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Abstract: Sea fog is a disastrous marine phenomenon for ship navigation. Sea fog reduces visibility
at sea and has a great impact on the safety of ship navigation, which may lead to catastrophic
accidents. Geostationary orbit satellites such as Himawari-8 make it possible to monitor sea fog
over large areas of the sea. In this paper, a framework for marine navigation risk evaluation in fog
seasons is developed based on Himawari-8 satellite data, which includes: (1) a sea fog identification
method for Himawari-8 satellite data based on multilayer perceptron; (2) a navigation risk evaluation
model based on the CRITIC objective weighting method, which, along with the sea fog identification
method, allows us to obtain historical sea fog data and marine environmental data, such as properties
related to wind, waves, ocean currents, and water depth to evaluate navigation risks; and (3) a way
to determine shipping routes based on the Delaunay triangulation method to carry out risk analyses
of specific navigation areas. This paper uses global information system mapping technology to get
navigation risk maps in different seasons in Bohai Sea and its surrounding waters. The proposed sea
fog identification method is verified by CALIPSO vertical feature mask data, and the navigation risk
evaluation model is verified by historical accident data. The probability of detection is 81.48% for sea
fog identification, and the accident matching rate of the navigation risk evaluation model is 80% in
fog seasons.

Keywords: sea fog identification; Himawari-8; navigation risk evaluation; CRITIC weighting method

1. Introduction

The visibility at sea will be greatly reduced in foggy weather [1], and ships sailing in
fog tend to slow down and proceed carefully. However, collisions with other ships and
rocks, and ship stranding, occur frequently every year in fog seasons [2]. Bohai Sea and
Yellow Sea in China have a high incidence of sea fog [3], which has a great impact on ship-
ping navigation and route planning. When using traditional, ground-based observational
methods of sea fog (e.g., as obtained at meteorological stations), it may be hard to obtain the
sea fog distribution of a whole sea area, which makes it difficult to assess navigation risks
in fog seasons. In recent years, with the development of remote sensing technology, sea fog
monitoring methods with large ranges and high frequency have gradually matured [4],
which makes it possible to develop navigation risk assessment models in fog seasons.
Indeed, it is of great significance for sailors to make correct navigational decisions when
sailing in foggy weather.

There is little research in the field of navigation risk assessment that applies to remote
sensing technology for sea fog detection, although many methods of detecting sea fog by
remote sensing have been developed. For instance, the multiband threshold algorithm [5]
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and U-Net deep learning method [6] were used for sea fog detection based on Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite data. An unsupervised learning
algorithm was used for sea fog detection based on Communication, Ocean, and Meteo-
rological Satellite (COMS) data [7], while a dual-satellite method was proposed by [8],
which combined Himawari-8 and FY-4A satellite data to detect sea fog at dawn. The authors
of [9] proposed a decision tree approach that combined Himawari-8 and Geostationary
Ocean Color Imager (GOCI) satellite data to detect sea fog. However, ship navigation
risk assessments require long-term and daily sea fog data, which limits existing sea fog
detection methods based on multi-source remote sensing satellites or satellites with a long
revisit period. Himawari-8 is a geostationary orbit satellite launched by Japan in 2014,
which can provide stable remote sensing images at intervals of 10 min [10], but few sea
fog detection studies based on individual Himawari-8 satellite data have been conducted.
The authors of [11] proposed a normalized difference snow index (NDSI) threshold algo-
rithm for sea fog detection, but they noted that distinguishing between low clouds and
sea fog could be further improved. Therefore, establishing a sea fog identification method
based on Himawari-8 satellite data, as well as deriving a navigation risk estimation model
based on remote sensing data, are great challenges for both research fields.

In navigation risk estimation research, weighting methods and analysis methods have
been used to construct navigation risk assessment models. Some examples include the
Fuzzy Analytic Hierarchy Process (Fuzzy-AHP) [12], formal safety assessment (FSA) [13],
and Fuzzy reasoning [14], which were used to construct navigation risk estimation models.
The authors of [15] analyzed navigation risks in the Arctic with a Bayesian network.
According to these studies, due to a lack of objective data, experienced experts inevitably
need to be used as a supplementary approach, leading to some subjective uncertainties in
the estimations. Objective data (such as historical accident data) are considered to have
more potential in providing unbiased risk information [16–18], such as being used as
training data in a Bayesian network. Historical accident data and automatic identification
system (AIS) data can be used instead of an experienced expert, which have further revealed
potential links between different risk factors [19,20]. However, apart from training Bayesian
networks, objective data are rarely used in other navigational risk estimation research.
In addition, these studies had a good analytical capability for specific ships and accidents,
but were unable to reflect the spatial distribution and variation of risks.

In order to enhance spatial analysis capability, the spatial multi-objective decision
method was applied to the navigation risk estimation research. For instance, Fuzzy-
AHP [21,22] and the grey relationship analysis (GRA) method were used to weigh eval-
uation criteria, and a navigation risk evaluation model based on spatial multi-decision
technology was constructed [23]. Questionnaire data and expert experience data have also
been used [21,22], which led to strong subjectivity, and the study by [22] regarding low
cloud data was used to replace the sea fog. Therefore, to provide better navigation risk
estimation in fog seasons, it is necessary to integrate sea fog detection technology into
navigation risk estimation models, and calculate the weights of relevant criteria using
objective data.

