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Abstract: Time series images with temporal features are beneficial to improve the classification
accuracy. For abstract temporal and spatial contextual information, deep neural networks have
become an effective method. However, there is usually a lack of sufficient samples in network
training: one is the loss of images or the discontinuous distribution of time series data because of the
inevitable cloud cover, and the other is the lack of known labeled data. In this paper, we proposed
a Semi-supervised convolutional Long Short-Term Memory neural network (SemiLSTM) for time
series remote sensing images, which was validated on three data sets with different time distributions.
It achieves an accurate and automated land cover classification via a small number of labeled samples
and a large number of unlabeled samples. Besides, it is a robust classification algorithm for time
series optical images with cloud coverage, which reduces the requirements for cloudless remote
sensing images and can be widely used in areas that are often obscured by clouds, such as subtropical
areas. In conclusion, this method makes full advantage of spectral-spatial-temporal characteristics
under the condition of limited training samples, especially expanding time context information to
enhance classification accuracy.

Keywords: image classification; Long Short-Term Memory neural network (LSTM); remote sensing;
semi-supervised learning; time series analysis

1. Introduction

Remote sensing image classification is widely used in various areas of research and
application, such as change detection, geography national condition monitoring, and
global ecological environment changes [1-6]. With the growing development of remote
sensing technology, the types and quantities of remotely sensed data have soared. It has
become easier to access multi-source and multi-temporal Earth Observation (EO) data. The
increasing demand for products encourages an increasing number of scholars to research
a novel approach aimed at improving the accuracy of classification and meeting a wide
range of information requirements and applications.

The current classification methods are mainly based on the classification tasks of singe-
phase image. It can be roughly divided into unsupervised, supervised, and semi-supervised
classification methods. Unsupervised classification algorithms cluster elements by similar
attributes without any prior knowledge, like K-means and ISODATA [7]. But they are hard
to interpret and are time consuming for high dimension or enormous volume of data [8].
On the contrary, supervised classification algorithms identify other unknown categories of
pixels by learning prior human intervention (e.g., Decision Trees, DT [9]; Random Forests,
RF [10]; Support Vector Machines, SVM [11]; and Artificial Neural Networks, ANN [12]).
For these, selecting a representative and abundant training samples is crucial. However,
the training samples are artificially selected through limited experience and knowledge
whether it is field exploration or reference data. There is no guarantee that the selected
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classification samples have a valid representation of corresponding land cover classes.
Therefore, semi-supervised learning from the field of data mining applies to various
classifiers, like transductive SVM [13], the self-learning method [14,15], and the graph-
based method [16]. It mines the inherent structural features of object types in unlabeled
samples to correct fitting classifiers that may be caused by the poor representation of
labeled samples. The semi-supervised classification methods can improve the problem of
poor representative known samples and limited effective training samples in practice.

With the development of satellite technologies, the accumulation of multi-source and
historical remote sensing images enables more abundant information to be exploited, not
limited to a single-phase image. It turns out that inclusion of time and multi-angle ancillary
data can improve the accuracy of the classification [17]. As a result, time series satellite
data has been widely used in classification and other fields. Different features in time
context are conducive to accurately distinguish various ground objects. For example, the
time series NDVI was used to mine phenological features, which can significantly improve
the classification accuracy [18].

With the heavy attention on deep learning, numerous studies have investigated
that the deep neural networks can effectively and automatically extract abstract feature
representations from temporal data. In particular, Recurrent Neural Networks (RNNs) have
been widely employed in time series analysis and applications owing to their outstanding
performance in complex temporal correlations. When an image is divided into sequence
data by row, LSTM can implement a high-precision classification result [19]. Then, LSTM
was used to model temporal vegetation and identify various crops in [20]. They also proved
that the LSTM-based classifier performed better than other methods (the classical RNN and
the SVM baseline). In addition, Convolutional Neural Networks (CNNs) have achieved
a high accuracy of semantic segmentation and classification in remote sensing imagery
due to the spatial autocorrelation [21,22]. On this basis, some trainable network variants
were proposed which combines the strengths of both convolutional and recurrent neural
network components. Convolutional LSTM network (ConvLSTM) was first proposed
to the spatiotemporal sequence precipitation nowcasting [23]. After that, a Recurrent
Convolutional Neural Network (ReCNN) was utilized for change detection in biphasic
multispectral images [24].

