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Abstract: Multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR) has been widely
used for ground motion identification and monitoring over large-scale areas, due to its large spatial
coverage and high accuracy. However, automatically locating and assessing the state of the ground
motion from the massive Interferometric Synthetic Aperture Radar (InSAR) measurements is not
easy. Utilizing the spatial-temporal characteristics of surface deformation on the basis of the Small
Baseline Subsets InSAR (SBAS-InSAR) measurements, this study develops an improved method to
locate potential unstable or dangerous regions, using the spatial velocity gradation and the temporal
evolution trend of surface displacements in large-scale areas. This method is applied to identify
the potential geohazard areas in a mountainous region in northwest China (Lajia Town in Qinghai
province) using 73 and 71 Sentinel-1 images from the ascending and descending orbits, respectively,
and an urban area (Dongguan City in Guangdong province) in south China using 32 Sentinel-1
images from the ascending orbit. In the mountainous area, 23 regions with potential landslide
hazards have been identified, most of which have high to very high instability levels. In addition,
the instability is the highest at the center and decreases gradually outward. In the urban area,
221 potential hazards have been identified. The moderate to high instability level areas account for
the largest proportion, and they are concentrated in the farmland irrigation areas, and construction
areas. The experiment results show that the improved method can quickly identify and evaluate
geohazards on a large scale. It can be used for disaster prevention and mitigation.

Keywords: MT-InSAR; potential hazards identification; deformation area; temporal and spatial
characteristics; instability assessment

1. Introduction

InSAR has become an important technique for large-scale ground deformation moni-
toring, as it has wide spatial coverage and high monitoring accuracy [1]. The fast devel-
opment of the Synthetic Aperture Radar (SAR) technology provides vast amounts of SAR
datasets with high spatial and temporal resolution to measure the ground deformation
around the world [2]. Nowadays, the accuracy and efficiency of InSAR data processing
have been greatly improved by the MT-InSAR technologies [3], such as Persistent Scat-
terer InSAR (PS-InSAR) [4,5], SBAS-InSAR [6,7] and SqueeSAR [8], which have overcome
some limitations (temporal decorrelation, atmospheric delay, and ramp phases) inherent
in Differential Interferometry SAR (DInSAR) [9,10], and have been extensively exploited
to geological disaster monitoring, including urban subsidence [11,12], landslides [13,14],
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volcanoes [15] and earthquakes [16,17], and so on. Traditionally, the basic information
(location, area, and deformation magnitude) of potential geohazards is obtained by visu-
ally interpreting the MT-InSAR measurement, which is inefficient, labor-intensive, and
error-prone for large-scale area monitoring [18]. Therefore, it is necessary to develop a
more efficient and comprehensive way to identify potential geohazards from the massive
deformation information.

Many efforts have been made to investigate and manage geohazards, including the
case study of a single geohazard, landslide identification in mountainous areas [19–21]
and subsidence investigation in urban areas [22–24]. However, only a few studies in-
vestigated the methods for automatic identification and evaluation of geohazards over
large-scale areas. Barra et al. (2017) proposed a method based on PS-InSAR technology
to regularly update geohazard activity maps, identify active deformation areas (ADA),
and update the existing geohazard database [25]. It consists of a step to detect the de-
formed regions and a step to evaluate the ADA quality. This method has been applied in
geohazards mapping [26–28], geological motion assessment, and the intensity evaluation
of landslides [26,29,30] based on the deformation velocity. On the basis of this method,
some automatic identification and classification programs have been proposed [18,31].
In addition, some Geographic Information System (GIS) environment-based studies also
combined the hazards and vulnerability of the study area to calculate the specific landslide
risk [32,33].

Currently, most algorithms for geohazard detection only use the spatial information
of deformation, such as the average deformation velocity, but do not consider the temporal
evolution characteristics, which, however, is crucial for hazard warning. Extracting poten-
tial hazard regions from the MT-InSAR results and analyzing those temporal evolution
characteristics are important for improving the interpretation efficiency and making full
use of InSAR measurements. Raspini et al. [34,35] and Del Soldato et al. [36] identified
anomalous changes of the time series displacements. Their methods can obtain different
evolution trends in the time series displacements, such as acceleration, deceleration, and
seasonal changes.

Following the previous studies of spatial analysis, this study proposes an improved
method for automatically identifying the deformation regions over large-scale areas and
extracting the evolution characteristics of the deformed regions by estimating the temporal
development trend. This method can detect the potentially unstable areas and refine the
instability boundaries of each deformation region using the spatio-temporal deformation
characteristics from MT-InSAR results. We select a mountainous area (Lajia Town, Qinghai
Province) and an urban area (Dongguan City, Guangdong Province) in China to validate
the improved method. On the basis of the experimental results, we combine the ascending
and descending data to generate the vertical deformation and the deformation in the aspect
direction, and get the final results by combining the deformations in the two directions. We
analyze the results of velocity gradation, temporal evolution trend estimation, instability
assessment, and refinement. Finally, we discuss the advantages and limitations of the
improved method.