The main aims of this paper are to: (1) develop a sea fog identification method model
based on Himawari-8 remote sensing imaging data, and obtain a large historical sea fog
data set of Bohai Sea and its surrounding waters. Then, the main fog season(s) and fog
area(s) are distinguished by statistical analyses; (2) determine the criteria weights from
accident data using an objective weight method to avoid subjective uncertainties in the
weight determination, and use data of sea fog, wind, waves, currents, and water depth to
construct a navigation risk estimation model based on spatial multi-decision technology;
and (3) assess the navigation risk during each of the four seasons, divide the shipping
routes into different navigation areas, and analyze the risks in the specific navigation areas
during each season.
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2. Materials
2.1. Study Area

The study area in this paper includes Bohai Sea and its surrounding waters in China.
As shown in Figure 1, the study area ranges from 117◦ E to 123◦ E, 35.5◦ N to 41◦ N.
This region includes the main ports in five provinces around the Bohai Economic Rim,
including Qingdao Port, Yantai Port, Dalian Port, Tianjin Port, Yingkou Port, etc. The study
area is the main area of maritime trade in northern China, and also an important navigable
area in China. The study area is adjacent to North Korea, South Korea, Japan, and other
countries in eastern Asia. The navigable environment of Bohai Sea is relatively complex,
and the average water depth of the sea area is less than 30 m [24]. Influenced by monsoons,
the climate of Bohai Sea and Yellow Sea presents obvious seasonal and spatial charac-
teristics. In winter, influenced by cold air, the wind is strong, and the waves and surges
produced have a great influence on the navigability of ships [25]. In summer, as warm and
humid air flows northward, sea fog is easily generated and has a great influence on ship
navigability [26].
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2.2. Data

For our sea fog identification method, Imagery of Advanced Himawari Imager (AHI)
sensor from Himawari-8 satellite and CALIPSO lidar level-2 vertical feature mask (VFM)
data are used for sea fog sample construction, classifier training, and accuracy verification.
AHI data around UTC 09:00 every day from 2015 to 2020 are used to obtain the daily sea fog
information in the research area. These data are combined with wind and wave data from
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the ECMWF Reanalysis v5 model (ERA5), ocean currents data from the Hybrid Coordinate
Ocean Model (HYCOM), and water depth data from General Bathymetric Chart of the
Oceans (GRBCO) to statistically ascertain the occurrence of adverse sea conditions. Second,
historical accident data of the sea area are used to calculate the weights of the criteria and
to verify the risk evaluation model. The shipping route data are also used to divide the
navigation section area so that risk analyses can be conducted on specific routes or parts
thereof. The source, data introduction, related references, time, and use of the various data
are shown in Table 1.

Table 1. Data information.

Name Source Data Description Time Purpose

AHI data
Japan Aerospace Exploration Agency

(https://www.eorc.jaxa.jp/ptree
(accessed on 1 July 2021))

Remote sensing images
from the AHI sensor [10] 2015–2020

Sea fog identification and
calculating the frequency

of monthly sea fog

CALIPSO-VFM

National Aeronautics and Space
Administration

(https://search.earthdata.nasa.gov/search
(accessed on 7 July 2021 ))

Classified data of clouds
and aerosols from

CALIPSO lidar level-2
product [27]

2018 Sea fog samples and
verifying the accuracy

Wind

European Centre for Medium-Range
Weather Forecasts

(https://www.ecmwf.int/
(accessed on 15 June 2021))

10 m wind reanalysis data
from ERA5 [28] 2015–2020 Calculating the frequency

of strong wind

Sea wave

European Centre for Medium-Range
Weather Forecasts

(https://www.ecmwf.int/
(accessed on 15 June 2021))

Significant Wave Height
reanalysis data from

ERA5 [28]
2015–2020 Calculating the frequency

of big waves

Ocean currents

National oceanic and atmospheric
administration

(https://www.ncei.noaa.gov/
(accessed on 16 June 2021))

Analyses currents data
from HYCOM [29] 2016–2020 Calculating the frequency

of big currents

Water depth
British Oceanographic Data Centre

(https://www.bodc.ac.uk/
(accessed on 16 June 2021))

Global terrain model from
GEBCO [30] 2019 Obtaining water

depth data

Accident data

Maritme Safety Admininstration of the
people’s Republic of China
(https://www.msa.gov.cn/
(accessed on 1 March 2021))

Accident data collected
and disclosed by the

authorities
2015–2020 Weighting factors and

validating the risk model

Shipping routes

Maritme Safety Admininstration of the
people’s Republic of China
(https://www.msa.gov.cn/
(accessed on 1 March 2021))

Officially recommended
shipping route [31] 2019 Subdivision shipping

route

3. Methods

In order to evaluate the navigation risk in Bohai Sea and its surrounding waters, first,
a sample database based on AHI data and CALIPSO vertical feature mask (CALIPSO-VFM)
data is established, and a sea fog identification method based on Multilayer Perceptron
(MLP) method is developed. Second, the method is used to obtain a large historical
sea fog data set of the study area, which is combined with other evaluation factors to
calculate the occurrence frequency of severe sea conditions. Then, the criteria importance
through intercriteria correlation (CRITIC) objective weighting method is used to determine
the weights of the evaluation criteria, and obtain navigation risk maps of the area via
global information system (GIS) mapping technology. In order to further analyze the
risks, the Delaunay triangulation method is used to divide the sea area into different
waterway regions, and the risk values for the specific waterway areas are calculated.
Finally, two validation methods are used to validate the sea fog identification method and
navigation risk estimation model, and a sensitivity analysis of the model is carried out.
A method flow chart of this process is shown in Figure 2.

https://www.eorc.jaxa.jp/ptree
https://search.earthdata.nasa.gov/search
https://www.ecmwf.int/
https://www.ecmwf.int/
https://www.ncei.noaa.gov/
https://www.bodc.ac.uk/
https://www.msa.gov.cn/
https://www.msa.gov.cn/
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3.1. Sea Fog Identification

In this paper, the MLP method is used to identify sea fog in the study area. First, sea fog
sample points are selected from the CALIPSO-VFM and AHI data sets. Then, the spectral
characteristics and fusion spectra of sea fog and non-sea-fog samples are analyzed to
select features that benefit the classification. After that, sea fog and non-sea-fog binary
classification models are constructed by the MLP method, and the optimal parameters are
selected through training experiments. The specific processes are shown in Figure 3.
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3.1.1. Sample Selection of Sea Fog

It is difficult to distinguish between sea fog and low clouds and stratus clouds through
visual interpretations [32]. Therefore, a sea fog sample database is established using
CALIPSO-VFM data to assist the selection of sea fog samples from AHI images [5,33].
Figure 4 shows the selection method, where Figure 4a is an AHI image on 15 June 2018
at 05:10 UTC, and Figure 4b is the classification result when using CALIPSO-VFM data
from 15 June 2018 at 05:17 UTC. In the area in the red box in Figure 4b, the CALIPSO-
VFM data are used to identify places where clouds are in contact with the sea surface,
which are considered as sea fog points. From these, we extract the spectral values from
the corresponding positions in the AHI images (e.g., the red dots in Figure 4a). Then,
the spectral values at the sea surface, low clouds, and medium-high level clouds are
obtained using the same approach. A total of 9141 samples of sea fog, 10,071 samples of the
sea surface, 8733 samples of low clouds, and 10,771 samples of middle-high level clouds
were selected and used in this paper.

