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Abstract: Hydrological variable frequency analysis is a fundamental task for water resource manage-
ment and water conservancy project design. Given the deficiencies of higher distribution features
for the upper tail section of hydrological variable frequency curves and the corresponding safer
resulting design of water conservancy projects utilizing the empirical frequency formula and Pearson
type III function-based curve fitting method, the normal cloud transform algorithm-based model for
hydrological variable frequency analysis was proposed through estimation of the sample empirical
frequency by the normal cloud transform algorithm, and determining the cumulative probability
distribution curve by overlapping calculation of multiple conceptual cloud distribution patterns,
which is also the primary innovation of the paper. Its application result in northern Anhui province,
China indicated that the varying trend of the cumulative probability distribution curve of annual
precipitation derived from the proposed approach was basically consistent with the result obtained
through the traditional empirical frequency formula. Furthermore, the upper tail section of the
annual precipitation frequency curve derived from the cloud transform algorithm varied below the
calculation result utilizing the traditional empirical frequency formula, which indicated that the
annual precipitation frequency calculation result utilizing the cloud transform algorithm was more
optimal compared to the results obtained by the traditional empirical frequency formula. Therefore,
the proposed cloud transform algorithm-based model was reliable and effective for hydrological
variable frequency analysis, which can be further applied in the related research field of hydrological
process analysis.

Keywords: hydrological variable frequency analysis; cloud transformation algorithm; empirical
frequency; Pearson type III frequency curve; annual precipitation; northern Anhui province

1. Introduction

The distribution pattern of hydrological variables, which frequently consists of multi-
ple certainty elements and stochastic factors, is the comprehensive outcome of numerous
influencing factors, including meteorological climate, natural geography, human activities,
etc. [1,2]. Thus, the distribution characteristic exploration of hydrological variables is
known as an effective approach to reveal the response mechanism of various influenc-
ing factors on hydrological process evolution [3,4]. Meanwhile, as an important tool to
describe the natural characteristics of hydrological process evolution from spatiotempo-
ral variation perspectives based on hydrology, statistics, meteorology, and mathematical
principles, hydrological variable frequency analysis primarily concentrates on the explo-
ration of statistical rules of hydrological events and relationship description between
hydrological variable distribution and corresponding designed frequency of water conser-
vancy projects [3], and the related research results can provide a reasonable and scientific
decision-making basis for the construction of water conservancy projects [5,6].
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Overall, hydrological variable frequency analysis consists of research that includes
sample selection and data verification, calculation of sample empirical frequency, selection
of frequency distribution pattern, parameter estimation of frequency distribution function,
verification of frequency distribution function, determination of designed results of the
hydrological variable and corresponding uncertainty analysis, etc. [7–9], and the calculation
of sample empirical frequency and determination of frequency distribution function are
the key issues of hydrological variable frequency analysis. Generally, According to the
Regulation for calculating design flood of water resources and hydropower projects in
China, the hydrological variable frequency curve can be derived through the Pearson
III function-based curve-fitting method. Specifically, (1) in terms of the determination of
hydrological frequency distribution function, the actual frequency distribution function of a
hydrological variable so far still cannot be obtained from the perspective of the hydrological
evolution mechanism [7,10]. In practice, based on the selection of a certain type of frequency
distribution function and parameter estimation through historical observed data series,
the frequency distribution function of hydrological variables can be derived according
to the fitting results of the empirical and theoretical frequency of observed historical
samples when the curve-fitting error is acceptable, which essentially is an approximate
determination approach of the hydrological variable frequency distribution function [7,11].
In particular, the curve-fitting error for the upper and lower tail sections (i.e., external
extending parts) of the frequency curve cannot be neglected, because the top tail section of
the hydrological frequency curve (corresponding to low occurring possibility) is always
related to the occurrence of extreme hydro-meteorological events. (2) As for the calculation
of sample empirical frequency of hydrology variables, the estimation results of sample
empirical frequency would be different depending on the selection of frequency distribution
function [4,11]. Therefore, the sample empirical frequency would be the primary factor that
affects the frequency-curve-fitting error, except for the frequency distribution function and
curve-fitting principles [12]. Since Hazen first proposed the empirical frequency formula in
1914, many types of calculation formulas of empirical frequency have been reported around
the world [7,12]. Afterwards, a great number of works have been carried out focusing on the
improvement of the empirical frequency calculation formula of hydrological variables; for
instance, V.P. Singh proposed the parameter estimation method of frequency distribution
curve, according to the principle of maximum entropy [13,14]. P. Xie constructed the
calculation framework of hydrological frequency analysis for inconsistent annual runoff
series affected by frequent human activities and climate change [4]. Y. Li summarized the
latest research progress of hydrological frequency analysis and application prospects of the
probability weighted method, layered Archimedes copulas function, and Bayesian theory
in the field of hydrological frequency analysis [15]. M. Zhang proposed the maximum
entropy-principle-based method to determine the residual probability distribution function
of an annual runoff stochastic model, and recommended the simulation procedures of a
pure random series of maximum entropy distribution through rejection method [10]. K. Qin
and G. Y. Zhang obtained a frequency distribution curve of stochastic variables through vast
scattered historical samples, and then testified the rationality of the frequency-curve-fitting
results of stochastic variables [16,17].

