in Figure 1a. The deformation of the car model is very obvious,
and some textures are incorrectly selected. Therefore, it is necessary to clean the triangles of
the reconstructed mesh model corresponding to the patch of short-stay cars before texture
mapping. Using the recognition method in Section 3.2.2, we can obtain the CMS from the
given oblique images. Because the geometric structures of most parked-car regions are
planar, we can directly flatten the distorted geometric meshes.

3.3.2. Texture Preprocessing

To prevent texture mapping errors caused by selecting moving cars in the texture
mapping stage, it is necessary to clean the moving car textures before texture mapping.
According to the recognition results in Section 3.2.2, we can erase the textures of the cars
from the source oblique images that are in moving or short-stay states. However, on the one
hand, some cars may not have been detected by the process in Section 3.1, and on the other
hand, buses, trucks and other vehicles may not have been trained in our object detection
network. Thus, the textures of these missed detection vehicles may still appear in the final
3D urban scenes. To eliminate the influence of these few unrecognized vehicle textures, we
apply the RANSAC method in article [7] during texture mapping to select correct texture
patches. Different from article [7], we removed most of the incorrect texture samples in the
previous step, so the probability of successful missed vehicle texture cleaning is higher in
our paper.

In addition, there may be different cars parked at the same place during the process
of image collection, such as in the parking region in the yellow box in Figure 6c. After
removing the textures of the short-stay cars, it is possible that no other textures will be
available for texture mapping in these places, which will lead to a blank texture in the
obtained 3D models. To prevent this situation, we use the image inpainting method in
reference [53] to fill the texture holes generated by erasing the moving car textures in the
candidate texture images.
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4. Experiments and Discussion
4.1. Data Description

In order to cover all parts of the objects with the minimum flight time and suitable
camera inclination, we collect aerial oblique images via the penta-view oblique photogra-
phy platform on a DJI M600 UAV with a size of 7952 * 5304 pixels, and the ground sample
distance (GSD) is 2-6 cm. We collect all experimental data in the Wuhan area, China. We
select three typical regions in the urban scene to validate the proposed methods, including
viaduct expressways, parking lots, and intersections with high traffic flows. In addition,
aerial oblique images are captured under different weather and light conditions. The
experimental data preprocessing part uses the open-source algorithms OpenMVG [54] and
OpenMVS [55] on the network.

4.2. Car Detection

The ground truth of the training datasets for car detection was obtained manually.
There are 5000 training samples with different scales, colours and shooting angles. We
train the detector for 70 epochs in total and apply 1000 iterations for each epoch. With the
experimental environment shown in Table 1, the training time for car detection is approxi-
mately 12 h. As depicted in Figure 8, the loss values gradually stabilize as the number of
training epochs increases, indicating that the model is close to convergence. By applying
the well-trained detector to the validation datasets, we obtain a mean average precision
(mAP) of 92.9% for car detection and a precision of 89.7% for car colour recognition.

Table 1. Experimental Environment.

Name Version

OS Ubuntu 16.04
CPU Intel Core i7-7700K@4.20GHz
GPU NVIDIA GeForce RTX 2070

Language Python 3.6
Framework TensorFlow v1.14.0 + Keras v2.1.5

Accelerator Library CUDA v10.0 + CUDNN v7.6

Figure 8. Loss values of model training.

We also collected testing datasets with different GSDs, different shooting angles, and
different lighting conditions to verify the robustness of the well-trained detector. Figure 9
shows several results of testing. Specifically, Figure 9a,b contain aerial top-view photos
with GSDs of 2.5 cm, and Figure 9c contains oblique aerial images with GSDs of 3.5–6 cm.
In addition, Figure 9a,c depict pictures taken under sufficient light conditions on sunny
days, while Figure 9b shows the images collected on cloudy days. As shown in Table 2, the
detectors perform well in the three different test scenes. However, a small number of cars
are missed or falsely detected (see the red bounding boxes in Figure 9b). Furthermore, the
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colours of a small number of cars are incorrectly recognized. The main reasons for missed
car detection are as follows:

Figure 9. Car information detection results under different shooting conditions, in which subfigure (a) is the detection result
under sunny and ortho-shooting conditions, and subfigure (b) is the detection result under cloudy and ortho-shooting
conditions. Subfigure (c) shows the detection results under sunny and oblique-shooting conditions.
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Table 2. Detection Results of Car Information.