2. The Improved Method

This section describes the improved method for automatically identifying geological
disasters using the MT-InSAR measurements, which is adaptable in both mountainous and
urban areas. The method has the following five modules (Figure 1):

(1) Deformation area recognition: recognize and locate the boundary of each deforma-
tion region;

(2) Deformation velocity gradation: classify the deformation velocity magnitude for the
points in the deformed regions;

(3) Deformation temporal evolution trend estimation: estimate the temporal evolution
trend for the points in the deformed regions;
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(4) Deformation instability degree generation: combines the deformation velocity grada-
tion in (2) and trend in (3) to obtain the instability degree for the points in the regions
by on the quantitative instability matrix;

(5) Deformation instability refinement: refines the deformation boundary of instability
degree in (4).

Figure 1. Flowchart of the improved method.

2.1. Deformation Area Recognition

This module uses the deformation velocity obtained from the MT-InSAR to automati-
cally identify the deformation regions (Figure 2a). It includes the following four steps:

(1) Data preprocessing: A noise removal method is used to remove the points that
are sparsely distributed or significantly different from the neighboring points in
displacement [37] to obtain spatially consistent deformation results.

(2) Cluster analysis on deformation point attributes: Set a deformation velocity threshold
and the expansion radius parameters. If the point has a deformation velocity larger
than the threshold, it is defined as an active point, otherwise it is a stable point. The
active points are buffered according to the expansion radius, and attribute clustering
is performed following the principle of spatial proximity relationship [29]. Up to this
step, the deformation regions formed by clustering of active points can be obtained
(Figure 2b). In order to refine the boundary shape, a smoothing process is performed
to the expansion area.

• Velocity threshold: Standard deviation, σ, calculated by the deformation velocity
values from MT-InSAR. It reflects the sensitivity and noise level of the results. It
is used to reclassify the points by activity [25,28]. In this study, the value of 3σ is
adopted to determine the active point and stable point.

• Buffer distance: Deformation points within the buffer distance are considered
belonging to the same deformation area. The buffer distance can be adjusted ac-
cording to the spatial resolution of the MT-InSAR result and geological conditions
of the study area. In this study, we set the buffer distance as 30 m.

(3) Preliminary identification of the deformation regions: Identify multiple deformed
regions according to the cluster analysis result in step (2). Some deformation regions
may be noise or error. Therefore, we eliminate the deformation regions smaller than
the given minimum size to improve the distribution of the results.

• Minimum size: set the minimum area of deformation regions (km2) set according
to the local geological background and remove regions smaller than the threshold,
as they may be caused by data processing errors, atmospheric effects, and so on.
In this study, we set the minimum area as 0.05 km2 and 0.1 km2 for mountainous
and urban areas, respectively.

(4) Deformation result refinement: Using the preliminary results obtained in step (3) and
the Delaunay triangulation algorithm [38] to connect all the boundary points of a
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single area to generate the boundary of the smallest convex polygon. Then, generate
the boundary of each deformation region, considering the topology relationship
of boundaries.

Figure 2. The result of each step of the improved method. (a) the average deformation velocity, (b) the deformed region
boundary obtained by cluster analysis, (c) active and stable points in the deformed region. The results of (d) velocity
gradation, (e) temporal evolution trend estimation, and (f) instability degree and refined boundaries.

2.2. Deformation Velocity Gradation

In order to identify the deformed regions and evaluate their deformation states, we
should grade the deformation velocity gradation thresholds and classify points by activity.
Some studies have shown that the deformation velocity threshold should be determined
according to the geological conditions of the study area [39–41].

In this study, the points are grades into three levels by the deformation velocity: stable
point (low), active point (moderate), and highly-active point (high) (Table 1). In Section 2.1,
we identify the deformation regions based on point buffered distance, so some stable points
are included in the deformation regions (Figure 2c). In order to distinguish the stable and
active points, we choose 3σ and 6σ as the velocity gradation threshold [18,25]. When the
absolute value of velocity |V| of a point is less than 3σ, the deformation velocity gradation
is low, and the point is stable; when |V| is greater than 3σ and less than 6σ, the velocity
gradation is moderate, and this point is active; when |V| is greater than 6σ, the velocity
gradation is high, and the point is highly-active. The result of velocity gradation is shown
in Figure 2d.

Table 1. The thresholds for deformation velocity gradation.

Gradation Threshold (mm/yr)

Stable point (low) |V| < 3σ
Active point (moderate) 3σ <| V| < 6σ

Highly-active point (high) | V| > 6σ
Note: |V| represents the absolute value of the deformation velocity obtained from the MT-InSAR results. The
thresholds can be adjusted according to the deformation characteristics (density and uncertainty of point targets).
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2.3. Deformation Temporal Evolution Trend Estimation

The improved method not only uses the deformation velocity to evaluate the defor-
mation intensity of the area, but also uses the time series displacement to estimate the
temporal evolution trend. According to the fitting curve of the time series displacement,
the development trend can be divided into four categories: the exponential acceleration
model (EAM), which shows an acceleration trend and has a high unstable level; the unary
linear model (ULM), which shows a deformation with uniform rate and has a moderate
unstable level; the exponential mitigation model (EMM), showing a deceleration trend,
and low unstable level, gradually tending to a smooth deformation; the category of no
specific deformation characteristics (NSC), which has a low unstable level, cannot be fitted
by specific function expressions and without regular displacement pattern. The first three
models are shown in Figure 3.