To sum up, it could be revealed from the previous studies that the difference of
empirical frequency estimation results calculated by different approaches is not obvious for
the middle part of the frequency fitting curve, but is quite evident for both sides (especially
the top tail section), which will undoubtedly lead to an inaccurate designing outcome of
hydrological variables. Therefore, the normal cloud transform algorithm, which primarily
concentrates on the quantitative description of the cognitive process of qualitative fuzzy
concept by human intelligence, was innovatively introduced in the hydrological frequency
analysis field in this study. Specifically, based on the obtained probability density curve
of hydrological series through frequency histogram, firstly, the initial probability density
curve was transformed into multiple normal cloud distribution patterns with different
granularities; then, the probability density curve of hydrological variables was derived
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through overlaying and merging calculation of a different normal cloud distribution; and,
finally, the framework of the normal cloud transform algorithm-based model (CTAM)
for hydrological variable frequency analysis was proposed, which was further applied in
the frequency-curve-fitting calculation of the annual precipitation variable from different
hydrological stations in the northern Anhui province, China. The application results
indicated that the frequency-curve-fitting result of annual precipitation in northern Anhui
province based on the proposed CTAM model was basically consistent with the calculation
result obtained through the traditional empirical frequency formula-based curve-fitting
method (EFCF), and the design value of annual precipitation based on the CTAM method
was more optimal and reasonable than the corresponding result derived from the EFCF
method, especially for low cumulative frequency scenarios, which could provide rigorous
basis for the validation of the availability and effectiveness of the proposed CTAM method.

2. Overview of Study Area and Data Collection

The study area is located in the northern Anhui province, which resides on the
northern part of the mainstream Huaihe River, with a total area of 42,200 km2. As shown in
Figure 1, it is also located on the south borders of Shandong, Henan, and Jiangsu provinces,
which are within the hinterland of the central economic zone of China. The drought-affected
area in this region is approximately 53% of the total provincial arable land area [18–20].
Meanwhile, the northern Anhui province lies in the transitional zone of the subtropical zone
and warm temperate zone, with obvious transitional climate characteristics. The southeast
wind prevails in spring and summer, and the climate is warm and humid; meanwhile, the
northwest wind prevails in autumn and winter, and the climate is cold and dry. The annual
average precipitation in this region is about 850 mm. The seasonal allocation and temporal
distribution of precipitation vary significantly due to the influence of global climate change,
which leads to the alternation of cold and warm seasons and the occurrence of drought
disasters more frequently as well in the northern Anhui province.
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In addition, the historical annual precipitation data series over the period from
1954 to 2010 of the five hydrological stations in the northern Anhui province (Linquan,
Guoyangzha, Dangshan, Xifeihezha, and Mohekou) was downloaded from National Mete-
orological Information Center, which was also employed to further testify the feasibility
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and effectiveness of the proposed cloud transform algorithm-based model (CTAM) for
hydrological variable frequency analysis.

3. Methodologies
3.1. Cloud Model and Cloud Transform Algorithm

The cloud model, proposed by Chinese scholar D.Y. Li in 1995, is an effective mathe-
matical cognitive tool for the exploration of uncertain transformation mechanisms from a
qualitative concept to its quantitative expression, utilizing fuzzy mathematics and proba-
bility statistics theories [21]. The cloud model can combine the randomness of a variable
sample with the fuzziness of concept recognition, and then realize the natural transforma-
tion from a qualitative concept to its quantitative expression [21]. The definition of cloud
model can be explained as follows [21,22].