Scene
Car Detection Car Colour

Precision Recall Precision

Ortho + Sunny 0.954 0.946 0.868
Ortho + Cloudy 0.971 0.953 0.891
Oblique + Sunny 0.937 0.925 0.852

1. Difficult samples, such as cars that are difficult to distinguish from the background,
are not easy to notice. For example, a black car in a shadow is not detected (see the
green box in Figure 9c).

2. It is challenging to detect cars occluded by a large region, as shown in Figure 9c in
the red wireframe. Compared to the other two experimental scenes (Figure 9a,b), the
third scene (Figure 9c) with a lower recall rate conforms to reality. On the one hand,
there are more occlusion cases in oblique images. On the other hand, there are more
shadow areas in urban scenes when light is sufficient.

In addition, we obtain different precision results for car colour recognition in the
three types of scenes. (1) The test results reveal that car colour recognition precision
on a cloudy day is higher than that on a sunny day. On the one hand, when the light
is sufficient, some cars have reflective and overexposure problems, leading to colour
recognition errors. In Figure 9a, the silver-grey car in the green wireframe is mistakenly
recognized as white. On the other hand, there are more shadow areas on sunny days,
which will decrease the performance of car colour recognition. As shown in the green
wireframe in Figure 9c, because the quality and colour discrimination of the image in the
shaded area are reduced, the white car is mistakenly identified as silver-grey. (2) We obtain
a higher colour recognition precision under ortho shooting than under oblique shooting.
Due to a significant variation in object scale in oblique shooting scenes, the qualities of
different areas in the image are uneven, resulting in a relatively low precision for car
colour recognition.

4.3. Moving Car Recognition

According to the movement state of cars defined in Section 3.2.1, we mainly select
three urban scenes, including rapid urban roads, public parking areas and traffic light
intersection areas, to conduct car state recognition experiments. On rapid urban roads, such
as viaducts, cars are mainly moving. In public parking areas, PCS happens very often. We
use the same parameters for all the recognition experiments. Specifically, we set δ0 as 0.05,
δ1 as 0.85 and δ2 as 0.8. Among them, δ1 is positively related to the mAP of car detection,
and δ2 is related to the precision of car colour recognition. In our experimental results,
we depict the different states of cars by mask with different colours. Red, yellow and
green represent the moving state, short-stay state, and stationary state, respectively. The
geometric structures of the obtained 3D models are stored using the open-source algorithm
OpenMesh [56].

As shown in Figure 10, the method in Section 3.2.2 is applied to recognize car states
using urban viaduct images. Figure 10e shows that all the detected cars are accurately rec-
ognized as moving because cars on rapid roads, such as urban viaducts, do not stop under
normal circumstances and are always in moving states. On the other hand, Figure 10c also
shows that among the textures in the multiview images of the red frame area in Figure 10a,
most do not have corresponding car information. Therefore, according to the recognition
rules in Section 3.2.2, the car corresponding to the local scene area is a moving car, and its
texture in Figure 10a should be erased.
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Figure 10. The car state recognition diagram of the viaduct scene, where subfigure (a) is the original image, subfigure (b) is
the geometric mesh of the scene, subfigure (c) is the different textures in the multiview images corresponding to the red
frame area in subfigure (a), subfigure (d) is the detection results of car information in subfigure (a), and subfigure (e) is the
recognition results of car state in Figure (d).