Figure 3. Development trend model of the deformation points.

The specific procedure for estimating the deformation development trend is shown in
Figure 4a. First, the first three trend models are all fitted to the target point time series, and
the Root-Mean-Square Errors (RMSEs) and correlation coefficient (Rs) are calculated, which
are denoted as RMSEEAM, RMSEULM, RMSEEMM, REAM, RULM, and REMM. The absolute
value of Rs is between 0 and 1. Generally speaking, the closer |Rs| to 1, the stronger the
correlation between time series deformation and fitting curve. In this study, we tend to
choose 0.8 as the correlated threshold and 0.01 as the model similarity threshold, which
are the most appropriate value for the experimental area. Therefore, if all the Rs are less
than 0.8, the point trend is considered as NSC; if the RMSEEAM is the smallest, the point
trend is considered as EAM; if the RMSEULM is the smallest, and the difference between
RULM and the REAM exceeds 0.01, the point trend is considered as ULM; if the RMSEEMM is
the smallest, and the difference between REMM and RULM exceeds 0.01, the point trend is
considered as EMM. Figure 4b–d are the examples of ULM, EAM, and EMM. The threshold
mentioned above can be adjusted according to the local situation.

When the trend of the fitting result of the target point is similar, that is RMSEULM
or RMSEEMM is the smallest and RULM or REAM is infinitely close to the REAM or RULM,
respectively, the point is considered having the higher-level change trend, so as to achieve
a warning effect. For example, if the value of RMSEULM is the smallest, and the difference
between RULM and REAM exceeds 0.01, the point trend is considered as ULM, otherwise, it
is EAM. After evaluating the trend, we summarize and analyze the points with the same
level to obtain the distribution of different trend levels in each region. The result of trend
estimation is shown in Figure 2e.
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Figure 4. The (a) flowchart of temporal evolution trend estimation and (b–d) classification examples
of ULM, EAM and EMM.

2.4. Deformation Instability Degree Generation

Using the deformation velocity gradation obtained in Section 2.2 and the development
trend obtained in Section 2.3, we establish a 3 × 4 qualitative instability matrix, which uses
four levels to assess the instability of the points in the deformation regions (Figure 5). The
results of instability degree will be used in Section 2.5.

Figure 5. Qualitative instability matrix of the deformation points.

2.5. Deformation Instability Refinement

Each point in the deformation regions has three attributes, which are the deformation
velocity graduation, trend, and instability. It is heterogeneous in the space domain. To
provide useful information for disaster prevention and mitigation, we should refine the de-
formed regions. Large-scale monitoring areas usually have a large number of deformation
points, so we propose to refine the deformation area based on the results of spatiotemporal
instability. This process is similar to the recognition algorithm mentioned in Section 2.1 the-
oretically, but its recognition area is much smaller. In order to locate the unstable regions in
each small area and improve the recognition accuracy, the instability boundary refinement
method is targeted at the cluster analysis of the points in each deformation area.
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The main steps include: clustering and filtering of the deformation points with the
same instability degree, and refining the deformation region boundaries The refinement
results are the instability classification boundary of each deformed area (Figure 2f), which
is a part of the final products. This method can greatly improve the resolution of locating
highly unstable areas and evaluating potential hazards.

3. Experiment and Data Processing
3.1. Study Area and Datasets

The specific location and Sentinel-1 image coverage of our study areas are shown in
Figure 6. The mountainous area, north of Lajia Town, is located at the junction between
Golog County and Hainan County in Qinghai Province, in the upper reaches of the Yellow
River basin, with an elevation of 3000–4000 m. This area is mountainous and has plateaus,
featured by rugged and steep terrain. The slopes here are generally above 30 degrees, and
even greater than 50 degrees in some areas. The valleys are mostly narrow and V-shaped,
with only small patches of bottomland or no bottomland. This area is especially developed
with loess and other disaster-prone rocks [42]. The study area is close to the government of
Lajia Town, which has dense residential areas, so serious geological disasters will cause
huge damages.

Figure 6. Location of the two study areas in China and the spatial coverage of the images used in
the study. Insets show the location of (a) Lajia Town of Qinghai Province and (b) Dongguan city of
Guangdong Province in China. Background is the Shuttle Radar Topography Mission (SRTM) digital
elevation model (DEM) with a resolution of 90 m.