Supposing U to be a universal set denoted by precise sample data and C to be the
qualitative concept related to U, if quantitative value x (x ∈ U) is a random sample of the
concept C and satisfies x~N (Ex, En’2), En’~N (En, He2), then the membership degree of
quantitative value x belonging to concept C is defined as the certainty degree, as follows:

µ(x) = e−
(x−Ex)2

2En′ 2 (1)

where the distribution of variable x in universal set U is defined as normal cloud, which can
be denoted as C (Ex, En, He), and each data point (x, µ(x)) is called cloud drop. Meanwhile,
the distribution characteristics of the cloud model are described by three cloud parameters,
average Ex is the distribution center of qualitative concept C, which can best represent
the properties of the concept C, entropy En is used to represent the fuzziness of concept
C, reflecting the range of sample values accepted by concept C, and hyper-entropy He
represents the uncertainty of entropy En, revealing the concentration of samples under
certain deviation and making cloud drops uniformly distributed on both sides [21,23,24].

As a significant approach of probability statistics, the innovation of Gauss transforma-
tion is dividing the probability density function of a random variable into a multiple Gauss
distribution, which could provide realization of ideas for the division and overlay of the
multi-granularity concept [24]. By statistical transformation using mathematical principles,
the cloud transform algorithm can be applied to represent the distribution features of
scattered sample series through several cloud distribution patterns [25–27]. It is always nec-
essary to describe the qualitative concept from different perspectives; human intelligence
could realize logical reasoning from different granularities, and promote the improve-
ment of concept cognition level from lower granularity to higher granularity [24,28,29].
Therefore, the cloud transform process can be essentially deemed as gradual recognition
and description of the concept by human intelligence from the actual sample distribution
universe [23]. It has been theoretically verified that the probability density function of a
hydrological variable can be divided into several normal distributions [7,23,30]. There-
fore, the probability density function of a hydrological variable could be described with
the combination of multiple normal cloud distribution, denoted as Ci (Exi, Eni, Hei), and
each cloud distribution represents a certain discrete qualitative concept [21,24]. Thus, the
process of the cloud transform algorithm can be represented as follows:

g(x) =
n

∑
i=1

(ai · fi(x)) + δ(x) (2)

where g(x) denotes the probability density function of variable x, fi(x) represents the ex-
pectation function of scattered normal cloud distribution, corresponding to the qualitative
concept of different granularities, i and n denote the serial and total number of scattered nor-
mal cloud distribution patterns, ai represents the amplitude coefficient of ith scattered cloud
distribution, and δ(x) is the fitting error function, which can be obtained through iterative
calculation using the characteristic parameters of scattered cloud distribution [23,24,26].
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From the perspective of data mining, the cloud transform calculation can be considered as a
gradual extraction process of a more refined concept from the actual sample distribution of
a certain attribution of the rough concept. Furthermore, for a certain hydrological variable,
the contribution of samples corresponding to a higher peak value of the probability density
curve of qualitative concept is more significant than that of the samples corresponding to a
lower peak value. Therefore, firstly, the first local maximum value of the probability density
curve was considered as the qualitative concept center (which is the average of the normal
cloud model). Secondly, samples corresponding to the qualitative concept center were
excluded from the original probability density curve, and the next local maximum value
could be obtained from the probability density curve derived from the rest of the samples,
which could be deemed as the center of the next qualitative concept. Thirdly, the above
steps were repeated until the occurring probability of the rest of the samples decreased
below a certain threshold value, and, finally the exploration process of the cloud transform
algorithm for qualitative concept recognition from the original sample distribution was
accomplished [16,17,23]. In the next section of the manuscript, taking the cumulative
probability distribution frequency curve fitting of annual precipitation as an example, the
calculation process of the cloud transform algorithm is more explicitly explained.

3.2. Calculation Procedures of the CTAM Method for Hydrological Variable Frequency Analysis

Considering the deficiencies of the Pearson type III function-based approach for
hydrological frequency analysis and disagreement of different estimation formulas of
sample empirical frequency, the CTAM model for annual precipitation frequency-curve-
fitting analysis was recommended in this manuscript. More specifically, the realization
procedures of the CTAM model for the cumulated distribution frequency-curve-fitting of
annual precipitation could be explained as follows [17,23]:

Step 1: Determination of the probability density function g(x) of annual precipitation.
Firstly, the observed historical annual precipitation series was sorted from highest to
lowest, and the actual distribution interval could be divided into several subintervals
with constant step ∆P. Then, the average probability density of each subinterval was
obtained through frequency histogram of annual precipitation series, which varied more
and more closely to the median probability density when the sample capacity increased
and calculation step decreased gradually. Finally, the probability density frequency curve
of annual precipitation, denoted as g(x), could be obtained using the median series of
different subintervals as the X-axis and corresponding average probability density as the
Y-axis.