However, deep neural networks usually require the quantity and quality of training
samples, which undoubtedly increases the workload and computation [25]. On the one
hand, the selection of training samples is a major challenge. In terms of the problem of
sample representation in the above-mentioned supervised classification, people default
that the selected samples have a good representation for individual category because of the
subjective judgment. It is not conductive to the further development of image classification
methods, because the unsatisfactory classification results are always attributed to the
inapplicability of the algorithm or the parameter selection. On the other hand, the features
of ground objects that change over time are more complex. It is common for many types of
changes to occur simultaneously in the same area during the monitoring period, especially
in a long time period. The change types can be roughly divided into two types. One is
that the properties of the target objects change. For example, in urban construction, the
original cultivated land or unused land may gradually become construction land. The
other is a “pseudo-change” in which the properties of the target object remain unchanged.
This change is usually the natural growth change of plants, like wheat. The image spectral
reflectance of wheat is different during the phenological period of emergence, heading,
flowering, and maturity. In order to ensure the classification accuracy of time series images
with various types of changes, more adequate prior knowledge is needed for training. But
in fact, it is easier to get a label at a certain moment instead of multiple or all labels. If
a large amount of training labels is required, there will be a lot of labor costs.

Besides, for optical remote sensing images, it is difficult to avoid cloud, snow, and
shadow coverage. Even though historical satellite images are easy to seek, there are still
missing images or discontinuous time series data because of these noisy observations.



Remote Sens. 2021, 13, 3504

30f18

This problem will affect accuracy of target recognition and classification, so a sort of
preprocessing will be employed in advance, such as cloud and cloud shadow detection [26]
or fitting the multi-temporal curve to the missing data problem [27,28].

In order to address these problems mentioned above, we propose a SemiLSTM for
time series land cover classification. The major contributions of this work are as follows:
(i) It achieves an excellent classification via a small group of labeled samples in time series
data; (ii) it is a robust classification model for time series optical remote sensing data with
the influence of noise (especially clouds and shadows), which decreases the requirements
for time series images without clouds and can be widely used in areas that are often
obscured by clouds, such as subtropical areas; (iii) it makes full use of spectral-spatial-
temporal characteristics, especially expanding the time context information to enhance
classification accuracy.

In previous work, we have experimented with recurrent networks on time series
data with similar time resolution, and achieved promising results [29]. Based on this, we
revised a more reasonable training mode and conducted experiments on three data sets
with different time distributions.

The remainder of this paper is organized as follows: Section 2 describes the archi-
tecture and working principle of our proposed SemiLSTM method, and other classifiers
for comparison. Then, the experimental data sets, experimental setup, and results are
presented in Sections 3 and 4. Section 5 discusses the length of temporal context, the
appropriate number of labeled training samples and the robustness for time series land
cover classification with different cloud coverage. The final Section 6 concludes the paper.

2. Methodology

In this study, we designed a SemiLSTM for classification of long time series images.
It uses a small number of labeled samples and a large number of unlabeled samples
to extract the spectral, spatial, and temporal information. Figure 1 reveals the basic
framework of the proposed SemiLSTM method, which can be decomposed into two parts:
the pretrained model and the semi-supervised spatiotemporal modeling. In the following,
we first describe how to use a trained CNN model on all images to enhance spatial features.
Then, we detail how the convolutional LSTM models spatiotemporal context information
and implements the semi-supervised training process.
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Figure 1. The framework overview of the proposed SemiLSTM model for land cover classification in time series images.
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2.1. The Pretrained Model

For remote sensing images with low and medium spatial resolution, the phenomenons
of the same object with different spectrums and the same spectrum of different objects
bring difficulties to image recognition and interpretation. Numerous studies have shown
that CNNs have good capabilities of spatial expression, and previous works in remote
sensing fields [30-32] have demonstrated that pretrained CNNs have good transferability
for remote sensing image classification. Therefore, we exploit the Residual Network
(ResNet) [33] that has been trained in a large natural image database—ImageNet [34] as
a pretrained model to process remote sensing images. In this way, it can generalize specific
spatial feature representations from complex satellite images, and does not require a large
amount of remote sensing data to train from scratch.

In the part 1, the initial input is a multispectral image X; € R(xwxc), (t=1,2,3,...,n),
from time series data set, and the output is an image with enhanced spatial feature repre-
sentations Xf e Rhxwxc), (c" > ¢), as shown in Figure 2. Since the ResNet was trained
from natural images with red, green, and blue channels, the data we input to the ResNet
pretrained model are the RGB image from original multispectral image. When input to
the trained ResNet model, we choose the feature map after the first convolutional layer
(expressed as ResNet!) to enhance the spatial features of details like textures and edges.
Because for our low- and middle-resolution remote sensing images, the deeper convolution
layer, the more spatial and texture features will be lost. With the processing of the deep
convolutional network, the image’s resolution is getting smaller and smaller [35,36]. Thus,
the original height 1 and width w are reduced, and the number of channels is increased to
64 after the size of 7 x 7 convolution kernel. Then, the extracted feature map from ResNet!
is upsampled by bilinear interpolation to restore the same h and was the original image. At
this time, the enhanced spatial information has been received. To further retain the multi-
spectral information, the feature map after upsampling operation is concatenated with the
original multispectral image. In the end, we get a new time series data (Xf , Xg , Xg .. Xh )
after the pretrained model.

ResNet!