3.1.2. Feature Selection

After obtaining the spectral features of each object, it is necessary to analyze the
spectra to select features with better classification effect. The visible band of the Advanced
Himawari Imager sensor onboard Himawari-8 consists of channels 1–3 (central wave-
lengths of 0.47 µm, 0.51 µm, and 0.64 µm, respectively); channels 4–6 are near-infrared
bands (central wavelengths of 0.86 µm, 1.6 µm, and 2.3 µm, respectively), and channels
7–16 are infrared and far-infrared bands (central wavelengths of 3.9 µm, 6.2 µm, 6.9 µm,
7.3 µm, 8.6 µm, 9.6 µm, 10.4 µm, 11.2 µm, 12.4 µm, and 13.3 µm, respectively). The visible
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and near-infrared spectral characteristic curves of different objects are shown in Figure 5a.
In the first three bands, the mid-high level clouds and the sea surface are significantly
different from the sea fog and low clouds, but it is difficult to distinguish between low
clouds and sea fog. With an increase of wavelength, the reflectance of all kinds of features
gradually decrease, but the rate of change of sea fog in band 5 is significantly slower than
that of other features, and the difference between the sea fog and the low clouds becomes
obvious. According to [34], there are a large number of water droplets of 1 µm diameter in
sea fog, which increase the reflectance measured in bands 4 and 5 and slow down the rate
of change of reflectance in band 5; such behavior provides an obvious means to distinguish
sea fog from other objects.
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To identify more features, NDSI [11] is constructed with data from bands 2 and 5
(i.e., 0.51 µm and 1.6 µm), calculated using Equation (1) as:

NDSI =
B0.51µm − B1.6µm

B0.51µm + B1.6µm
, (1)
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where B0.51µm and B1.6µm represent bands with central wavelengths of 0.51 µm and 1.6 µm,
respectively, in the AHI data. It can be seen from Figure 5a that NDSI provides a significant
distinction between sea fog and low clouds. There are also distinct intervals between
different objects.

Figure 5b shows the characteristic curves of the different infrared bands. The bright-
ness temperatures of sea fog and the sea surface are very similar, and cannot be used to
effectively distinguish between them, even though the average height of low clouds is
higher than that of sea fog, and the brightness temperature of the former is slightly lower.
The brightness temperatures of middle-high clouds are the lowest, and this difference is
more obvious in bands 13, 14, and 15 (see, e.g., the red dotted box in Figure 5b). Therefore,
these three bands can be selected to further distinguish low clouds and sea fog.

Based on the spectral analysis, we selected bands 1, 2, 3, 5, and 14 and NDSI as
classification features to construct the sea fog sample set.

3.1.3. Sea Fog Recognition Method Based on MLP

As a mature classification method, Multilayer Perceptron (MLP) method has been
applied to various remote sensing image classification tasks [35,36]. In this paper, sea fog
identification is taken as a binary-classification task to train the MLP classifier. The low
clouds, sea surface, and medium-high level clouds are unified into a non-sea-fog category.
The objective function of the MLP binary classification method can be described as shown
in Equation (2) [37]:

min
w,b

1
2
||hw,b( f (wx + b))− y||2, (2)

where w and b represent the weight and bias of each layers, y represents the sample
labels, x represents the sample values, hw,b represents the output of the output layer, and f
represents the activation function. The kernel objective in this paper is the sigmoid function,
which can be described as given in Equation (3):

f (x) =
1

1 + exp(−x)
, (3)

Through training the MLP classifier, each parameter of the layers is obtained. The main
training process consists of four steps:

• Step 1: Normalize the sample values, which are scaled between [0, 1];
• Step 2: Divide the training set and testing set, and train the MLP classifier using the

former;
• Step 3: Cross validation to determine the optimal parameters; and
• Step 4: Complete MLP training and verify the accuracy of the classifier.

The partition ratio of training set to test set is 7:3, and the hidden layer sizes in this
study is 100× 100, and the random state is 10, the optimizer solver is “adam”. Through
training, a sea fog identification model based on AHI data is obtained, which is used to
obtain a large amount of historical sea fog information in the research area. The verification
method and accuracy results of sea fog identification are described in Sections 3.3.1 and 4.1.

3.2. Navigation Risk Assessment Model

After creating a suitable sea fog data source, the navigation risk assessment model can
be constructed according to various environmental elements in the study area. This section
mainly includes four parts: first, the accident data are statistically analyzed to select the
environmental factors that have the greatest impact on the navigation of ships in the study
area. Second, the data of each evaluation factor are preprocessed. Third, we introduce
a detailed process of determining the weights of each evaluation factor by the CRITIC
objective weighting method, and then construct the navigation risk assessment model.
Finally, we use the Delaunay triangulation method to divide the sea area into different
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navigational regions, and calculate the navigation risks in the specific navigational areas
for further risk analysis.