The urban experimental area is Dongguan City, located at the center of the east coast of
the Pearl River Delta, with a total area of 2465 km2 and a permanent population of 8,464,500.
The landform is dominated by hills and alluvial plains. The southeast is mountainous
with large undulations, and the elevation is mostly 200–600 m. The northeast close to the
riverside of East River has gentle terrain, which is easy to cause seeper. The northwest
and southwest are alluvial plains with low and flat terrains, so the strata in this area
have poor stability, high water content, and high compressibility. Dongguan has mild
temperatures and rich rainfall throughout the year. The average annual temperature in
2019 is about 23.9 ◦C and the rainfall is 1900 mm (January 2019–December 2019 from
http://www.dg.gov.cn/). Moreover, it suffers frequent extreme weather (such as typhoons
and heavy rainfall), which, coupled with a large number of engineering projects, cause a
lot of land subsidence occurring with wide distribution in Dongguan City [43,44].

Using the SBAS-InSAR technology (Figure 7), we obtain 71 descending (18 January
2017–13 July 2019) and 73 ascending Sentinel-1 images (24 January 2017–18 August 2019)
covering Lajia Town, and 32 Sentinel-1 images covering Dongguan (8 December 2018–27
December 2019) to extract the time series deformation. The acquisition time and basic
parameters of the used Sentinel-1 data are shown in Tables 2 and A1.

http://www.dg.gov.cn/
http://www.dg.gov.cn/
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Figure 7. Flowchart of the MT-InSAR data processing.

Table 2. Parameters and acquisition dates of the images used in this study.

Study Areas Direction Orbit Heading Incidence Pixel Spacing (Rg × Az) Number of Images

Lajia Town, Qinghai Province
(mountainous area)

Descending T33 −169.73◦ 33.69◦ 2.33 × 13.96 m 71
Ascending T26 −10.05◦ 33.81◦ 2.33 × 13.98 m 73

Dongguan, Guangdong Province
(urban area) Ascending T11 −10.55◦ 34.04◦ 2.33 × 14 m 32

3.2. MT-InSAR Data Processing

Considering the small perpendicular baseline distribution of Sentinel-1 satellites, we
only need to consider the temporal baseline for choosing interferometric pairs. Each image
is combined with its following two images to form interferometric pairs (Figure A1). To
reduce the noise and average the resolution in the azimuth and range directions, a multi-
look operation (range:azimuth = 5:1) is applied. Adaptive Goldstein filter is performed to
reduce the phase noise and the Minimum Cost Flow (MCF) method is used to conduct phase
unwrapping. We use polynomial fitting to remove the phase ramp in each interferogram.
The mean coherence, intensity, and amplitude dispersion of each multi-looked pixel are
used to choose high-quality pixels for the subsequent time-series displacement calculation.
Multiple linear regressions are performed to estimate the topographic error of each pixel. In
addition, the topographic error of each pixel is subtracted from the unwrapped phase. Then,
singular value decomposition (SVD) is used to obtain the time series phases of each pixel [6].
We use the least square to estimate the linear deformation rate of each pixel, and subtract the
linear deformation from the unwrapped phase. The components of the remaining phases
are nonlinear deformation, atmospheric delay, and noise. Atmospheric delay phases are
highly correlated in space while lowly correlated in time. Noise phases are lowly correlated
in space and time. Thus, we use the temporal low-pass filter to remove atmospheric delay
and noise and obtain the nonlinear deformation. At last, the final time series deformation
is obtained by combining the linear deformation and nonlinear deformation.

The average deformation rate of each pixel can be estimated by the least square
method. The deformation results, including the experimental area deformation map, the
deformation rate of each point, and the deformation sequence information, are used for the
automatic identification of active deformation regions.

3.3. Decomposition of the Slope Deformation

In urban areas, the surface deformation is dominated by subsidence, so using a
single observation geometry can identify potential hazards well. In the case of Dongguan
City, we test the improved method by a single orbit SAR observation. However, in the
mountainous areas with complex terrains, using a single observation geometry can hardly
obtain the complete deformation data, especially for the landslide monitoring, because the
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deformation of landslide is very sensitive to slope, aspect, and incidence angle [45]. In this
study, we jointly use the ascending and descending data to retrieve two-dimensional (2D)
deformation in the aspect (horizontal) and vertical directions.

The deformation in the line of sight (LOS) direction, dLos, can be obtained from MT-
InSAR, which is then decomposed into the deformation in the vertical direction dU, the
north–south direction dN, and the east–west direction dE. The relationship between dLos
and the three deformation components can be expressed as follows [46]:

dLos = dU cos θinc − dNsin θinc cos(αazi −
3π
2
)− dE sin θinc sin

(
αazi −

3π
2

)
, (1)

where θinc and αazi represent the radar incidence angle and satellite heading angle, respec-
tively, so αazi − 3π/2 is the angle between the north direction and range direction.