Step 2: Determination of scattered conceptual cloud distribution of annual precipita-
tion based on the cloud transform algorithm. Firstly, the peak of the probability density
frequency curve of annual precipitation g(x) was defined as the center of current scattered
conceptual cloud, and the central samples corresponding to the peak value as the average
Exi (i was the number of conceptual cloud, i = 1~n) of the current conceptual cloud. Then,
starting from the average Exi of the first conceptual cloud distribution, the amplitude coeffi-
cient ai of sample variation between the first maximum and closest local minimum on both
sides could be determined, and the sample distribution belonging to the current conceptual
cloud could be obtained as well when the amplitude coefficient ai was greater than a certain
threshold value σ1, otherwise, the local minimum value was updated until the amplitude
coefficient ai was greater than threshold value σ1. Finally, the normal backward cloud
algorithm without certainty degree could be applied to determine the entropy Eni and
hyper-entropy Hei for each scattered conceptual cloud [21,24], by which the corresponding
expectation curve could be considered as the probability density function fi(x) of each
conceptual cloud [17,24,31].

Step 4: Overlapping calculation of the normal conceptual cloud for annual precip-
itation probability density function. As indicated from step 1 to step 3, it was evident
that numerous computations and adjustments were needed during the determination of a
different scattered conceptual cloud and its corresponding probability density function. In
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addition, through the adjustment of entropy Eni and hyper-entropy Hei for each scattered
conceptual cloud, the probability density function curve g(x) of annual precipitation could
be obtained when the curve-fitting error of overlapping calculation was lower than a certain
threshold value σ2; the overlapping calculation formula of the conceptual cloud could be
denoted as follows [24]:

g(x) =
n

∑
i=1

ai · fi(x) (3)

Step 5: Cumulative probability distribution function-curve-fitting analysis of annual
precipitation. Theoretically, the integral function form of the probability density func-
tion g(x) of annual precipitation is the cumulative probability distribution function. In
practice, the cumulative probability distribution function of annual precipitation could be
determined according to the frequency-curve-fitting method based on the Pearson type III
function through calculation of the empirical frequency of reselected samples through the
integral function of probability density function g(x).

Among the above steps, it was crucial for the adjustment of the entropy value of
the different conceptual cloud, which could be accomplished by applying a heuristic
method [17,32,33]. More explicitly, based on the determination for the average Exi of
the current conceptual cloud, the first local minimum value was selected from both the
right and left side of median average Exi, and then the amplitude coefficient between the
central sample corresponding to the median average Exi and the sample relating to the
selected local minimum was also calculated. If the amplitude coefficient was greater than
a certain threshold σ1, then the variation range, denoted as Exi, responding to the local
minimum value that was closer to the median average value Exi could be considered as
the distribution range of current cloud drops, and the samples varying within the interval
of [Exi − Exi’, Exi + Exi’] could be considered as the research universe of the current
conceptual cloud, and the related entropy Eni and hyper-entropy Hei could be determined
using the normal backward cloud algorithm without certainty degree [16,17]. Meanwhile,
the parameters of entropy Eni and hyper-entropy Hei also need to be adjusted when the
curve-fitting error of the overlapping calculation for the different conceptual cloud was
greater than a certain threshold value σ, and the detailed adjusting principles of entropy
can be referred from [16,17,21].

4. Results and Discussion

In this section, the proposed CTAM method was further applied in hydrological
frequency-curve-fitting analysis of the annual precipitation variable of the five hydrological
stations in the northern Anhui province. To be more specific, taking the Guoyangzha
station as an example, firstly, the varying range of annual precipitation from 1954 to 2010
was divided into 15 subintervals, with the calculating step of 80 mm, and the histogram
of annual precipitation variation was drawn and the average probability density corre-
sponding to each subinterval was determined by counting the number of years with the
annual precipitation varying within each subinterval. Then, the probability density curve
of historical annual precipitation series was obtained using the median of each subinterval
as the X-axis and the average probability density corresponding to each subinterval as the
Y-axis. Finally, the derived initial probability density curve of annual precipitation was
divided into five normal cloud distribution patterns with different granularities utilizing
the cloud transform algorithm. Similarly, the varying ranges of annual precipitation from
1954 to 2010 in Dangshan, Linquan, Mohekou, and Xifeihezha stations were divided into
13, 12, 14, and 12 subintervals, with the calculating steps of 80 mm, 115 mm, 80 mm, and
85 mm, respectively, and the derived probability density curves of annual precipitation
corresponding to different stations were divided into 5, 6, 7, and 8 normal cloud distri-
bution patterns. The characteristic parameters and amplitude coefficients of the different
cloud distribution patterns in different hydrological stations in northern Anhui province
are given in Table 1.
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Table 1. Cloud characteristics of normal conceptual clouds in northern Anhui province, China.