3.2.1. Criteria for Navigation Risk

The identification of relevant criteria is a very critical step in the construction of an
assessment model. The navigation risks mentioned in this paper refer to the loss of people
or property and the possible impact of the navigation environment, which may consist of
harsh conditions, resulting in the improper operation of the ship in the course of navigation,
and which may cause ship collisions (i.e., the collision of two or more ships), collisions
with stationary objects (i.e., with a reef, coast, or building), grounding (where the bottom
of the ship touches the bottom of the sea due to insufficient water depth), or a sunken ship
(sinking of ship) [38]. In order to obtain the criteria that may lead to identifying navigation
risks more objectively, we use accident data from Maritime Safety Administration of the
People’s Republic of China in study areas to determine criteria that have a greater impact
on ship navigation. In this paper, environmental risks are mainly used for assessment,
so the accidents caused by purely human factors need to be eliminated. After screening,
a total of 39 accident records were included. The distribution of accident data is shown in
Figure 6, where different color points represent accidents in different seasons.
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The accident assessment section of each accident report details the main and secondary
causes of the accident. As such, we used the accident assessment report to count the number
of accidents caused by the different assessment factors. When selecting accident records,
certain rules should be observed. For example, if there is a sentence whose meaning is
similar to “heavy fog in the sea, poor visibility, crew neglected to look out, resulting in
ship collision” in the accident cause assessment, it is considered that the accident is related
to sea fog and “1” is added to the number of accidents caused by sea fog in the statistics.
If there is a sentence whose meaning is similar to “the waters of the accident were affected
by strong winds, and the ship failed to evacuate the sea in time, resulting in the collision of
the ship”, it is considered that strong winds had an impact on the accident, and we added
“1” to the number of accidents caused by strong winds to the statistics. When the accident
is caused by a combination of various factors, such as “due to the superposition of strong
wind, cold air, and storm surge in the accident water area” recorded in the report, it is
considered that strong winds and big waves had an impact on the accident, and “1” is
added to the statistics of each category. The statistical results of the final criteria involved
in the historical accidents are shown in Table 2.
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Table 2. Statistics of accident-related factors.

Fog Wind Wave Currents Water Depth Rainfall Total

Number 13 17 18 7 9 4 68
Proportion 19.2% 25.0% 26.5% 10.3% 13.2% 5.8% 100%
Ranking 3 2 1 5 4 6

Finally, according to the statistical information and data support, the top five cri-
teria were selected, which were waves, wind, sea fog, ocean currents, and water depth.
These five criteria are meteorological and hydrological factors which are especially relevant
in meteorological navigation. Specifically, gale weather has an impact on both sailing
and berthing ships. Sailing ships are affected by gales when sailing, which will reduce
the controllability of the ships. If berthed ships are not fully anchored, the hull may shift
under greater wind pressure, resulting in grounding or a collision. When big waves occur,
they are usually accompanied by strong winds. It is difficult for ships to adapt to the
peaks and troughs of sea waves, and when ships with lower tonnages are hit by big waves,
their external structure will be subjected to greater external forces, which may cause dam-
age to the ship, which is very dangerous during navigation. Currents will also affect ship
navigation. In narrow sea areas, the speed and direction of ocean currents are unstable,
which makes it more difficult to effectively use seamanship. When sailing against the
currents, the energy consumption of a ship increases, and the difficulty of navigation also
increases [39].

Sea fog is the main reason affecting the visibility at sea. Many ship collisions, as well
as touching and grounding accidents, are caused by sea fog. Generally, ships will avoid
sailing in fog. However, when sea fog arises, it may be difficult for sailing ships to leave
the fog area promptly. When sea fog occurs, the sea waves are generally small but limited
by the field of vision. It is difficult for the crew to fully observe the surrounding navigation
environment, and the probability of accidents increases greatly [40]. Water depth is a
factor that must also be considered when planning passage through a channel. Before
sailing, the captain should plan the route reasonably according to the ship’s draught
and abundant water depth. Generally speaking, the nearshore sea is shallow, so when
nearshore navigation is affected by other factors, grounding and collisions may easily occur.
In addition, the water depth is related to sediment in the sea area, which may cause a
change of water depth due to the movement of the sea water. If the relevant properties of
the navigation area are not known in advance, accidents can easily occur.

In general, the five kinds of navigation environment criteria identified by the acci-
dent data statistics have a great impact on ship navigation, and are also the five main
environmental factors about which the maritime industry are very concerned. At present,
wind, waves, currents, and terrain factors can be supported by the existing product level
data, but it is still difficult to obtain sea fog data in large areas. Therefore, this paper uses
a remote sensing identification method to obtain the daily sea fog occurrence in Bohai
Sea and its surrounding waters over a five-year period, using the method described in
Section 3.1.3.

3.2.2. Data Processing

Five evaluation factors with a great impact on ship navigation were selected in
Section 3.2.1. However, before conducing the risk assessments, the risk factor value of each
criterion should be obtained in each of the four seasons. First, the spatial resolution of the
gridded data are unified to 0.125◦ × 0.125◦. Second, the risk values of each factor under
severe sea conditions are calculated from the gridded wind, wave, ocean currents, and sea
fog data from 2016 to 2020. Then, the risk grid values of each factor are standardized.
When setting the thresholds for the different evaluation criteria, we follow the methods
employed in previous research [21,41].
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First, the sea fog criterion calculates the occurrence frequency of sea fog in each grid
in the different seasons following Equation (4):

Fj
i =

∑ fi,k

dj , (4)

where Fj
i represents the occurrence frequency of sea fog in grid i in season j, fi,k represents

the occurrence of sea fog in grid i on day k, fi,k ∈ [0, 1], 0 represents no sea fog, 1 represents
sea fog, and dj represents the total number of days in season j.

The wind criterion, for wind speeds greater than 11.7 m/s in each grid, in different
seasons is calculated via Equation (5):

Gj
i =

∑ gi,k

dj , (5)

where Gj
i represents the frequency of wind speeds greater than 11.7 m/s in grid i in season

j, gi,k represents wind conditions for grid i on day k, gi,k ∈ [0, 1], 0 represents wind speeds
slower than 11.7 m/s, 1 represents winds speeds greater or equal to 11.7 m/s, and dj

represents total days in season j.
Calculation of the wave and currents criteria are same as for the wind criterion,

where the thresholds for the wave and currents criteria are 2 m and 1 m/s, respectively.
The water depth is a static criterion, where each grid risk value of water depth is

calculated using Equation (6):

Di =


0 di > 30 m

1− di
30 0 m < di < 30 m
1 di < 0 m

, (6)

where Di represents the risk value of water depth in grid i, and di represents the original
water depth value.

After calculating these criteria, it is necessary to standardize the grid values to 0–1.
The standardization formula used in this paper is shown in Equation (7):

x′ =
x− xmin

xmax − xmin
, (7)

where x′ represents the standardized value, x represents the original risk value, xmin
represents the minimum value, and xmax represents the maximum value.