‘ w XtRGB (= R(hxwx:ﬂ) :\ | ;
B S fo--mmmmmo-e
Ep

Input: X, € Rrxwxc)

ﬁﬁﬁ' W

Output: XP € R(rxwxc')

€P Concatenation F,p Up-sampling Operation

Figure 2. The process of the pretrained model for each image.

2.2. The Semi-Supervised Convolutional LSTM

LSTM has been proven to have the ability to preserve long-term and short-term
memory, it can effectively solve vanishing and exploding gradient problems of simple
recurrent neural network for long sequence training data [19,37,38]. Due to the fully
connected network structure, LSTM needs to convert three-dimensional images into vectors
for pixel-level training when processing time series imagery. At this time, the spatial
relationship between pixels and adjacent pixels is also lost. Owing to the capability of the
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(a)

convolution operations to process spatial information, some scholars have proposed variant
LSTM networks with convolution structures [23,24]. Thus, when processing time series
data, the spatial characteristics of images are preserved. This is conducive to processing
remote sensing images with complex and diverse characteristics. For the training process
of traditional deep learning networks, most of them rely on plentiful prior knowledge
and sample selection. In the practical application of remote sensing data, it not only
increases the workload of labeling samples, but also increases the difficulty of seeking
suitable training samples in the limited remote sensing database. Therefore, we proposed a
semi-supervised LSTM network with convolutional structures to deal with the land cover
classification of long time series remote sensing images. Next, the training process of this
network is described in detail.

After the pretrained model, a new set of time series data is constructed from the
feature-enhanced images. In order to improve the computational efficiency and training
effect of the temporal model, it is divided into numerous time series subdata sets with

the same time series length (t), as shown in Figure 2, like sub; = (Xf, Xg, Xg, e, Xf),

suby = (Xg, Xg, XZ, eeey Xftﬂ)), ... In Figure 3a, we take the sequence subdata set sub,
as an example. The self-looping structure based on recurrent neural network can be
regarded as a connection with multitudinous neural units. The weights among hidden
layers are shared, which makes the network have memory capabilities. There are three
gate mechanisms (input gate i;, forget gate f;, and output gate o¢) that jointly control the
memory of long-term and short-term knowledge of neural units. As an input X/ is fed,
a current memory cell state S can be obtained by the following equation, which gathers
the current input and the previous hidden state H;_.

Sp = tanh(Ws x * X; + Ws i * Hy_1 + bg), )

where tanh represents the hyperbolic tangent function. Wg x is the weight matrix from
input to memory cell. Ws iy denotes the hidden-memory coefficient matrix. bg is a bias
coefficient and the symbol “+” denotes the convolution operator with 3 x 3 pixels.

/ @© The Hadamard operator
f tion
| o @ Accumulatior

B R

softmax

(b)

Figure 3. Schematic illustration of convolutional LSTM network architectures. (a) The process of convolutional LSTM for a

time series input (X1, X, ...,

X¢); (b) a neural cell of input X; at time ¢, where the pink box in (a).

As each datum is input in sequence, the long-term memory S; will be accumulated
and updated from both S;, which is controlled by the input gate i;, and the past memory
cell state S;_1, which controlled by the forget gate f;. The two gates i; and f; respectively
control how much relevant information is added from S; and how much irrelevant prior
information is omitted from S;_1. They can be expressed by the following formulas:

it =0(Wix * Xt +Wig* Hi—1 +Ws;-S¢_1 + b;), ()
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ft= (T(Wf,x * Xe+Wry*Hig +Ws p-5p1 + bf)/ 3)

where o represents the sigmoid function. W; x, W x, W; g, and Wy i denote the weight
matrices from input data to input gate and forget gate, and from hidden state to input gate
and forget gate, respectively. b; and by are bias coefficients, and “-”denotes a Hadamard
product. Correspondingly, the memory cell state is updated by

St = fi-Si_1 +ir-Sy, 4)

Subsequently, S; is further controlled by the output gate o; and propagates to the final
hidden output H;. o is designed to determine how much memory content is output at
the current moment t. The output gate o; and the short-term memory H; can be expressed
as follows:

0t = U(WO,X * Xy + Wy * Hiq +Wg St + by), 5)

H; = o-tanh(Sy), (6)

Owing to the convolutional operations between input-to-state and state-to-state tran-
sitions, as shown in Figure 3b. Compared with the traditional LSTM, it can better preserve
spatial information and reduce the redundancy of spatial data in the process of temporal
context information modeling. Due to the many-to-one network form, each sequence input
has only one output, i.e., the sequence subdata set sub; outputs the latest state H;. After
that, H; enters a convolutional layer with a kernel size of 3 x 3 and a convolution stride
of 1 pixel for decoding, which converts the high-dimensional features into the categories.
Then, it is mapped to [0, 1] through the SoftMax function to obtain the predicted probability
value #;. For our time series imagery classification task in Part 2, each image in time series

subdata sets sub; = (Xf, Xf’H,. .., Xf+t—1)/ i € [1, n—t+1] is sequentially passed to
the convolutional LSTM encoder, and finally the prediction §;, ;1 of sub; is output.