Station Cloud Number Ex En He Amplitude Coefficient

Guoyangzha

1 678.24 97.43 208.10 0.001974
2 912.28 36.28 24.26 0.001316
3 998.40 41.40 29.37 0.001096
4 1086.9 37.41 16.89 0.000439
5 1248.85 82.27 104.11 0.000439

Dangshan

1 765.34 57.60 74.49 0.002632
2 598.24 68.56 138.09 0.001754
3 923.13 42.09 23.37 0.001316
4 1017.65 25.32 21.65 0.000439
5 1243.70 49.07 52.59 0.000439

Linquan

1 920.53 65.66 126.72 0.002288
2 700.09 73.71 170.34 0.001831
3 1171.83 76.48 92.27 0.00061
4 1393.40 34.09 36.54 0.000305
5 1833.45 59.34 31.02 0.000305
6 1454.6 79.71 41.67 0.000153

Mohekou

1 958.61 80.27 168.55 0.002516
2 746.8 29.95 60.96 0.001509
3 666.98 32.24 52.53 0.001258
4 1134.87 25.68 11.97 0.000755
5 513.9 53.53 57.37 0.000503
6 1251.8 38.77 29.14 0.000503
7 1407.55 44.75 47.96 0.000503

Xifeihezha

1 877.89 79.58 107.92 0.001858
2 697.08 37.69 53.75 0.001651
3 1037.62 81.76 66.61 0.001238
4 611.53 46.33 67.99 0.000826
5 455.07 29.47 18.54 0.000619
6 1219.90 26.57 13.89 0.000413
7 1362.5 1.13 0.59 0.000413
8 1549.45 29.64 15.49 0.000413

Secondly, the normal cloud-distribution-based conceptual overlaying principle was
employed to conduct the conceptual merging calculation of the normal cloud distribution,
and then the probability density function curve of annual precipitation for different stations
was derived (as shown in Figure 2), by which the ultimate empirical frequency of historical
annual precipitation data series for different hydrological stations in northern Anhui
province was determined through integral computation. In addition, the correlation
coefficient of empirical frequency of historical annual precipitation data series from 1954
to 2011 of the five hydrological stations in northern Anhui province, derived from the
traditional empirical frequency formula and cloud transform algorithm, respectively, was
above 0.98, which indicated that the empirical frequency series of annual precipitation
calculated by the two methods was consistent, and the cloud transform algorithm was also
suitable for the determination of the empirical frequency of hydrological variables.

Finally, the Pearson type III function-based curve-fitting method was applied to
determine the cumulative probability distribution frequency curve of annual precipitation,
based on the historical empirical frequency determined by cloud transform algorithm from
1954 to 2010 of Guoyangzha, Dangshan, Linquan, Mohekou, and Xifeihezha hydrological
stations. The statistical parameters of the cumulative probability distribution frequency
curve of annual precipitation, determined by both the traditional empirical frequency
formula and cloud transform algorithm, respectively, are shown in Table 2, and the trend of
the cumulative probability distribution frequency curve of annual precipitation determined
by two approaches is indicated in Figure 3 as well.
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Table 2. Statistical parameters of the annual precipitation frequency curve in northern Anhui
province, China.

Station Name
Statistical Parameters of Curve Fitting

Ex Cv Cs

Guoyangzha EFCF 838.83 0.27 1.05
CTAM 838.83 0.33 1.08

Dangshan EFCF 760.88 0.25 0.71
CTAM 760.88 0.22 0.59

Linquan EFCF 927.10 0.31 1.24
CTAM 927.10 0.28 1.11

Mohekou
EFCF 927.08 0.24 0.49

CTAM 927.08 0.24 0.48

Xifeihezha
EFCF 888.37 0.27 0.54

CTAM 888.37 0.25 0.61
Note: EFCF and CTAM denote frequency curve fitting methods based on empirical frequency and cloud transfor-
mation algorithm, respectively.
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It can be revealed from Table 2 and Figure 3 that (1) the varying trend of the cumu-
lative probability distribution frequency curve of annual precipitation derived from the
traditional empirical frequency formula and cloud transform algorithm, respectively, had
better consistency for most of the five hydrological stations in northern Anhui province.
(2) Except for the Guoyangzha station, the upper tail section (i.e., when the cumulative
frequency was lower than 0.2) of the cumulative probability distribution frequency curve
of annual precipitation derived from the cloud transform algorithm varied below the
corresponding frequency curve derived from the traditional empirical frequency formula,
which was opposite to the varying trend of the lower tail section (i.e., when the cumulative
frequency was higher than 0.9) of the cumulative probability distribution frequency curve
of annual precipitation, and the fitting value of annual precipitation determined by the
two approaches when the cumulative frequency varied within the interval of (0.2, 0.9)
was almost uniform, which indicated that the CTAM model for hydrological frequency
analysis was capable of avoiding the shortage that the upper tail section of the frequency
curve and the corresponding designed value of hydrological series were higher when the
cumulative frequency varied lower. Therefore, it was evident that the hydrological fre-
quency analysis result utilizing the peak value principle-based cloud transform algorithm
was more reasonable, especially for the two varying tails of the cumulative probability
distribution frequency curve, and further discussion for the application feasibility of the
cloud transform algorithm in hydrological frequency analysis was carried out in terms of
the error of frequency-curve-fitting calculation and frequency analysis of typical returning
period in the next section of the manuscript.
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4.1. Fitting Error Analysis of Historical Samples