3.2.3. Weighting the Criteria Using CRITIC

Weights can reflect the importance of each evaluation criterion, and the method of
weighting is an important step in building a spatial, multi-objective decision model. The tra-
ditional way to obtain weighting data is from an expert’s knowledge or a questionnaire,
which inevitably involve some subjective uncertainties. With the aim of eliminating sub-
jectivity as much as possible, we collected accident data from 2015 to 2021 in Bohai Sea
and Yellow Sea, and reproduced the values of each evaluation factor during the accident
using the CRITIC weighting method to get the criteria weights. The CRITIC method
determines weights according to the discretization of each criterion and the relationships
between them [42], and is widely used in weight determination problems [43,44]. In this
paper, the CRITIC method is used to get the criteria weights from historical accident data.
The specific weight determination steps are as follows.
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• Step 1. The accident value of each criterion is standardized using Equation (7).
• Step 2. The standardized data are organized into an evaluation matrix. The columns

represent different criteria, and the rows represent the standardized value of the same
criteria, as shown in Equation (8):

x′11 x′12
x′21 x′22

· · · x′1k
x′2k

...
...

. . .
...

x′n1 x′n2 · · · x′nk

, (8)

where k represents the total number of criteria, n represents the total number of
accident records, and x′ represents the standardized value.

• Step 3. Calculate the correlation coefficients, and a correlation coefficient matrix is
obtained, expressed as Equation (9). Then, the conflict coefficient of each evaluation
factor is calculated by Equation (10):

r11 r12
r21 r22

· · · r1k
r2k

...
...

. . .
...

rk1 rk2 · · · rkk

, (9)

Rz =
k

∑
m=1

(1− rz,m)z ∈ [1, . . . , k], (10)

where Rz represents the conflict coefficient of criterion z, and rz,m represents the
correlation coefficients between criteria z and m. Note that a bigger correlation between
criterion z with other criteria produces a smaller Rz.

• Step 4. Calculate the sample standard deviation of each criterion using Equation (11):

Sz =

√√√√∑n
l=1

(
x′l − x′

)2

n− 1
, (11)

where Sz represents the sample standard deviation of criterion z, and x′ is the mean of
the standardized values.

• Step 5. The amount of information for criterion z is calculated with the conflict
coefficient Rz obtained in Step 3 via Equation (12):

Cz = Sz·Rz, (12)

where Cz represents the amount of information of criterion z.
• Step 6. Normalize the amount of information and get the CRITIC weights for each

criterion following Equation (13):

wc
z =

Cz

∑k
m=1 Cm

, (13)

where wc
z represents the CRITIC weight of criterion z.

Through the above six steps, the CRITIC method can be used to obtain the different
criteria weights. When the correlations between a criterion and other criteria are large and
the variances are small, the CRITIC weight of this criterion will be relatively small. Thus,
this method can make a tradeoff between the correlations and the standard deviations of
the different factors, and hence give more reasonable weight values. The final weight of
each criterion is combined with the accident statistics (see Table 2) using Equation (14):
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wz =
wc

z ×Qz

∑k
m=1 wc

m ×Qm
, (14)

where wz represents the final weight of criterion z, and Qz represents the normalized
statistics of criterion z, obtained from Table 2.

The correlation coefficients of the five criteria are shown in Table 3. The high correla-
tion coefficient between the wind and wave criteria indicates a certain correlation between
wind and waves in accidents. The weak negative correlation between sea fog and wind
reflects that it is not easy to generate sea fog in gale weather. The correlations between
ocean currents with the other factors are small reflecting that the ocean currents are less
affected by other environmental factors. The weighting results are shown in Table 4 in
descending order: sea fog, waves, wind, depth, and currents.

Table 3. Correlation table of CRITIC-determined weights.

Wind Wave Sea Fog Currents Water Depth

Wind 1 0.76 −0.15 0.23 0.19
Wave 0.76 1 −0.17 0.04 0.12

Sea fog −0.15 −0.17 1 −0.01 −0.12
Currents 0.23 0.04 −0.01 1 −0.21

Depth 0.19 0.12 −0.12 −0.21 1

Table 4. Weights.

Name Wind Wave Sea Fog Currents Water Depth

Rz 2.97 3.24 4.46 3.95 4.02
CRITIC
weights 0.14 0.17 0.36 0.17 0.14

Final weights 0.19 0.23 0.37 0.09 0.10
Rank 3 2 1 5 4

The navigational risk value is calculated through Equation (15):

Ri =
k

∑
z=1

wz × x′i,z, (15)

where Ri represents the navigational risk value in grid i, and x′i,z represents the standardized
value of criterion z in grid i. The calculated navigational risk values are standardized using
Equation (7). After standardization, the final navigational risk assessment values are
obtained, which are divided into four levels: [0, 0.25), [0.25, 0.5), [0.5, 0.75), and [0.75, 1],
representing “safe”, “a little safer”, “a little dangerous”, and “dangerous”, respectively.

3.2.4. Shipping Routes Subdivision

To provide a suitable risk analysis of specific shipping lanes in Bohai Sea and its sur-
rounding waters, 107 main shipping routes officially recommended by the China Maritime
Safety Administration in the study area [31] are considered in this paper (as shown in
Figure 7). Next, the shipping routes are manually simplified (as shown in Figure 8a). Then,
the Delaunay triangulation method is used to divide the navigation area into the main
shipping routes. The main steps of this process are described as follows.
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Figure 7. Shipping route distribution.

• Step 1: Merge and simplify the dense shipping routes;
• Step 2: Generate equally spaced route points along the simplified shipping routes;
• Step 3: Use the Delaunay triangulation method to generate a regional Tyson polygon

network with route points as the source;
• Step 4: Merge polygons from the same source to form a route subdivision;
• Step 5: Trim the boundaries manually.

A subdivided region is obtained after trimming, where the sea area is divided into
different regions according to the shipping routes, as shown in Figure 8a–c. The black
line segments in Figure 8a show the simplified shipping routes, and the green points are
the route points generated at equal intervals along the routes. Figure 8b shows the Tyson
polygon network generated by the route points, and Figure 8c shows the regional channel
network after merging and trimming.