For traditional training process of networks, the loss function is defined as the standard
cross-entropy which is calculated by the predicted label i and respective reference label
from ground truth data DL. This is essentially a supervised classification that needs large
enough labels for training. Actually, the corresponding reference labels are mixtures with
labeled D" and unlabeled data DY for the classification task of long time series remote
sensing data, rather than known labels for every image. Thus, semi-supervised learning
inspired by II-model [39] is utilized. The structure of semi-supervised learning and the
calculation of loss function is shown in Figure 4, and the pseudocode of training process in
Algorithm 1. The Loss function consists of supervised and unsupervised loss components.
One is the standard cross-entropy between models’ predictions  and reference labels D,
evaluated for known labels only. Because of the class imbalance, the tunable focusing
parameter 7y and the balance factor « are used to balance the imbalanced proportion of
positive and negative samples [40]. The other is evaluated for all inputs with labeled and
unlabeled data. After the random sequential variation, the same time series input data
produce two different predicted vectors from hidden layers, § and /. Then the mean
square difference between these two values is made which can be seen as an error in
classification. Besides, the latter is scaled by the loss weighting function w(-) related to
the number of training times to merge the two loss items. The initial value of w(-) is set
to 0, i.e., the loss value of the unsupervised part is not calculated. Through new inputs
and continuous iterative calculations, the value of w(-) ramps up. It is very important
that the unsupervised loss component must be promoted slowly enough, otherwise the
network could easily fall into a degenerate solution and fail to achieve a meaningful
classification effect. Finally, the Adam optimizer is utilized to minimize the combined
loss value to complete the optimization of the model parameters. It should be noted that
one-hot encoding [41] is a smart way to demote ground truth values of different categories
for multi-classes tasks.
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Figure 4. The process of semi-supervised learning and loss calculation of SemiLSTM.

Algorithm 1. The training pseudocode of SemiLSTM.

Require: sub;, the time series subdata sets with the same time length (t) after pre-trained model
(i € [1, n — t +1]), for example,

subr=(X{, X2, ., XP), subo=(XE,XE, o XV ), b= (XD XD XD
Require: D; is the label corresponding to the last phase of sub;, where unlabeled samples are
regresented as DiL € [1, C] (C is the number of classes), and labeled samples are represented as
D-;

Rlequire: w(t), the unsupervised weight ramp-up function;

Require: f(T), the convolutional LSTM with trainable parameters 6;

Require: ¢(T), the time series input with random sequential variation function;

Require: g, the balance factor, is a constant vector whose length is the number of categories C;
Require: v, the tunable focusing parameter, is a constant.

for epoch in [1, num_epochs] do:
foriin[1l,n—t+ 1] do:

9; = fO(sub;) = Predictions for original sequential input
9 = fO(g(suby)) = Again, with random sequential variation
Loss = —a(1—9;)" ¥ log(#;, DF) = Unsupervised loss component
XNL
+w(epoch)% Yy — yAi/||2 = Supervised loss component
X
update 0, w(epoch) using, e.g., Adam = Update network parameters
end for
end for

return 0, w(epoch)

3. Study Areas and Data Sets

In our experiments, we used three sets of time series optical remote sensing data to
verify the proposed method. The details are described as follows.

3.1. Jiamusi

This data set was acquired by the Landsat 8/OLI sensor with a coordinate range of
45°42""-48°31'N, 129°22'-129°42'E in Heilongjiang Province, China. Here, we only adopted
seven bands with 30 m spatial resolution (B1-B7). There are three typical areas (J1//2/]3)
mainly based on urban expansion and natural phenology of various crops from 2015 to
2016. Each area covers 256 x 256 pixels of about 60 km?, as shown in Figure 5 (where
marked by the red star). Due to a 16-day revisit cycle and free resources of satellite, there
are a total of 26 available images with cloud-free or low cloud coverage, with an average of
1 to 2 images per month.
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Figure 5. Study area locations of Jiamusi and Kunshan. We used three small areas (J1, ]2, and J3) with the size of 256 x 256 pixels
in Jiamusi from 2015 to 2016. The Kunshan data spans from 1991 to 2010, and the image size is 1005 x 937 pixels.

Besides, it covers six categories according to the actual situation, involving cultivated
land, forest (including unused land), construction (incorporated buildings and roads),
water, cloud, and shadow. Figure 6b illustrates the ground truth information of the last
images (J1/]2/]3). The distribution of the categories is imbalanced due to human activities.
The proportion of each category is 65.20%, 9.38%, 22.29%, and 3.13% respectively. Clouds
and shadows are easy to appear in summer, usually from June to August, and their coverage
varies. In the past two years, forests and water have basically remained unchanged,
whereas cultivated lands and constructions have completely undergone different changes.
With the increase in time, the building area has an obvious growth trend. In time series
images with monthly intervals, cultivated land may first be converted to bare land, and
then converted to construction land. Due to the natural growth of crops, cultivated land
has obvious seasonal change rules, and has different spectral reflectance values in different
seasons. It is conceivable that varying degrees and regular changes will increase the
difficulty and accuracy of identifying land cover.