We select a small parking lot in front of an office building for the public parking lot
urban scenes, as pictured in Figure 11. It can be seen from the recognition results of the car
state in Figure 11c that most of the cars in the parking lot area never moved, and only a small
number of cars were temporarily stationary. Table 3 shows the statistical results using the
method in Section 3.2.2 for some of the car areas selected in Figure 11a. Table 3 reveals that
the value of ratio1 or ratio2 is relatively low for short-stay cars. Moreover, the value ratio1
of the yellow box is relatively high, while the value ratio2 is relatively low, indicating that
different cars were located in the same parking region and that this is a case of PCS.

Table 3. Statistic Results of Select Regions.

Region nk n1 ratio1 n2 ratio2 State

Red Box 175 2 0.011 – – Moving
Blue Box 168 60 0.357 – – Short stay

Yellow Box 190 183 0.963 112 0.612 Short stay
Green Box 207 195 0.942 173 0.887 Stationary

Furthermore, the geometric mesh of the scene in Figure 11b helps to further verify
the recognition results in Figure 11c. For the regions where cars have stayed (see the
green and yellow masked parts in Figure 11c), the geometric structures of the cars at
the corresponding positions in Figure 11b have been reconstructed. Conversely, if the
geometric structure is not reconstructed, as shown in the red box in Figure 11a,b, the car is
in a moving state, and its value n1 is relatively small. In the same way, we can also learn
from the 3D car models in the yellow boxes in Figure 11b that there are cars parked on
these unoccupied regions in Figure 11a during other periods of image acquisition, so they
are in the short-stay state. In addition, it can be seen from the green-box areas in Figure 11d
that the triangle meshes of the short-stay regions are flat.

To further verify the effectiveness of the proposed method, we select an intersection
area (see Figure 12a) that has a heavy traffic flow and contains various cars in the three
different states defined for the experiments. Figure 12b shows the results of car detection in
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Figure 12a, from which it can be seen that the cars in the scene are well detected. Figure 12d
shows the state recognition results of the cars detected in Figure 12b. Figure 12d reveals
that the cars on the road are mostly in moving states, while the cars waiting for the traffic
lights are likely in the short-stay state. The geometric deformation results of the car models
in the yellow boxes in Figure 12c also explain this result. PCS frequently occurs in parking
lot spaces (see the top left of Figure 12a). However, unlike Figure 11, more PCS cases occur
in this region, where the yellow masks are more than the green masks. Parked cars change
more frequently since the parking lot in Figure 12a is in front of a mall.

Figure 11. The car state recognition diagram of a public parking lot, in which Figure (a) is the original image, Figure (b) is
the geometric mesh of the scene, Figure (c) is the state recognition results of the cars detected in Figure (a), and Figure (d) is
the results of geometric mesh clean of the car areas where the temporary stay occurred.

4.4. Moving Car Cleaning

Once the states of the cars are recognized, the textures of the moving cars can be erased
effectively from the oblique images. Additionally, the geometric deformation caused by the
temporarily stationary cars can be easily repaired. In this section, we carry out comparative
tests based on the experimental results in Section 4.3 to validate the effectiveness of our
method in removing moving cars during 3D reconstruction.

Figure 13 depicts the comparison results of moving car removal from the urban viaduct
scene in Figure 10. Specifically, we obtain the 3D scene in Figure 13a using traditional 3D
reconstruction pipelines. In addition, we reconstruct the 3D model in Figure 13b via the
proposed method in this paper. From the comparison results, the method proposed in this
article can effectively remove the textures of all moving cars from the viaduct pavement,
and the 3D scene of the whole viaduct road looks clean. Moreover, the information about
stationary cars is preserved completely.

Figure 14 shows the experimental results of moving car removal from the parking
lot scene in Figure 11. Two cases (the red and green box regions) were selected from
Figure 14a,b, respectively, and demonstrate that our proposed method can better handle
the geometry and texture of areas where cars were temporarily stationary. In addition,
the parking spaces highlighted by the blue and yellow boxes in Figure 14 are occupied



Remote Sens. 2021, 13, 3458 15 of 19

by different cars during the whole process of image acquisition. Therefore, for this kind
of region, we need to fill in the texture voids in the images according to the rules in
Section 3.3.2. Taking advantage of the algorithm in [53], we obtain a satisfactory region
filling result. The comparison results are shown in the blue and yellow boxes in Figure 14.