To further testify the feasibility for the application of peak value theory in the field of
hydrological frequency analysis, the index of cumulated relative fitting error (CRFE) [11,30],
which reveals the cumulated error values of frequency curve fitting analysis, was employed
to comparatively analyze the differences of cumulative probability distribution calculation
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results of the annual precipitation series of the five hydrological stations in northern
Anhui province utilizing the traditional empirical frequency formula and CTAM method,
respectively, and the CRFE index value and corresponding varying trend of the frequency-
curve-fitting calculation of annual precipitation in different hydrological stations utilizing
the two approaches are indicated in Table 3.

Table 3. Cumulated relative fitting error (CRFE) of annual precipitation in northern Anhui province,
China.

Name Guoyangzha Dangshan Linquan Mohekou Xifeihezha

EFCF 0.960642 0.992969 0.972185 0.980417 0.980378
CTAM 0.954421 0.978128 0.968479 0.972718 0.972126

It can be revealed from Table 3 that, (1) for the frequency-curve-fitting calculation
employing the peak value theory-based cloud transform algorithm, the CRFE index value of
cumulative probability distribution frequency analysis of annual precipitation in Dangshan
station was the highest, at 0.978128, the CRFE index value of the curve-fitting calculation
in Guoyangzha station was the lowest, at 0.954421, and the varying trend of the CRFE
index utilizing the cloud transform algorithm was consistent with the corresponding
trend of the CRFE index employing the traditional empirical frequency formula. (2)
The average of CRFE index for cumulative probability distribution frequency analysis
of annual precipitation for different stations in northern Anhui province employing the
cloud transform algorithm and traditional empirical frequency formula were 0.969176
and 0.977318, respectively, and the CRFE index of cumulative probability distribution
frequency analysis of annual precipitation utilizing the cloud transform algorithm was
lower than the corresponding CRFE index for different stations in northern Anhui province.
(3) The fitting error and varying trend of cumulative probability distribution frequency
analysis of annual precipitation utilizing the two approaches were nearly consistent, which
preliminarily verified the feasibility and reasonability for the application of the cloud
transform algorithm in the field of hydrological frequency analysis.

4.2. Fitting Error Analysis under Typical Returning Period

The frequency fitting calculation of hydrological variables under a typical returning
period scenario (especially for the rare probability condition) is a fundamental task for
water conservancy project planning and development [7]. To verify the adaptation of
the cloud transform algorithm in the application of the hydrological frequency analysis
field, the fitting value of annual precipitation under the typical returning period of the five
hydrological stations in northern Anhui province was determined utilizing the cloud trans-
form algorithm and traditional empirical frequency formula, respectively, and the index
of relative fitting error (RFE) was also applied to reveal the deviation result of calculated
values of annual precipitation through the CTAM method from the corresponding values
obtained through the EFCF approach [7], as given in Table 4.

It can be concluded from Table 4 that, (1) except for the Guoyangzha station, the fitting
value of annual precipitation determined by the cloud transform algorithm was lower
than the corresponding annual precipitation fitting value determined by the empirical
frequency formula when the typical returning period was lower than 20%. Meanwhile,
the lower the typical returning period of annual precipitation, the higher the deviation
of the annual precipitation fitting results determined by cloud transform algorithm and
traditional empirical frequency formula, respectively, which was consistent with the vary-
ing characteristics of the cumulative probability distribution frequency curve of annual
precipitation derived from the cloud transform algorithm and traditional empirical fre-
quency formula, respectively. (2) The deviation of annual precipitation fitting results in
Linquan station calculated by the two approaches was the most obvious, and the average
RFE for the annual precipitation fitting calculation for different typical returning periods
was −9.33% in Linquan station, while the deviation of annual precipitation fitting results
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in Mohekou station calculated by the two approaches was the lowest, and the average RFE
for the annual precipitation fitting calculation for different typical returning periods was
−0.88% in Mohekou station. (3) Therefore, it was evident that the fitting values of annual
precipitation of typical returning period conditions determined by the cloud transform
algorithm were lower than the corresponding fitting results through the traditional em-
pirical frequency formula, which indicated that the cloud transform algorithm could be
applied as a supplementary tool for annual precipitation fitting calculations, especially
under rare probability levels, to avoid the shortage of calculation results through the
traditional empirical frequency formula. (4) In addition, it also could be seen that the
lower the cumulative probability level, the more evident the uncertainty of the annual
precipitation fitting calculation, which revealed that there existed significant uncertainty
for the top extending tail section of the hydrological frequency fitting curve as a result of
the insufficient historical hydrological series, especially for rare hydrological events data,
and this was also the key factor leading to the lower accuracy of hydrological frequency
fitting calculation.