In the time series data, the image of each time corresponds to a label, but the known
label is randomly distributed. Some known labels correspond to the real class values,
whereas other unknown labels are 0. In training process, we further cropped images into
many blocks with a size of 32 x 32 pixels as shown in Figure 6a. Among them, the blue
boxes represent the training samples, and the orange boxes represent the testing samples.
The distribution of the training and testing sets is random (i.e., J1, ]2, and |3 have different
sample distributions), but the sample ratio is still 1:3.
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Figure 6. The ground truth information (GT) and data division. (a) The training samples (blue boxes) and testing samples
(orange boxes) are randomly selected at a ratio of 3:1 from several equal-sized images blocks; (b) the labels of Jiamusi (J1, ]2,
and J3) in September 2016 (corresponding to the cloud-free images in Figure 5); (c) the labels of Kunshan in 1990 and 2010,
where the gray boxes represent only a small part of the large-scale data set.

3.2. Kunshan

This data set is acquired by the Landsat 5 and 7 sensors from 31°15-31°32'N,
120°54'-121°12'E, namely Kunshan city of China. Only six bands are used here:
B1-B5 and B7 from two satellites with same 30 m spatial resolution and wavelength
range. This area covers 1005 x 937 pixels about 848 km? in Figure 5, marked by the blue
star. It mainly shows urban expansion from 1991 to 2010 with a total of 20 images, where
one image per year.

This time series data with annual intervals should be composed of annual cloudless
images as much as possible. Compared with the monthly interval Jiamusi data set, it
does not consider the coverage of clouds and shadows. It covers four types of labeled
values, containing cultivated land, forest, construction, and water. Figure 6¢ shows the
label information in 1991 and 2010, and the gray boxes represent only a small part of the
large-scale data set. In the past 20 years, there had been a significant urban expansion
phenomenon. The area of construction land had increased from 18.61% to 34.37%, while
the area of cultivated land had decreased from 66.26% to 43.42%. In 2010, the coverage of
forests and water were 7.40% and 14.81%, and both showed the same growth trend, with
an increase of 3.93% and 3.15% respectively.

Similarly, in training process, the known labeled data are randomly distributed. In
time series data with land changes, there may be only two phases with ground-truth labels.
After cropping numerous image blocks (32 pixels x 32 pixels), we randomly selected the
training and testing data with the same ratio (3:1).

3.3. Munich

This data set can be downloaded on GitHub [20]. It consists of cropped image blocks
with a size of 48 x 48 pixels, derived from the 102 km x 42 km Sentinel 2 image in the



Remote Sens. 2021, 13, 3504

10 of 18

north of Munich, Germany. In our experiments, we only used part of the available images
in 2016 with a time length of 30 due to the limited computational space. There are four
10 m (B2, B3, B4, B8), six 20 m (B5, B6, B7, BSA, B11, B12), and three 60 m (B1, B9, B10)
bands. At the time of input, the 20 m and 60 m bands were bilinear interpolated to 10 m
ground sampling distance.

The ground truth information contains 17 crop categories, and only partial labeled
samples are used. The non-uniform distribution of categories is shown in Figure 7. Simi-
larly, we randomly selected the training and testing image blocks at a ratio of 3:1. Unlike
Jiamusi and Kunshan time series data sets, its basic assumption is that the land cover has
not changed. In other words, there is only one known label for Munich time series data set.

1500000
wn
= 1200000
9]
= 900000
a,
— 600000
B 300000 I
= [
0 I T T
K A AP EF AR FD DTS o
F FFEF S F I SIS LTI
LA e Ll S 8 X SATYN e Y A
A% < < S &L 3
Sl o~ 5 D7 AV & P )
&8 § FTTESe
S e & & 2

crop classes

Figure 7. Information of labeled samples and the non-uniform distribution of classes in Munich
data set.

4. Experiments and Results
4.1. Experiments Setup

In order to verify the feasibility and effectiveness of our SemiLSTM method for time
series images classification, LSTM-based methods (ConvLSTM and LSTM) and non-deep
learning classifiers (SVM and RF) were selected as comparison methods. All models with
various parameter values were repeatedly tested on the Window 10 platform with a single
NVIDIA RTX 2080 Ti GPU (memory 11 GB) and a CORE i7-7800 x CPU. Deep learning
network models based on RNN (SemiLSTM, ConvLSTM, and LSTM) were implemented
in Python with the help of Tensorflow. The neural units of three networks were the same
256, the learning rate was 0.001, and the optimal lengths (t) of time series input in different
data sets were different, where ¢ = {20, 18, 30} in Jiamusi, Kunshan, and Munich respectively.
More details and analyses are provided in Section 5.1. For ConvLSTM and our SemiL.STM
models, owing to the convolutional kernel size of 3 x 3, we fed eight cropped 3D image
blocks (h, w, c) as a batch into the networks. The difference in LSTM was that each image
block was reshaped to a two-dimensional vector (h X w, c) as an input. Therefore, the batch
was the number of pixels in an image block (h x w).