By dividing the sea areas into different routes, a risk analysis can be clearly conducted
on each specific route area. The mean risk value represents each route’s region risk for
every area, which is calculated as Equation (16):

Rd =
Rd

sum
Ad

, (16)

where Rd represents the risk value of region d, Rd
sum represents the total risk value of region

d, and Ad represents the area of region d. By classifying the risks in each region of each
route, the risks therein can be further analyzed. Section 4.4 describes the analysis results.



Remote Sens. 2021, 13, 3530 15 of 26
Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 26 
 

 

 
Figure 8. Channel area division process, (a) the simplified shipping routes and points; (b) the regional Tyson polygon 
using Delaunay triangulation method with route points as the source; (c) shipping route areas after merging and trimming. 

By dividing the sea areas into different routes, a risk analysis can be clearly con-
ducted on each specific route area. The mean risk value represents each route’s region risk 
for every area, which is calculated as Equation (16):  𝑅ௗതതതത = ோೞೠ , (16) 

where 𝑅ௗതതതത represents the risk value of region d, 𝑅௦௨ௗ  represents the total risk value of 
region d, and 𝐴ௗ represents the area of region d. By classifying the risks in each region of 
each route, the risks therein can be further analyzed. Section 4.4 describes the analysis 
results. 

Figure 8. Channel area division process, (a) the simplified shipping routes and points; (b) the regional Tyson polygon using
Delaunay triangulation method with route points as the source; (c) shipping route areas after merging and trimming.

3.3. Validation Methods
3.3.1. Sea Fog Identification Validation Using the CALIPSO-VFM Points

In this paper, CALIPSO-VFM data are used for sea fog verification. The CALIPSO-
VFM data of Bohai Sea and Yellow Sea from January to September in 2018 are selected
to identify different types of ground objects along the trajectory lines, which are treated
as different object points. The observing times of the AHI data and CALIPSO-VFM data
are controlled within 10 min. After obtaining the sea fog inversion results using the MLP
method, the confusion matrix is counted, and the spatial distributions of the track points
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are obtained, as shown in Figure 9. Four types of ground objects are clearly indicated
here, but only sea fog and non-sea-fog are required for the analysis made in this paper.
The detailed classification made here allows us to further analyze the algorithm’s accuracy.
This paper compares and analyzes the results obtained with the proposed MLP method
with those obtained by the NDSI threshold method proposed by [11], and the specific
results are shown in Section 4.1.1.
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3.3.2. Navigation Risk Evaluation Validation Using the Accident Points

This paper uses accident data to verify the accuracy of the evaluation model. The col-
lected accident reports are treated as accident points, which are divided into four subsam-
ples based on the four seasons (e.g., spring, summer, autumn, and winter). The specific
distribution of the accident points is shown in Figure 6. When matching the accident points
with the navigation risk evaluation results in the same season, if an accident point occurs
in a high-risk area (i.e., a risk value greater than or equal to 0.5), the match is successful;
if it occurs in a low-risk area (i.e., a risk value less than 0.5), the match is not successful.
The matching degree of the model with the accidents was verified by counting the matching
rate, and the results are shown in Section 4.2.

3.3.3. Sensitivity Analysis

A sensitivity analysis can be used to analyze the stability of a model and observe
the stability of the evaluation criteria weights. The one-at-a-time method is a widely
used sensitivity analysis method for spatial multi-objective decision technology [45,46],
where the sensitivity increase/decrease of the spatial evaluation results is calculated by way
of the aggregate mean, which has been applied to the risk evaluation model in this paper.

The main steps of the method are as follows. First, for criteria a, the weight value
is increased and decreased using 10% equal intervals. The scaling range is [−50%, 50%],
and the new weight of criteria a is obtained using Equation (17):

wa(cr) = (1 + cr) ∗ wa , (17)
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where wa(cr) represents the new weight of criteria a, cr is the increased/decreased value,
and wa represents the original weight. To ensure that the summed weights equal 1, Equation
(18) is calculated for the remaining criteria:

wh(cr) = wh ×
1− wa

1− wa
, (18)

where wh(cr) represents the weights adjusted for the remaining criteria, (h 6= a), and wh
represents the original weight of criterion h.

Then, the new risk evaluation values are calculated using the adjusted weights,
as shown in Equation (19):

R(wa, cr) = wa × x′a +
n

∑
a 6=h

wh × x′h, (19)

where R(wa, cr) represents the new risk evaluation value for each grid, x′a represents the
standardized value of criterion a for each grid, and x′h represents the standardized value of
criterion h for each grid.

The mean of the absolute change rate (MACR) of the whole region is calculated to
obtain the change rate of criterion a with changes cr, following Equation (20):

MACR(wa, cr) =
S

∑
j=1

1
S

∣∣∣∣∣Rj(wa, cr)− R0
j

R0
j

∣∣∣∣∣× 100%, (20)

where MACR(wa, cr) represents the MACR of the risk evaluation in the whole region,
Rj(wa, cr) represents the risk evaluation value of the j-th grid after weight adjustment,
and R0

j represents the original risk evaluation value, S represents the total number of grids.
If the adjustment amplitude of a criterion weight is far less than the change amplitude

of the model result, it indicates that the proposed model has good stability. The results of
the sensitivity analysis are shown in Section 4.3.

4. Results
4.1. Sea Fog Identification
4.1.1. Identification Precision

The MLP sea fog identification method was applied using Python programming,
and the algorithm was verified using the CALIPSO-VFM classification points; the results
it produced were then compared with those obtained with the NDSI threshold method
proposed by [11]. The accuracy evaluation indices used in this paper are based on the work
of [7], including the probability of detection (POD), probability of false detection (PFD),
probability of missing detection (PMD), and equitable threat score (ETS). The calculation
formulas of the four indicators are respectively shown in Equations (21)–(24):

POD =
H

H + M
, (21)

PFD =
F

F + C
, (22)

PMD =
M

H + M
, (23)

ETS =
H − (H + F)(H + M)/N

H + M + F− (H + F)(H + M)/N
(24)

where H represents the number of verification data points related to sea fog, C represents
the number of verification data points that are all non-sea fog related, F represents the
number of non-sea-fog data points that the algorithm incorrectly identifies as sea fog,
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and M represents that the verification data that are sea fog, but the algorithm incorrectly
identifies as non-sea-fog. N represents the total number of points.