Table 4. Fitting result of annual precipitation for different returning periods in northern Anhui province, China.

Station Name
Frequency (%)

0.02 0.05 0.10 0.20 0.5 1 2 5 10 20

Guoyangzha
EFCF 2140 2004 1900 1794 1652 1541 1428 1271 1145 1010

CTAM 2219 2076 1967 1856 1705 1589 1469 1303 1169 1024
RFE/% 3.70 3.60 3.52 3.41 3.24 3.08 2.86 2.48 2.06 1.43

Dangshan
EFCF 1694 1605 1537 1466 1370 1295 1216 1104 1012 910

CTAM 1556 1483 1427 1368 1289 1225 1159 1064 985 896
RFE/% −8.15 −7.61 −7.16 −6.67 −5.96 −5.35 −4.67 −3.62 −2.66 −1.47

Linquan
EFCF 2653 2466 2324 2180 1987 1838 1685 1477 1312 1136

CTAM 2405 2250 2131 2010 1847 1721 1592 1414 1272 1118
RFE/% −9.33 −8.78 −8.32 −7.80 −7.01 −6.32 −5.52 −4.25 −3.05 −1.54

Mohekou
EFCF 1945 1855 1785 1713 1612 1533 1448 1328 1226 1110

CTAM 1921 1833 1765 1694 1597 1519 1437 1319 1220 1107
RFE/% −1.27 −1.20 −1.14 −1.07 −0.97 −0.89 −0.80 −0.64 −0.50 −0.32

Xifeihezha
EFCF 1993 1894 1816 1737 1627 1539 1447 1316 1206 1081

CTAM 1941 1844 1769 1691 1585 1501 1412 1287 1183 1065
RFE/% −2.60 −2.61 −2.61 −2.60 −2.56 −2.51 −2.42 −2.21 −1.95 −1.50

Note: EFCF and CTAM denote annual precipitation probability empirical frequency fitting method and cloud transformation fitting
method, respectively.

4.3. Variation Characteristics Analysis of Annual Precipitation Series

To further explore the spatial distribution characteristics of annual precipitation in the
northern Anhui province through the cumulative probability distribution frequency curve
of annual precipitation derived from the cloud transform algorithm, firstly, if referring to
the classification standard of hydrological year type based on river flow frequency [24],
the historical hydrological years of different stations in the northern Anhui province could
be divided into five categories based on the variation of annual precipitation frequency
p, including wet year (p < 12.5%), partial wet year (12.5% < p ≤ 37.5%), normal year
(37.5% < p ≤ 62.5%), partial dry year (62.5% < p ≤ 87.5%), and dry year (p > 87.5%). Then,
the estimated value of annual precipitation corresponding to the frequency threshold for
a certain hydrological year type could be determined for different stations in northern
Anhui province through the cumulative probability distribution frequency curve of annual
precipitation derived from the cloud transform algorithm. Finally, the statistical result for
the variation of annual precipitation of different stations in northern Anhui province could
be obtained, as shown in Table 5.
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Table 5. Statistical dividing standard of types of hydrological year based on annual precipitation in
northern Anhui province.