For non-deep learning classifiers (SVM and RF), we employed the Scikit-learn frame-
work. Similar to the input of LSTM, image blocks needed to be transformed into a vector.
However, these two methods cannot directly deal with temporal features. For this rea-
son, we connected the time dimension with the spectral dimension. That is, the spectral
channels of each image were superimposed together in chronological order, which was
regarded as the channels of the entire image. It was necessary to assume that the surface
information has not changed. To deal with imbalanced samples, class weight = “balanced”,
so that each class had a weight based on the size of training samples [42]. We also adopted
a random search strategy [43] to automatically pick the major optimal parameter values of
model. For SVM, the RBF kernel was used, the candidate parameters C € {0.1, 0.3, 1, 3, 10,
30, 100, 300} and gamma € {0.1, 1, 2, 10, ‘auto’}. For RF classifier, the candidate parameters
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n_estimators€{120, 300, 500}, max_depthe(5, 15, 25, None}, min_samples_split € {2, 5, 15, 25},
min_samples_leaf € {1, 2, 5, 10}, and max_features € {"log2’, ‘sqrt’, None}.

In addition, although we randomly selected training and testing samples at the same
ratio, for comparison experiments between different classifiers the random sampling of
the same time series data remained consistent. In order to more fairly evaluate the effects
of various classifiers, all models” inputs were enhanced images after the same pretrained
CNN model.

4.2. Accuracy Assessment of Classification

To evaluate the performance of various classifiers in various time series data sets, the
following indicators were utilized: Overall accuracy (OA), Kappa coefficients (K), and
the weighted F1 score (W-F1). All the evaluation indexes were employed in Scikit-learn
package of Python. The optimal parameters of various models in detail were selected in
previous section. The results are displayed in Table 1.

Table 1. Overall accuracy (OA), Kappa coefficients (K), and weighted F; score (WF1) tested on
various data sets.

RF SVM LSTM ConvLSTM SemilLSTM

OA 54.04% 53.87% 77.67% 83.50% 86.61%
Jiamusi K 0.17 0.21 0.64 0.69 0.77
WF1 0.44 0.48 0.62 0.78 0.83

OA 40.56% 45.32% 65.58% 72.11% 77.69%
Kunshan K 0.15 0.19 0.46 0.51 0.62
WF1 0.30 0.35 0.57 0.64 0.75

OA 38.35% 47.68% 78.27% 80.58% 87.24%
Munich K 0.21 0.33 0.53 0.59 0.63
WF1 0.19 0.46 0.77 0.82 0.88

SVM and RF as the non-deep learning methods performed well with small training
data set, which have been widely used in classification [44—-48]. In our experiments of these
various data sets, the results of the two models were similar and not good at the areas with
varying and complex surface coverage. Moreover, they were time-consuming to repeat
parameter selections by the random search strategy when entering a new data and process
the data with high dimensions which combine the time and channel dimensions. SVM
takes about two hours to complete an epoch in Jiamusi. If more parameters to be selected,
like RF, it will take more time.

LSTM, as a variant RNN with three gates, is widely used because of its ability and
advantage in processing temporal context information. Three LSTM-based networks had
better performance on three different time series data, compared with non-deep learning
classifiers which are based on the assumption of invariant land cover information. The
three methods are far less time-consuming than the non-deep learning methods. Among
them, LSTM can complete an epoch approximately every four minutes in Jiamusi, while
ConvLSTM and SemiL.STM can complete an epoch approximately every one minute. In
theory, ConvLSTM avoids the spatial features that may be lost in the data conversion
process through convolution operations, so ConvLSTM had a slight advantage over LSTM
(as shown in Table 1, the weighted F1 score of ConvLSTM was increased by 0.16, 0.07, and
0.05 in the Jiamusi, Kunshan, and Munich respectively). As for our proposed SemiLSTM
method, its classified performance was better than LSTM and ConvLSTM in all data
sets. For example, in the classification of Kunshan data set, the classification accuracy
OA of SemiLSTM was improved by 12.11% compared with LSTM, and was increased by
5.58% compared with ConvLSTM. This is because the addition of semi-supervised learning
made the model less dependent on known labeled samples, thereby reducing the interference
of negative samples on land cover classification. Moreover, our method had a prominent
classified performance in the case of a small number of known labels and the lack of images
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due to cloud occlusion. The related experimental analysis is described in Sections 5.2 and 5.3
below. It solves the problems of poor representation of training samples and inevitable
cloud occlusion on optical images to some extent.