In this study, we use the monitoring results from ascending and descending data to
decompose the 2D deformation. The horizontal deformation of the landslide usually occurs
on the slope direction, so we assume that the landslide deformation can be decomposed into
the horizontal deformation dhor and dU. The decomposition relationship can be expressed
by Formula (2):(

dU
dhor

)
=

(
cos θA

inc −sin θA
inc cos

(
δ− αA

azi +
3π
2
)

cos θD
inc −sin θD

inc cos(δ− αD
azi +

3π
2 )

)(
dA

Los
dD

Los

)
, (2)

where θA
inc and θD

inc are the radar incidence angles from the ascending and descending
orbits, respectively; αA

azi and αD
azi are the satellite heading angles from the ascending

and descending orbits, respectively; δ represents the aspect of the point. Based on the
monitoring results of the ascending and descending data, the 2D deformation in the vertical
direction and along the slope can be obtained. The final deformation is the vector sum of
the horizontal deformation and the vertical deformation. The relationship between the
three deformations can be expressed by Formula (3):

|dfin|2 = |dhor|2 + |dU|2, (3)

where dfin is the final deformation calculated.

4. Results and Analysis
4.1. Deformation Extraction Results of Lajia Town

Using the SBAS-InSAR technology, we obtained the ground deformation in Lajia
Town from ascending and descending data, shown in Figure 8a,b. We selected points by
three thresholds, which are the coherence threshold 0.5, the intensity threshold 0.5 and the
amplitude dispersion threshold 1.0. We obtained 409,072 and 464,444 target points from the
ascending and descending data, respectively, with a density of 2678/km2 and 3041/km2.
The automatic extraction method was employed to investigate the potential hazards based
on the MT-InSAR results, where σA of the ascending results was 3.6 mm/yr and σD of the
descending results was 5.0 mm/yr. Finally, we identified 14 and 18 deformation regions in
the results of ascending and descending data, respectively. Combining the results of these
two orbital data, 23 deformation regions were determined, with an area of 7.7 km2 (each
area 0.05~2.30 km2). As Figure 8c,d shows, the extraction results of different orbital data
are quite different.

Substituting the basic parameters, such as the incidence angle, heading angle, and
landslide aspect angle into formula (2), the deformation velocities in the horizontal and
vertical direction can be calculated (Figure 8c,d). The total number of the identified
target points is 26, 982 (388~8644 points in each region). The maximum annual average
deformation along the horizontal direction has reached 100 mm/yr, and the maximum
annual average deformation velocity along the vertical direction is 30 mm/yr. As the
terrain is rugged, we only decompose the 2D deformation of the points in the deformation
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regions. This calculation greatly depends on topographic factors, so some deformation
points obtained by those two different geometries can be quite different.

Figure 8. Average deformation velocities in the LOS direction derived from (a) ascending images
and (b) descending images. (c) Average velocity of the horizontal deformation, with positive values
indicating east or north, and (d) average velocity of the vertical deformation, with negative values
indicating settlement.

The final deformation velocity of the detected areas is shown in Figure 9a, which is
also the basis for the velocity gradation. After identifying the deformation regions, the
method will automatically complete the velocity gradation, trend estimation, instability
degree generation, and deformation boundary refinement. The point deformation trend
is estimated on the basis of the time series from the ascending and descending data,
respectively, and the method selects a higher-level trend as the trend estimation result at
the points. The results are shown in Figure 9b–d. Table 3 shows the assessment results
based on deformation points. Most potential hazards maintain the deformation accelerating
trend and have a high or very high instability level. In Lajia Town, the high instability level
deformation points have the largest proportion (44.89%), followed by the very-high level
(38.65%). On the whole, the test area is in an active state, which needs timely monitoring
and attention.

In Lajia Town, there are three regions with very high instability levels, which could
be potential landslides, as shown in Figure 9a. We performed a detailed analysis on them
and the results are shown in Figure 10 (Landslide 1, 2, and 3 in Figure 9). Landslide 1 in
Figure 10a is close to the residential areas, and it spans from the flanks of the valley to
Lajia Town at the bottom of the valley, posing great threats to local people. For Landslide 1,
the deformation along the horizontal direction is much larger than that in the vertical
direction, as the landslide is creeping continuously towards the bottom of the slope. It has a
deformation velocity exceeding 70 mm/yr. We select the time series of three points from a
factory (P1), a residential area (P2), and the road (P3), to estimate their deformation trends.
Precipitation is one of the important factors for most landslides. The monthly precipitation
data (January 2017−July 2019 from https://gpm.nasa.gov/) in the study area [47] show
that most rain falls from May to November, and less from December to April. The largest
precipitation is from September to October. Figure 10d shows that the deformation trends
of the three points fit the EAM model well with the maximum cumulative deformation

https://gpm.nasa.gov/
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exceeding 180 mm, indicating that the deformation is continuously accelerating during
the monitoring period. The landslide has no obvious acceleration during the rainy season,
and the correlation between its deformation and precipitation is weak, indicating that
precipitation is not the dominant factor in landslide deformation. The deformation of the
far river section of the landslide was greater than that in the near river section. P3, which
is located in a very high instability area, has a cumulative deformation > 180 mm. The
deformation center of the region with a very high instability in Figure 10 (outlined by
purple dashed line) is about 2.17 km length and 0.82 km width, with an area of more than
1.2 km2, accounting for 95% of the entire landslide. A road traverses the most unstable area
in the middle of the landslide and leads directly to the residential area near the river. The
time-series results also show that the landslide deformation process is in an accelerated
deformation stage, which brings dangers to the residents and traffic inside the landslide.
The other two landslide areas (Figure 10b,c) are distributed along the river. The highest
instability areas are located in the center of the landslides, and landslide 2 is also located
near the residential area. We plot the time series displacements of two points in landslide
2 and 3 (P4, P5), which shows that the annual deformation of the two points exceeds
40 mm, and the acceleration does not coincide with the increase in precipitation. These
areas have high or very high instability. Therefore, continuous monitoring is necessary for
those landslides.