Station Wet Year Partial Wet Year Normal Year Partial Dry Year Dry Year

Guoyangzha p > 1123 875 < p ≤ 1123 726 < p ≤ 875 581 < p ≤ 726 p < 581
Dangshan p > 958 799 < p ≤ 958 693 < p ≤ 799 574 < p ≤ 693 p < 557
Linquan p > 1223 962 < p ≤ 1223 808 < p ≤ 962 661 < p ≤ 808 p < 661

Mohekou p > 1185 981 < p ≤ 1185 841 < p ≤ 981 680 < p ≤ 841 p < 580
Xifeihezha p > 1146 937 < p ≤ 1146 798 < p ≤ 937 644 < p ≤ 798 p < 644

Based on the dividing standard of types of hydrological year indicated in Table 5, it
could be revealed that, (1) through 1954 to 2010, the proportion of wet years of Guoyangzha,
Dangshan, Linquan, Mohekou, and Xifeihezha stations were 12.28%, 14.04%, 14.04%,
11.32%, and 12.28%, respectively, and the proportion of dry years of the different stations
were 7.02%, 12.28%, 14.04%, 13.21%, and 15.79%, respectively. Thus, the difference for
the proportion of dry years of different stations in northern Anhui province was obvious,
with the maximum of 15.79% in Xifeihezha station and minimum of 7.02% in Guoyangzha
station, which indicated that the proportion of dry years in Huainan city, represented by
Xifeihezha station, was the highest in northern Anhui province. (2) It has been mentioned
that the northern Anhui province lies in the transitional zone of the subtropical zone and
warm temperate zone, with obvious transitional climate characteristics, which has resulted
in the situation of severe drought hazard evolution in the northern area as compared to the
southern area of the study region. In addition, the minimum annual precipitation of a wet
year was 958 mm, and the maximum annual precipitation of a dry year was 557 mm in
Dangshan hydrological station, located in the northernmost Anhui province, which was
consistent with the actual hydrological situation of serious water resource shortage and
severe drought loss in historical years in Suzhou city, represented by Dangshan station.

In conclusion, a new hydrological frequency analysis approach based on the cloud
transform algorithm was proposed, and its feasibility and reasonability were also testified
in terms of hydrological frequency curve fitting calculation in historical years and hydro-
logical variable estimation calculation for typical returning periods, and the application
performance of the proposed CTAM approach is affected by many factors, such as the sta-
tionarity or variation trend, tail characteristics for the distribution of hydrological variables,
the higher regularity for the normal distribution dividing patterns of the hydrological
variables, and the high calculation accuracy for the frequency curve fitting analysis. In a
word, the proposed CTAM approach can effectively improve the shortages of higher esti-
mation results of hydrological variables for the rare lower frequency scenario utilizing the
traditional empirical frequency formula, which can be considered as an effective attempt to
extend the application field of cloud theory in hydrological variable frequency analysis.

5. Conclusions

The primary innovation of this study is to introduce the normal cloud transform algo-
rithm in hydrological variable frequency analysis, by which the sample empirical frequency
for frequency curve fitting calculation can be determined instead of utilizing the traditional
empirical frequency formula. Through theoretical exploration for the establishment of the
CTAM model for hydrological frequency analysis and its application research in northern
Anhui province, the primary conclusions can be summarized as follows:

(1) The varying trend of the annual precipitation frequency curve derived from CTAM
and EFCF methods had better consistency for most of the hydrological stations in
northern Anhui province, and the upper tail section of the annual precipitation
frequency curve derived from the CTAM model varied below the corresponding
frequency curve derived from the EFCF approach, which indicated that the CTAM
model was capable of avoiding the shortage of higher distribution of the upper
tail section and the larger designed value of hydrological variable leading by the
traditional empirical frequency formula.
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(2) The annual precipitation frequency analysis result for the five stations utilizing the
CTAM model was basically consistent with the corresponding frequency analysis re-
sult using the traditional empirical frequency formula, the average of the CRFE index
for annual precipitation frequency analysis of different stations employing the CTAM
model and EFCF were 0.969176 and 0.977318, respectively, and the fitting error and
its varying trend of annual precipitation frequency analysis were nearly consistent.

(3) In terms of spatial distribution of annual precipitation, the proportion of dry years
in Huainan city, represented by Xifeihezha station, was the highest in northern
Anhui province, and the minimum in wet year and maximum in dry year of annual
precipitation were 958 mm and 557 mm, respectively, in Dangshan station, located in
the northernmost Anhui province, which was consistent with the actual hydrological
situation of serious water resource shortages and severe drought loss in historical
years in Suzhou city, represented by Dangshan station.

To summarize, the CTAM model for hydrological frequency analysis is reliable and
reasonable, which was testified as an effective attempt to extend the application field of
cloud model theory. However, the key for the application of the cloud transform algorithm
is how to derive the cloud characteristic parameters from observed sample distribution
and realize the overlapping calculation of multiple cloud distribution. Furthermore, too
many challenges still exist for the wide application of cloud model theory in hydrological
process research, such as the distinct description for the distribution pattern of hydrological
variables using cloud model parameters, the scientific explanation for the theoretical
mechanism of the conceptual cloud transform process, etc.
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