5. Discussion
5.1. The Importance of Temporal Context Information

Temporal features play an important role in classification of remote sensing imagery.
For instance, different types of crops have different seasonal phenological characteristics in
crops classification, and the use of temporal context features can well distinguish various
types of crops [18,44]. Temporal context features are beneficial to image classification
tasks, especially in areas with land cover changes. But what length of time is the favorable
condition for image classification?

To find the optimal time length of time series image classification, we compared
classification experiments with time series inputs of different lengths. We set a fixed time
length (t) and extracted multiple subdata sets of time length t from the original sequence
data in chronological order as the time series input of network. A loop was not executed
until the last time node of the original time series data. Here, the Jiamusi and Kunshan were
used for comparative experiments, because their time series data sets have equal interval
time distribution and certain land cover changes. Therefore, the length of time series input
t=1{2,10, 15, 20, 24, 26} in Jiamusi and t = {2, 10, 15, 18, 20} in Kunshan.

The OA metric of different time series lengths has the same change trend as the Kappa,
but the change range is relatively small. Therefore, only the change of Kappa is shown in
Figure 8. As the increase in length t, the classification effect was significantly improved.
Since the total length of time series data was limited, the larger the t, the smaller the number
of iterations. Therefore, as t increased, the accuracy of classification generally improved
on a stable trend, or even decreased slightly. Just as human beings become obscure to
longer-term memories, the larger length of time series, the memory of the deep neural
network may be lost during the continuous updating process. It shows that it is necessary
to appropriately increase the length of time series input and is conducive to land cover
classification, rather than the larger time series length.

ConvLSTM SemiLSTM LSTM ==& ConvLSTM SemiLSTM
0.8
o] > > s;
06 ;
N 0.4
0.2
0
15 20 24 26 2 10 15 18 20
t = Time length t = Time length
(a) (b)

Figure 8. The results (Kappa) of comparative experiments with various length of time series input in Jiamusi and Kunshan

data set. (a) Jiamusi time series data set; (b) Kunshan time series data set.

In addition, as shown in Figure 8, although the experimental results in the Jiamusi and
Kunshan data sets show similar trends, the optimal parameters are different due to different
time resolutions and research areas. Therefore, the parameter selection of the time series
length needs to consider many factors such as time resolution, the size of the research area,
and the complexity of the land surface. In this experiment, the optimal time series lengths
in Jiamusi and Kunshan were 20 and 18, respectively. Moreover, the optimal parameters t
were used in the subsequent comparison experiments.
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5.2. Appropriate Number of Labeled Training Data

Supervised deep learning methods such as LSTM and ConvLSTM require a large
number of known labels for training. But in practical application, it is hard to obtain
enough labels, especially for a long time series data. The method proposed in this paper
makes it possible to use a small proportion of labeled training samples and obtain excellent
classification results, owing to the idea of semi-supervised learning. It will greatly reduce
the requirements and workload of training labels, and make the classification and analysis
of time series data easier to implement which can be widely used in various fields.

In order to explore the effect of the number of known labels on training process,
five comparative experiments were set up, in which the labeled samples accounted for
100%, 70%, 50%, 20%, and 10% of the total training samples respectively. The number of
known labels under different proportions were rounded down, that is the smallest integer
was taken. Due to the limited length of Kunshan data and only one label in Munich, we
conducted these comparative experiments in Jiamusi. Therefore, the experiments where
the number of known labels account for 10%, 20%, 50%, 70%, and 100% were that only the
last 2, 5, 13, 18, and 26 labeled samples were retained for training. The labels of other time
nodes were filled with null values to represent unlabeled training samples, so that the total
length of time series data was still 26. As described above in Section 5.1, the length of time
series input t = 20. Due to the many-to-one networks, the known labels before were not
used actually. When the ratios of known labels were 100%, 70%, and 50%, the classified
results (OA) were similar.

Figure 9 illustrates the results on the different numbers of known training labels, where
the dotted lines are a linear fit to OA values, indicating the trends of different models with
the number of labeled samples. As the number of labeled samples decreased, the classified
performance of SemiLSTM model became more prominent. Because of the semi-supervised
training method, it reduced the dependence on a large number of known training samples.
Compared with LSTM and ConvLSTM models, our model can still achieve a more accurate
classification with a small number of known samples.

100.00%

80.00% : — BB

60.00%

OA

40.00%
20.00%

0.00%
100% 70% 50% 20% 10%
Ratio = (Labeled Samples/All Training Samples) x100%

LSTM ConvLSTM SemiL.STM
LSTM_Trendline @ ===--- ConvLSTM_Trendline SemilL.STM Trendline

Figure 9. The results of comparative experiments where the ratios of known labels are 100%, 70%,
50%, 20%, and 10% respectively. The dotted lines are a linear fit to OA values.