Figure 9. The (a) final deformation velocity map calculated by deformation in the vertical direction
and horizontal direction, (b) deformation velocity gradation results, (c) trend estimation results, and
(d) instability degree of the deformation regions in Lajia Town.

Table 3. Basic information and assessment results of the deformation regions in Lajia Town.

Index Level Low Moderate High Very High

Velocity
gradation

Number of points 3049 13,093 10,863
Proportion (%) 11.3 48.5 40.3

Trend
Number of points 1379 554 25,072

Proportion (%) 5.1 2.1 92.9

Instability Number of points 1192 3274 12,111 10,428
Proportion (%) 4.4 12.1 44.9 38.7

Note: The text in italics and bold indicates the level of the largest proportion of deformed points.
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Figure 10. Some very high-instability level areas in Lajia Town. (a–c) are the maps of the deformation
velocity, and instability refinement of the points in the area outlined by blue, purple, and brown
dashed lines in Figure 9a, respectively. (d,e) the time series of P1~P5 points. The green curve is the
EAM curve after fitting.

4.2. Deformation Extraction Results of Dongguan City

In the Dongguan experiment, using the same thresholds for point selection in Lajia
Town, we obtained a total of 4,101,295 target points, with a density of 1662/km2. The σ of
the results was 3.2 mm/yr. Therefore, the values of 3σ (9.6 mm/yr) and 6σ (19.2 mm/yr)
were adopted to classify the deformation velocity as low, moderate, and high. Using the
parameters obtained in Section 2.1, 221 deformation regions were automatically identified,
with a total area of 40.663 km2 (each area 0.098~3.834 km2). The total number of the
identified target points is 67,204 (each area 85~7908 points).

The obtained deformation map is shown in Figure 11a, and its settlement shows a
scattered distribution pattern, with greater deformation in the suburb and urban fringe.
More than 80% of the deformation regions have a moderate intensity, but a few deformation
regions have a deformation velocity exceeding 30 mm/yr (Figure 11b,c). Table 4 lists the
results calculated from the points in each area. Specifically, more deformation areas
(111 regions, 50.2% of the deformation regions) are around the parks or reservoir slopes on
the southern boundary of the urban area, which are covered by scrubs and vegetation. The
velocity level of the points in these regions is mostly low or moderate. A few deformation
areas are distributed along the river in construction areas and residential areas (42, 19.0%),
farmland irrigation areas (49, 22.2%), and mixed areas (including crubs, paddy field
areas, and construction areas) (19, 8.6%), most of which have moderate and high intensity
(Figure 11b,c and Table 4). Although most of the deformation points have moderate
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intensity, they have an accelerating trend. Therefore, the high instability points account for
the largest proportion.

Figure 11. The (a) deformation velocity map. (b,c) results of deformation velocity gradation, trend
estimation, and instability of the two regions with concentrated deformation areas.

Table 4. Basic information and assessment results of the deformation regions in Dongguan City.

Index Level Low Moderate High Very High

Velocity gradation Number of points 47,837 76,816 8957
Proportion (%) 35.9 57.6 6.7

Trend
Number of points 47,401 8932 77,277

Proportion (%) 35.5 6.7 57.9

Instability Number of points 50,849 19,261 54,975 8525
Proportion (%) 38.1 14.4 41.2 6.4

Note: The text in italics and bold indicates the level of the largest proportion of deformed points.

Since most of the detected areas in Dongguan have high instability, we select two for
the field survey to validate the improved method (Area 1 and 2 in Figure 12). The two de-
tected areas are mainly composed of paddy fields, factory buildings, and construction
sites. Several points show high velocity, accelerating trend, and very high instability on
the factory building and construction site. Area 1 (Figure 12a,d) is close to the Pearl River
estuary with three very high unstable blocks (outlined by the purple line in Figure 12a)
and a long-time displacement. The ground subsidence caused a slight separation between
the nearby road surface and the building foundation, which in turn led to the cracks and
deformation of buildings (such as walls and pillars). Area 2 (Figure 12b,e) is located near
a welding workshop, whose north and east sides are large open-air parking lots, and the
west side is warehouses and roads. This area is close to the river, and it has thick, soft soil
and an unstable foundation. Therefore, the separation between the road and the workshop
building foundation is serious. P6 and P7 are the points in the very-high instability areas,
showing a tendency of deformation acceleration, whose settlement exceeds 60 mm and
80 mm, respectively. In addition, some deformed regions are distributed in the farmland
irrigation or paddy field with high instability, in which the groundwater extraction may
cause consolidation of the soil layer.