Figure 12. The car state recognition diagram of a traffic light intersection area, in which Figure (a) is the original image,
Figure (b) is the detection results of the car information in Figure (a), Figure (c) is the geometric mesh of the scene, and
Figure (d) is the state recognition results of the cars detected in Figure (b).

Figure 13. A comparison of the moving car removal results in urban viaduct scenes, where Figure (a) is the scene model
constructed using the traditional method and Figure (b) is the 3D reconstruction result using the method in this article.
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Figure 14. A comparison of the removal results of moving cars in the parking lot area, where Figure (a) is the 3D model
constructed using the traditional method and Figure (b) is the 3D reconstruction result after the moving cars are removed
using the method in this paper.

Figure 15 shows the results of moving car removal from the intersection area in Figure 12.
Similarly, we reconstruct the 3D scenes in Figure 15a,b using the traditional pipeline and
the proposed method, respectively. The entire 3D scene in Figure 15a undoubtedly looks
disorganised due to the moving cars. Compared to the results in Figure 15a, we obtain a more
accurate and realistic 3D intersection scene after mesh cleaning and texture preprocessing,
especially for typical road areas. All the moving vehicles on the road, including undetected
buses and vans, are effectively removed, indicating that the proposed method is robust.

Figure 15. A comparison of the removal results of moving cars in the intersection area, where Figure
(a) is the scene model constructed using the traditional method and Figure (b) is the 3D reconstruction
result using the method in this article.
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5. Conclusions

This paper proposes a method for moving car recognition and removal that combines
deep learning and multiview constraints. Our method mainly includes three steps: car
detection, moving car recognition and cleaning. The main contribution of this paper is to
integrate object detection into 3D reconstruction pipelines to eliminate the geometric and
texture problems caused by moving cars. Compared with the traditional 3D reconstruction
method based on multiview images, the experimental results indicate that the proposed
method can effectively moderate geometric deformations and texture distortions caused
by moving cars in 3D urban scenes. In addition, the method in this paper has a high
degree of automation, which can distinctly reduce the workload of manual postprocessing
to repair 3D scene models, thereby improving the production efficiency of urban 3D
scene modelling.

However, the method proposed in this paper is limited by the following issues, which
provide insights for developing future works. (1) We have not yet considered other types
of vehicles due to a lack of training samples in our object recognition experiments. Unfor-
tunately, our training samples only contain cars, so other vehicles, such as motorcycles,
buses, and trucks, are easily ignored during detection. (2) We only take advantage of colour
information to distinguish the PCS cases. This method for similarity detection is too limited
to be robust. Therefore, we will further explore this area in future work.

Author Contributions: Conceptualization, F.Z., X.H. and Y.G.; data curation, X.H.; formal analysis,
C.Y., F.Z., Y.G., X.H., L.L. and Z.M.; funding acquisition, F.Z.; methodology, C.Y.; writing—original
draft, C.Y.; writing—review and editing, C.Y., F.Z., X.H., L.L. and Z.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China No. 2020YFC1523003
and No. 2020YFC1522703.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank the researchers who have provided the open-
source algorithms, which have been extremely helpful to the research in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, B.; Dong, Z.; Liu, Y.; Liang, F.; Wang, Y. Computing multiple aggregation levels and contextual features for road facilities

recognition using mobile laser scanning data. ISPRS J. Photogramm. Remote Sens. 2017, 126, 180–194. [CrossRef]
2. Toschi, I.; Ramos, M.M.; Nocerino, E.; Menna, F.; Remondino, F.; Moe, K.; Poli, D.; Legat, K.; Fassi, F. Oblique photogrammetry

supporting 3D urban reconstruction of complex scenarios. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017,
XLII-1/W1, 519–526. [CrossRef]