In short, reducing the model’s dependence on training samples is beneficial to image
classification tasks. It not only reduces the difficulty of collecting time series labeled data
(especially in complex environments and terrain conditions), but also reduces the cost and
workload of labeling samples.
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5.3. Cloud-Robust

More and more optical satellites monitor the dynamic spatiotemporal processes of the
earth’s surface in a regular time with a few days intervals. However, satellite images are
inevitably lost, as the surface is usually completely or partially covered by clouds. It limits
the extensive research and application of majority remote sensing approaches, and brings
great challenges for the methods that are designed with cloud-free imagery in mind.

Therefore, we simulated time series images with different degrees of cloud coverage.
Since the overlap of some original satellite images in Jiamusi, we had supplemented more
abundant J1, J2, and J3 data from 2015 to 2016, including images with full or thick cloud
coverage. Then it was further filtered and divided into time series subdata sets with the
same total length (the length is 24 here). The time distribution of each subdata set in the
three regions is displayed in Figure 10, and various color annotations indicate varying
degrees of cloud coverage images. It should be noted that the cloud coverage is calculated
by ROI (region of interest) from the clipped area. Moreover, only the labels of cloud-free
images were reserved for the training process (the green circles in Figure 10), whereas other
images with clouds had no known labels to participate in training.

Jiamusi (J2)

Jiamusi (J1)

©) 000000 000000000000000000

B) 00 ©COO 000 00000000000 0C00CS

Koee o ee o @0@0®@0 0 @ co@e
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Figure 10. The time series subdata sets with different cloud coverage in the three regions from Jiamusi, in which various

colored circles represent images with varying cloud coverage. (a) J1; (b) J2; (c) J3; (d) the legend.

Finally, there are three types of subdata set with different degrees of cloud coverage in
each experimental region:

(A), The subdata set is basically full of cloud-free coverage images, and only a few
are low-cloud coverage images. But such data set is difficult to guarantee the distribution
of equal time intervals, and some data may be continuously missing for months (like the
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subdata set (A) in J3 which has no data for up to five months). We call this phenomenon
“the lack of time series data”.

The subdata set (B) is composed of images with cloud coverage less than 50%, making
the time series images distributed as uniformly as possible. However, there are still cases
where no data in individual months, and remote sensing data of adjacent time phases are
used instead.

In the subdata set (C), it contains images obscured by full or thick clouds (we called it
“the lack of image data”), but its time series data is continuous and evenly distributed. In
other words, there is an image every month.

On this basis, we trained different deep neural networks to conduct comparative
experiments on the above-mentioned time series subdata sets with different cloud coverage.
The results (OA) of their predicted classification are shown in Figure 11. Among the three
sets of experimental results, our SemiLSTM network had a robust classification regardless
of the lack of time series data or image data. It shows that the semi-supervised learning
method can not only reduce the dependence on samples, but also reduce the interference
in clouds and shadows (negative samples) on the network training. It makes SemiLSTM
model have a certain ability to resist the interference in clouds and learn features from
other areas with cloudless coverage.

Jiamusi(J2) Jiamusi(J3)

100.00% 100.00%

80.00% 80.00%
S 60.00% $60.00%
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Figure 11. The OA results of time series subdata sets with different cloud coverage (where (A), (B) and (C) represent subdata
sets containing low-cloud, less than 50%-cloud and thick cloud coverage respectively). (a) J1; (b) J2; (c) J3.

Besides, in the comparative experiments of subdata sets (A), (B), and (C) with different
degrees of data missing, classification results of (C) were relatively poor even using the
semi-supervised method. It can be seen that the lack of image data has a greater impact on
classification than the lack of time series data. Thus, the data base without cloud coverage
should be satisfied as much as possible in the application of time series images. In fact,
optical satellite images are always difficult to avoid the interference of clouds and shadows
(thick or thin coverage), such as subtropical areas that are easily blocked by clouds. At this
time, our method still has good classification robustness.

6. Conclusions

In this study, we developed a novel deep neural network Semil.STM to classify land
cover by learning spectral-spatial-temporal features from time series remote sensing images.
Compared with a variety of classification models (including non-deep learning and deep
learning models), it has a more prominent classified performance. Among three LSTM-
based deep learning networks, we verified that properly increasing the temporal length
of time series input is conducive to land cover classification. Owing to the advantages
of semi-supervised learning, our SemiLSTM model reduces the dependence on training
samples, so that it still has a good classification performance in the case of a small number
of known training labels. In addition, we supplemented and reorganized time series
subdata sets with different cloud coverage to simulate the real situations of optical remote
sensing images for comparison experiments. It shows that the lack of image data has
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a more serious impact on classification accuracy than the lack of time series data, but our
SemiLSTM model is still robust for time series land cover classification with high cloud
coverage. The study suggests that this classified method can reduce the requirements
for data collection with abundant cloudless images or a lot of known labels, which is
conductive to the application and promotion of the method. Moreover, it provides valuable
help for optical remote sensing applications and research in areas that are seasonally or
often obscured by clouds, such as subtropical areas.
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