In general, the surface subsidence in Dongguan City is due to the unstable strata and
human activities. Dongguan City is a coastal city and has soft soil layers, so there are
many regions that have deformation due to external influences. Additionally, Dongguan
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City is an important economic city in China, so human activities are frequent, such as
engineering construction, factory operations, and groundwater extraction. These factors,
together, contribute to the continuous subsidence [12,48], which deserve timely monitoring.

Figure 12. Some high instability regions in Dongguan City identified by the improved method.
The areas marked in Figure 11b,c. (a,b) are the maps of the deformation velocity and instability
refinement of the points in the two field investigation areas. (c) is the time series of P6, P7 (d), and
(e) are photos of the cracks recognized during the field survey.

5. Discussion

The improved method can provide robust deformation results. DInSAR technology
is prone to temporal decorrelation and atmospheric delay [18]. MT-InSAR results have
higher accuracy and spatial consistency. The first ADA extraction algorithm proposed
by Barra et al. [25] is based on PSI technology, which could generate and update the
list of geological hazards. Furthermore, some researchers used satellite images of single
orbits, so they can only obtain the LOS deformation, which is insufficient for landslide
research in mountain areas, because of the rough terrain. Jointly using both ascending and
descending data [28] to automatically detect potential deformation areas in mountain areas
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can improve the accuracy, so we employed both ascending and descending data in this
research. This research also eliminates the points with poor spatial consistency to avoid
misclassifying deformation areas, which is useful for the MT-InSAR result caused by the
temporal decorrelation in vegetation and water area.

The improved method provides trend estimation in the time domain. The deformation
information in the time dimension is very important for predicting the deformation devel-
opment trend and providing disaster warnings. Some methods have identified anomalous
changes to obtain different trends based on the time series deformation [34,36]. In this study,
we used four trend evolution models to fit time series deformation, which can effectively
avoid the influence of anomalous deformation caused by atmospheric delay. Furthermore,
the improved method can show the development trend of the deformation points in the
time domain, and obtain the deformation development trend for disaster prevention.

The improved method also provides instability evaluation for the deformation region
in the spatiotemporal domain for the deformation area and accurate locations of highly
unstable areas. To assess the instability of geological hazards, we should consider both the
temporal and spatial displacement characteristics of the region. Some methods focus on
the vulnerability and exposure assessment, including the quantification of the potential
loss by a hidden landslide [29], the GIS-based procedure for analyzing specific risk [32].
In addition to using external data or models, some researches may only utilize the defor-
mation characteristics in the spatial dimension. In this study, we combine the velocity
gradation and the time evolution characteristics to establish a qualitative instability map,
which can automatically obtain the spatiotemporal characteristics of deformation points.
The instability refinement experiments show that the improved method can classify the
deformation regions by instability and locate the highly unstable regions. In addition,
the improved identification algorithm is based on clustering of active points, so it greatly
improves the identification efficiency, computing speed, and automation degree, and is
suitable for recognizing and assessing the deformation area obtained by MT-InSAR technol-
ogy. Therefore, the improved method can be widely used in the identification of potential
hazards in large-scale areas.

The improved method is also impacted by the inherent limitations of MT-InSAR
measurements, such as shadow overlay [20,28] and insensitivity to the north–south defor-
mation [9]. Actually, besides the four evolutionary categories (EAM, ULM, EMM, NSC),
there are displacements caused by sudden changes or periodic deformation trends, which
are excluded or classified into one of the categories by our method. Furthermore, the
estimation of deformation development trend estimation is strongly dependent on the
number of available SAR data. Less image samples in the time domain would lead to low
accuracy of the development trend estimation. Additionally, the improved method only
identifies the potential hazards in large-scale monitoring, and the subsequent monitoring
of a single hazard requires external data for assistance. Using external auxiliary data, such
as regional DEM and geological data, may improve the deformation area identification and
evaluation, which also can improve the result interpretation of deformation regions.

6. Conclusions

In this study, we introduced an improved method for automatic identification and
assessment of potential geohazards, which can show the spatial and temporal information
of the deformation, and quantitatively evaluate the instability of the deformed area. Its
final outputs include a deformation velocity map, a deformation regions distribution map,
the results of velocity gradation and trend evaluation, an instability result that consists of
the instability level and statistical information, and the results of boundary refinement.

The method has been tested in the mountainous area of Lajia Town in Qinghai
Province, China, and the urban area of Dongguan City in Guangdong Province, China. In
Lajia Town, it identified 23 landslides and found that most potential hazards have very
high-level instability. In the point-based instability evaluation, the high-level unstable
deformation points take the largest proportion (44.9%). In Dongguan City, 221 potential
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deformation regions were identified, distributing less in the city center and more in the
suburb. Most deformation points in the detected regions (41.2%) have high-level instability,
which is mostly located in construction sites, residential areas, and paddy fields. The defor-
mation in Dongguan City is mainly caused by soil consolidation from frequent engineering
construction and human activities. The deformation areas of Lajia Town have the highest
instability in the center and the instability becomes lower gradually outward. However,
the instability of the deformation areas in Dongguan City shows no specific rule.