The confusion matrix of the results from the two algorithms (i.e., the MLP sea fog
identification algorithm and NDSI threshold method) is shown in Table 5, and the precision
comparison results are shown in Table 6.

Table 5. Confusion matrix of sea fog classification.

Sea Fog Non-Sea Fog

H F

Sea fog MLP 88 17
NDSI 96 75

M C

Non-sea-fog MLP 20 206
NDSI 12 148

Table 6. Accuracy of sea fog classification.

Methods POD PMD PFD ETS

MLP 81.48% 7.62% 18.51% 59.22%
NDSI threshold 88.89% 33.63% 11.11% 31.61%

It can be seen from the results that the POD of both MLP sea fog identification
algorithm and NDSI threshold method are more than 80%; indeed, the NDSI threshold
algorithm identifies eight more sea fog points relative to the MLP method. However,
the NDSI threshold algorithm identifies more non-sea-fog points as sea fog, resulting in
lower accuracy indices tested by the algorithm. These non-sea-fog points are mainly low
clouds, indicating that the NDSI threshold algorithm is not able to effectively distinguish
between sea fog and low clouds. The MLP sea fog classification method is relatively stable
for the various accuracy indices. Although the POD value of the MLP method is smaller
than that of the NDSI threshold algorithm, the former algorithm is more able to distinguish
between sea fog and non-sea fog points than the NDSI threshold algorithm, with an ETS
of 59.22%. Therefore, the MLP sea fog classification method constructed in this paper
performs better than the NDSI threshold algorithm on the whole.

4.1.2. Sea Fog Statistics

We applied the constructed sea fog identification algorithm to AHI data to get the sea
fog information of 1442 days in the study area from 2016 to 2019, and calculated the sea
fog occurrence of each grid in the four seasons. The location of Bohai Sea is about 37◦ N,
and according to the climate of the region, we set February to April as spring, May to July
as summer, August to October as autumn, and November to January of the next year as
winter. Following these classifications, the fog occurrence of the four seasons in the study
area is shown in Figure 10.
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The sea fog in the study areas begins from the winter, and goes until the next autumn.
The occurrence frequencies of sea fog in spring and summer are higher, while those in
autumn and winter are lower; thus, the seasonal occurrence of sea fog shows obvious
differences. From winter to the next autumn, the high incidence area of sea fog shows a
trend of developing from south to north, and from west to north.

From the perspective of spatial distribution, in winter, the higher frequency areas of
sea fog are in the west of Bohai Sea, and with an eastward movement tendency with time.
In spring, higher frequency areas of sea fog are in the Yellow Sea and south of Bohai Sea,
with a northward movement tendency with time. The two tendencies gather in the south
of Bohai Bay in summer, when the frequency of sea fog reaches its highest value in the
whole year.

On the other side, the frequency of sea fog in spring and summer is greater than that in
autumn and winter, and in winter, strong winds are frequent, which have a greater impact
on navigation than sea fog [25]. Therefore, this paper considers the spring and summer
as the main fog seasons (February to July). This result will be useful for navigational
risk analyses.
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4.2. Navigation Risk Evaluation Validation

The navigation risk evaluation model was coded in the R language and ArcGIS
software. The matching results between the evaluation results and accident points are
shown in Figure 11a–d, the latter of which respectively shows the results from in spring,
summer, autumn, and winter. The specific matching results are shown in Table 7.

Remote Sens. 2021, 13, x FOR PEER REVIEW 20 of 26 
 

 

4.2. Navigation Risk Evaluation Validation 
The navigation risk evaluation model was coded in the R language and ArcGIS soft-

ware. The matching results between the evaluation results and accident points are shown 
in Figure 11a–d, the latter of which respectively shows the results from in spring, summer, 
autumn, and winter. The specific matching results are shown in Table 7. 

 
Figure 11. Navigation risk assessment and accident points matching results in (a) spring; (b) sum-
mer; (c) autumn; (d) winter. 

Table 7. Accident matching table. 

 Spring Summer Autumn Winter Summary 
Success 6 6 6 2 20 

All accident numbers 8 7 8 6 29 
Matching rate 75% 85% 75% 33% 69.9% 

The matching degree of the navigation risk evaluation model is 69.9%. In summer, 
the matching degree reaches 85%, where only one accident point is not successfully 

Figure 11. Navigation risk assessment and accident points matching results in (a) spring; (b) summer;
(c) autumn; (d) winter.

Table 7. Accident matching table.

Spring Summer Autumn Winter Summary

Success 6 6 6 2 20
All accident

numbers 8 7 8 6 29

Matching rate 75% 85% 75% 33% 69.9%
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The matching degree of the navigation risk evaluation model is 69.9%. In sum-
mer, the matching degree reaches 85%, where only one accident point is not successfully
matched. In winter, the matching rate is low, only 33%, and four accident points are not suc-
cessfully matched. Of the four unsuccessfully matched accident points in winter, three are
concentrated on the eastern side of Bohai Sea, and occur around a similar time (within three
days) and in a similar area. The concentrated accidents have high randomness, leading to a
low matching degree in winter. Except for winter, the matching degrees of accidents in the
other three seasons are good, where only 1–2 points are not matched successfully. In the
fog season (spring and summer), the matching degree of the proposed model reaches 80%;
thus, the evaluation performance is great in the fog season.

It should be noted that the small amount of accident information is distributed ran-
domly in space and time. The overall matching degree of the model is 69.9%, and the
matching degree during the fog season is 80%. It can be considered that the model has
a good matching ability to accidents in the case of limited accident data, especially for
fog seasons.

4.3. Sensitivity Analysis

A sensitivity analysis can be used to analyze the fitting degree between model
weights and criteria values. Figure 12 shows the sensitivity analysis results of the one-to-a-
time method.
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It can be seen from the results that the most sensitive criterion is waves, and the least
sensitive criteria are currents. The descending order of sensitivity is waves, sea fog, wind,
water depth, and currents. The maximum change rate is 14% when the change amplitudes
of the criteria weights reach a maximum of 50%, and the corresponding change ratio is
0.28. The change rates of the evaluation results are much smaller than those of the criteria
weights, which means the weights obtained by the CRITIC objective weight method are
in good agreement with the criteria values, and the proposed navigation risk evaluation
model has good stability.