3. Jiang, S.; Jiang, W.S.; Huang, W.; Yang, L. UAV-Based Oblique Photogrammetry for Outdoor Data Acquisition and Offsite Visual
Inspection of Transmission Line. Remote Sens. 2017, 9, 278. [CrossRef]

4. Moulon, P.; Monasse, P.; Marlet, R. Global fusion of relative motions for robust, accurate and scalable structure from motion. In Pro-
ceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 3–6 December 2013; pp. 3248–3255. [CrossRef]

5. Han, Y.L.; Liu, W.; Huang, X.; Wang, S.G.; Qin, R.J. Stereo Dense Image Matching by Adaptive Fusion of Multiple-Window
Matching Results. Remote Sens. 2020, 12, 3138. [CrossRef]

6. Xu, Z.Q.; Xu, C.; Hu, J.; Meng, Z.P. Robust resistance to noise and outliers: Screened Poisson Surface Reconstruction using
adaptive kernel density estimation. Comput. Graph. 2021, 97, 19–27. [CrossRef]

7. Waechter, M.; Moehrle, N.; Goesele, M. Let There Be Color! Large-Scale Texturing of 3D Reconstructions. In Computer Vision—ECCV
2014. ECCV 2014. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2014; Volume 869, pp. 836–850. [CrossRef]

8. Verykokou, S. Georeferencing Procedures for Oblique Aerial Images. Ph.D. Thesis, National Technical University of Athens,
Athens, Greece, 2020.

9. Zhu, Q.; Shang, Q.S.; Hu, H.; Yu, H.J.; Zhong, R.F. Structure-aware completion of photogrammetric meshes in urban road
environment. ISPRS J. Photogramm. Remote Sens. 2021, 175, 56–70. [CrossRef]

10. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2017.02.014
http://doi.org/10.5194/isprs-archives-XLII-1-W1-519-2017
http://doi.org/10.3390/rs9030278
http://doi.org/10.1109/ICCV.2013.403
http://doi.org/10.3390/rs12193138
http://doi.org/10.1016/j.cag.2021.04.005
http://doi.org/10.1007/978-3-319-10602-1_54
http://doi.org/10.1016/j.isprsjprs.2021.02.010
http://doi.org/10.1145/358669.358692


Remote Sens. 2021, 13, 3458 18 of 19

11. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011. [CrossRef]

12. Lowe, D.G. Distinctive Image Features from Scale-invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
13. Papageorgiou, C.P.; Oren, M.; Poggio, T. A General Framework for Object Detection. In Proceedings of the Sixth International

Conference on Computer Vision, Bombay, India, 7 January 1998; pp. 555–562. [CrossRef]
14. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [CrossRef]
15. Ojala, T.; Pietikäinen, M.; Mäenpää, T. Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns. In

Computer Vision—ECCV 2000. ECCV 2000. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2000; Volume
1842, pp. 404–420. [CrossRef]

16. Bay, H.; Ess, A.; Tuytelaars, T.; Gool, L.V. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110,
346–359. [CrossRef]

17. Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
18. Kononenko, I. Semi-naive Bayesian Classifier. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1991;

Volume 482, pp. 206–219. [CrossRef]
19. Suykens, J.A.K.; Lukas, L.; Dooren, V.P.; Moor, D.B.; Vandewalle, J. Least Squares Support Vector Machine Classifiers: A Large

Scale Algorithm. In Proceedings of the European Conference on Circuit Theory and Design, Stresa, Italy, 29 August–2 September
1999; pp. 839–842. [CrossRef]

20. Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput.
Syst. Sci. 1999, 55, 119–139. [CrossRef]

21. Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object Detection with Discriminatively Trained Part-based Models.
IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645. [CrossRef]

22. Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5–32. [CrossRef]
23. Chu, W.T.; Chao, Y.C.; Chang, Y.S. Street sweeper: Detecting and removing cars in street view images. Multimed. Tools Appl. 2015,