Using the InSAR monitoring results, this method improves the large-scale deformation
monitoring capabilities of InSAR technology. It can extract the deformation area from
different terrains. It has advantages in urban areas, where the deformation points are
scattered and difficult for manual interpretation. The instability refinement method can
identify the highly unstable areas caused by engineering construction. It also helps users
focus on the regions deserving more attention, so as to provide a reference for disaster
prevention, reduction, and relief.
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Appendix A

Table A1. Parameters and acquisition dates of the images used in this study.

Study Areas Parameters Acquisition Date

Lajia Town,
Qinghai
Province

(Mountainous
area)

Direction Descending
Orbit T33

Heading −169.73◦

Incidence 33.69◦

Pixel Spacing
(Rg × Az) 2.33 × 13.96 m

Number of images 71

2017/01/18, 2017/02/11, 2017/03/25, 2017/04/06, 2017/04/18,
2017/04/30, 2017/05/12, 2017/06/05, 2017/06/17, 2017/06/29,
2017/07/11, 2017/07/23, 2017/08/04, 2017/08/16, 2017/08/28,
2017/09/09, 2017/09/21, 2017/10/03, 2017/10/15, 2017/10/27,
2017/11/08, 2017/11/20, 2017/12/02, 2017/12/14, 2017/12/26,
2018/01/07, 2018/01/19, 2018/01/31, 2018/02/12, 2018/02/24,
2018/03/08, 2018/03/20, 2018/04/01, 2018/04/13, 2018/04/25,
2018/05/07, 2018/05/19, 2018/05/31, 2018/06/12, 2018/06/24,
2018/07/06, 2018/07/18, 2018/08/11, 2018/08/23, 2018/09/04,
2018/09/16, 2018/09/28,2018/10/10, 2018/10/22, 2018/11/03,
2018/11/15, 2018/11/27, 2018/12/21, 2019/01/02, 2019/01/14,
2019/01/26, 2019/02/07, 2019/02/19, 2019/03/03, 2019/03/15,
2019/03/27, 2019/04/08, 2019/04/20, 2019/05/02, 2019/05/14,
2019/05/26, 2019/06/07, 2019/06/19, 2019/07/01, 2019/07/13

Direction Ascending
Orbit T26

Heading −10.05◦

Incidence 33.81◦

Pixel Spacing
(Rg × Az) 2.33 × 13.98 m

Number of images 73

2017/01/24, 2017/02/05, 2017/02/17, 2017/03/25, 2017/04/06,
2017/04/18, 2017/04/30, 2017/05/12, 2017/05/24, 2017/06/05,
2017/06/17, 2017/06/29, 2017/07/11, 2017/07/23, 2017/08/04,
2017/08/16, 2017/08/28, 2017/09/21, 2017/10/03, 2017/10/15,
2017/10/27, 2017/11/08, 2017/11/20, 2017/12/02, 2017/12/14,
2018/12/26, 2018/01/07, 2018/01/19, 2018/01/31, 2018/02/12,
2018/02/24, 2018/03/08, 2018/03/20, 2018/04/01, 2018/04/13,
2018/04/25, 2018/05/07, 2018/05/19, 2018/05/31, 2018/06/12,
2018/06/24, 2018/07/18, 2018/07/30, 2018/08/11, 2018/08/23,
2018/09/04, 2018/09/16, 2018/09/28, 2018/10/10, 2018/10/22,
2018/11/03, 2018/11/15, 2018/11/27, 2018/12/21, 2019/01/02,
2019/01/14, 2019/01/26, 2019/02/07, 2019/02/19, 2019/03/03,
2019/03/15, 2019/03/27, 2019/04/08, 2019/04/20, 2019/05/02,
2019/05/14, 2019/05/26, 2019/06/07, 2019/06/19, 2019/08/18

Dongguan,
Guangdong

Province
(Urban area)

Direction Ascending
Orbit T11

Heading −10.55◦

Incidence 34.04◦

Pixel Spacing
(Rg × Az) 2.33 × 14.00 m

2018/12/08, 2018/12/20, 2019/01/01, 2019/01/13, 2019/01/25,
2019/02/06, 2019/02/18, 2019/03/02, 2019/03/14, 2019/03/26,
2019/04/07, 2019/04/19, 2019/05/01, 2019/05/13, 2019/06/06,
2019/06/18, 2019/06/30, 2019/07/12, 2019/07/24, 2019/08/05,
2019/08/17, 2019/08/29, 2019/09/10, 2019/09/22, 2019/10/04,
2019/10/16, 2019/10/28, 2019/11/09, 2019/11/21, 2019/12/03,

2019/12/15, 2019/12/27

Figure A1. Spatiotemporal baseline network of (a) track 33, (b) track 26, and (c) track 11.
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