4.4. Navigation Risk Analysis

According to the results of the navigation risk assessment in the four seasons given in
Figure 11, winter has the greatest navigation risk in the study area throughout the year.
In winter, accompanied by large winds and waves, sea fog weather also occurs occasionally,
and the navigation risk in the sea area is high. The descending order of risk levels in the
other seasons is spring, summer, and autumn.
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In winter, the navigation risk in the southern part of the study area is greater than in
the northern part. In spring, the high-risk navigation area is concentrated in the central
part of Bohai Sea, extending from south to north. The high-risk area in spring has a trend of
developing to the outer side of Bohai Sea. In summer, the high-navigation risk area retreats
to outside of the Bohai Strait, and the risk value in the northern Yellow Sea increases.
In autumn, the risk value in the sea area decreases to a minimum, although the western
part of Bohai Sea has a relatively high value.

For further analysis, the evaluation results were calculated for every shipping region,
as shown in Figure 13. In winter and spring, high-risk shipping regions are in the south,
where the risks are high on the routes to Laizhou Port, Yantai Port, Harbor Port, Shidao
Port, and Qingdao Port. In summer and autumn, high-risk shipping regions are in the
north, and the risks are higher on the routes to Yinkou Port, Dalian Port, and Dandong
Port. Other high-risk routes are from Qingdao Port to Yantai Port in spring and summer,
and from Tianjin Port to Yantai Port and Shidao Port in spring and summer.
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5. Discussion

In the navigation risk assessment framework proposed in this paper, we utilized a
remote sensing sea fog identification method to obtain a large amount of accurate historical
sea fog data in Bohai Sea and its surrounding waters. In the experiment, we found
that the statistical results of sea fog are disturbed by low clouds, which could bring
some abnormal statistic values (for instance, some areas with more than 200 days of
sea fog in a year). In order to improve the classification accuracy, we used CALIPSO-
FVM data to construct the sea fog sample set, and selected the features that contribute
to the classification by spectral analysis. Compared with the NDSI threshold method
in [11], the POD of proposed method decreased by 7.41%, but the ETS increased by
27.61%, which has a better distinguishing performance on sea fog and low clouds. It is
very useful to have the historical frequency statistics of sea fog. The spatial distribution
and seasonal differences of sea fog frequency in Bohai Sea and its surrounding waters
are very obvious (Figure 10), the anomaly statistics disappear, and the results can be
applied to the navigation risk assessment model. However, the proposed method still has
some limitations. The small sample set size and unbalanced sample proportion are two
factors that restrict the classification performance. The number of accurate sea fog samples
obtained from CALIPSO-VFM data in Bohai Sea and Yellow Sea is limited, resulting in an
unbalanced sample proportion (the sample ratio of sea fog to non-sea fog data is 1:3). It is
necessary to expand the sample set size further. Observation data from weather ships or
ground stations may be a viable option, which will be performed in a future study.

In order to eliminate the subjectivity in the navigation risk assessment methods,
we collected the ship accident data of the study area for many years, and used the objec-
tive weighting method to determine the weight of criteria, from the accident matching
and sensitivity analysis results, it has achieved a good performance in Bohai Sea and its
surrounding waters. There are still some limitations that could be ameliorated further.
Firstly, the spatial resolution and data performance of datasets used in this paper are quite
different (for instance, the resolution of wind data is 0.25◦ × 0.25◦, but the resolution of the
currents is 0.125◦ × 0.125◦). Some data need to be unified by interpolation, as it is expected
that high-quality data could get the better risk-mapping results. Secondly, we significantly
consider the navigation environment factors in the model, and some thresholds about ship
factors follow the methods employed in previous research [21,41]. In the analysis about
the ship, even the human factors could be added in the model and the applicability of the
model will get a better performance.

In addition, with the development of geostationary orbit satellite and satellite con-
stellation observation technology, ocean state observation data like wind, sea surface
temperature, sea fog, etc. can be obtained in near real time. The historical or monitoring
data of sea fog derived from Himawari-8 data have been integrated into a risk model of
the proposed method; however, real-time sea fog observation data will be expected to
be applied in risk assessment when the temporal resolution is further improved by satel-
lite constellation. Using the real-time sea state observation data to evaluate and forecast
navigation risks will greatly enhance the risk warning capability of the model, but it is
a great challenge to develop a navigation risk forecast system. The dynamic Bayesian
network could be a solution: for example, Paper [47] used dynamic Bayesian network to
predict the risk of current and future time. Although this study only considers some risk
factors of the ship itself and does not make use of the observed data of the space marine
environment, it may be a feasible method for the prediction of navigation risk. Secondly,
if the forecast data of the sea state (like wind, currents, etc.) could be obtained, the spatial
multi- criteria decision-making method like this paper proposed can be used to evaluate
risk on the basis of the forecast data, which will improve the spatial expression ability of
the model. In general, the development of a spatial navigation risk prediction system is a
great challenge, but it is worth performing it in future work.
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6. Conclusions

This paper proposed a navigation risk evaluation method for Bohai Sea and its sur-
rounding waters in the fog season. The MLP method was used to build a sea fog iden-
tification method, and with this method, a sample of sea fog historical information in
the study area, obtained from AHI data, was obtained. The CRITIC method was used to
weight the various criteria, which included sea fog, wind, waves, currents, and water depth.
Then, a navigation risk evaluation was conducted using GIS mapping technology. For a
better risk analysis of specific shipping lanes in the study area, the Delaunay triangulation
method was used to divide the navigation area, and specific risk evaluation results of the
navigation area were obtained. The POD of the sea fog identification method was 81.48%,
the EST was 59.22%, and the accident matching rate of the navigation risk evaluation model
was 80% in the fog season. The stability of the model was verified by a sensitivity analysis.

This study can provide a reference for ship navigation, ship route planning, and risk
control in the four seasons in Bohai Sea and its surrounding waters. At the same time,
the division of the waterway area can provide some planning advice for the various ports
therein and the China Maritime Safety Administration, and may provide some help for
maritime cargo transport and maritime rescue.
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