74, 10965–10988. [CrossRef]
24. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014;
pp. 580–587. [CrossRef]

25. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

26. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Las Condes, Chile,
11–18 December 2015; pp. 1440–1448. [CrossRef]

27. Ren, S.Q.; He, K.M.; Girshick, R.B.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

28. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [CrossRef]

29. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Pro-
ceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Volume 9905,
pp. 21–37. [CrossRef]

30. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [CrossRef]

31. Redmon, J.; Farhadi, A. Yolov3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
32. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934.
33. YOLOv5. Available online: https://github.com/ultralytics/yolov5 (accessed on 10 July 2021).
34. Rukhovich, D.; Vorontsova, A.; Konushin, A. ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-

Purpose 3D Object Detection. arXiv 2021, arXiv:2106.01178.
35. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The kitti vision benchmark suite. In Proceedings of the 2012

IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361. [CrossRef]
36. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuscenes:

A multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11618–11628. [CrossRef]

37. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 42, 386–397. [CrossRef] [PubMed]
38. Agarwal, A.; Gupta, S.; Singh, D.K. Review of optical flow technique for moving object detection. In Proceedings of the 2016

2nd International Conference on Contemporary Computing and Informatics (IC3I), Greater Noida, India, 14–17 December 2017;
pp. 409–413.

39. Barnich, O.; Droogenbroeck, M.V. ViBe: A universal background subtraction algorithm for video sequences. IEEE Trans. Image
Process. 2011, 20, 1709–1724. [CrossRef]

40. Romanoni, A.; Matteucci, M.; Sorrenti, D.G. Background subtraction by combining temporal and spatio-temporal histograms in
the presence of camera movement. Mach. Vis. Appl. 2014, 25, 1573–1584. [CrossRef]

http://doi.org/10.1109/ICCV.2011.6126544
http://doi.org/10.1023/B:VISI.0000029664.99615.94
http://doi.org/10.1109/ICCV.1998.710772
http://doi.org/10.1109/CVPR.2005.177
http://doi.org/10.1007/3-540-45054-8_27
http://doi.org/10.1016/j.cviu.2007.09.014
http://doi.org/10.1007/BF00116251
http://doi.org/10.1007/BFb0017015
http://doi.org/10.1109/IJCNN.2004.1379967
http://doi.org/10.1006/jcss.1997.1504
http://doi.org/10.1109/TPAMI.2009.167
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1007/s11042-014-2213-x
http://doi.org/10.1109/CVPR.2014.81
http://doi.org/10.1109/ICCV.2015.169
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1109/CVPR.2016.91
http://doi.org/10.1007/978-3-319-46448-0_2
http://doi.org/10.1109/CVPR.2017.690
https://github.com/ultralytics/yolov5
http://doi.org/10.1109/CVPR.2012.6248074
http://doi.org/10.1109/CVPR42600.2020.01164
http://doi.org/10.1109/TPAMI.2018.2844175
http://www.ncbi.nlm.nih.gov/pubmed/29994331
http://doi.org/10.1109/TIP.2010.2101613
http://doi.org/10.1007/s00138-013-0587-9


Remote Sens. 2021, 13, 3458 19 of 19

41. Kim, S.W.; Yun, K.; Yi, K.M.; Kim, S.J.; Choi, J.Y. Detection of moving objects with a moving camera using non-panoramic
background model. Mach. Vis. Appl. 2013, 24, 1015–1028. [CrossRef]

42. Postica, G.; Romanoni, A.; Matteucci, M. Robust Moving Objects Detection in Lidar Data Exploiting Visual Cues. In Proceed-
ings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Korea, 9–14 October 2016;
pp. 1093–1098. [CrossRef]

43. Lin, T.H.; Wang, C.C. Deep learning of spatio-temporal features with geometric-based moving point detection for motion
segmentation. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation, Hong Kong, China,
31 May–7 June 2014; pp. 3058–3065. [CrossRef]

44. Vallet, B.; Xiao, W.; Bredif, M. Extracting mobile objects in images using a velodyne lidar point cloud. ISPRS Ann. Photogramm.
Remote Sens. Spat. Inf. Sci. 2015, 1, 247–253. [CrossRef]

45. Hara, Y.; Tomono, M. Moving object removal and surface mesh mapping for path planning on 3D terrain. Adv. Robot. 2020, 34,
375–387. [CrossRef]

46. Bundy, A.; Wallen, L. Dempster-Shafer Theory; Springer: Berlin/Heidelberg, Germany, 1984.
47. Yan, L.; Fei, L.; Chen, C.H.; Ye, Z.Y.; Zhu, R.X. A Multi-View Dense Image Matching Method for High-Resolution Aerial Imagery

Based on a Graph Network. Remote Sens. 2016, 8, 799. [CrossRef]
48. Bleyer, M.; Rhemann, C.; Rother, C. PatchMatch Stereo-Stereo Matching with Slanted Support Windows. In Proceedings of the

British Machine Vision Conference, Dundee, UK, 29 August–2 September 2011; pp. 1–11. [CrossRef]
49. Pan, H.L.; Guan, T.; Luo, K.Y.; Luo, Y.W.; Yu, J.Q. A visibility-based surface reconstruction method on the GPU. Comput. Aided

Geom. Des. 2021, 84, 101956. [CrossRef]
50. Bi, S.; Kalantari, N.K.; Ramamoorthi, R. Patch-based optimization for image-based texture mapping. ACM Trans. 2017,

36, 106. [CrossRef]
51. Google Earth. Available online: https://www.google.com/earth/ (accessed on 10 July 2021).
52. Howard, A.; Sandler, M.; Chen, B.; Wang, W.J.; Chen, L.C.; Tan, M.X.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching

for MobileNetV3. In Proceedings of the International Conference on Computer Vision, Seoul, Korea, 27 October–2 November
2019; pp. 1314–1324. [CrossRef]

53. Yu, J.H.; Lin, Z.; Yang, J.M.; Shen, X.H.; Lu, X.; Huang, T. Free-Form Image Inpainting with Gated Convolution. In Proceedings of
the International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 4470–4479. [CrossRef]

54. OpenMVG. Available online: https://github.com/openMVG/openMVG (accessed on 10 July 2021).
55. OpenMVS. Available online: https://github.com/cdcseacave/openMVS (accessed on 10 July 2021).
56. OpenMesh. Available online: https://www.graphics.rwth-aachen.de/software/openmesh/ (accessed on 10 July 2021).

http://doi.org/10.1007/s00138-012-0448-y
http://doi.org/10.1109/IROS.2016.7759185
http://doi.org/10.1109/ICRA.2014.6907299
http://doi.org/10.5194/isprsannals-II-3-W4-247-2015
http://doi.org/10.1080/01691864.2020.1717375
http://doi.org/10.3390/rs8100799
http://doi.org/10.5244/C.25.14
http://doi.org/10.1016/j.cagd.2021.101956
http://doi.org/10.1145/3072959.3073610
https://www.google.com/earth/
http://doi.org/10.1109/ICCV.2019.00140
http://doi.org/10.1109/ICCV.2019.00457
https://github.com/openMVG/openMVG
https://github.com/cdcseacave/openMVS
https://www.graphics.rwth-aachen.de/software/openmesh/

	Introduction 
	Related Work 
	Object Detection 
	Moving Object Detection 
	Multiview 3D Reconstruction 

	Method 
	Cars Detection Using Mask R-CNN 
	Moving Car Recognition Based on Multiview Constraints 
	Definition of the Car Moving State (CMS) 
	Moving Car Recognition 

	Moving Car Cleaning 
	Mesh Clean 
	Texture Preprocessing 


	Experiments and Discussion 
	Data Description 
	Car Detection 
	Moving Car Recognition 
	Moving Car Cleaning 

	Conclusions 
	References

