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Abstract: Hyperspectral image (HSI) classification is one of the major problems in the field of remote
sensing. Particularly, graph-based HSI classification is a promising topic and has received increasing
attention in recent years. However, graphs with pixels as nodes generate large size graphs, thus
increasing the computational burden. Moreover, satisfactory classification results are often not
obtained without considering spatial information in constructing graph. To address these issues, this
study proposes an efficient and effective semi-supervised spectral-spatial HSI classification method
based on sparse superpixel graph (SSG). In the constructed sparse superpixels graph, each vertex
represents a superpixel instead of a pixel, which greatly reduces the size of graph. Meanwhile,
both spectral information and spatial structure are considered by using superpixel, local spatial
connection and global spectral connection. To verify the effectiveness of the proposed method,
three real hyperspectral images, Indian Pines, Pavia University and Salinas, are chosen to test
the performance of our proposal. Experimental results show that the proposed method has good
classification completion on the three benchmarks. Compared with several competitive superpixel-
based HSI classification approaches, the method has the advantages of high classification accuracy
(>97.85%) and rapid implementation (<10 s). This clearly favors the application of the proposed
method in practice.

Keywords: hyperspectral image; sparse superpixel graph; spectral-spatial classification; discrete
potential; big data

1. Introduction

Although continuous development of hyperspectral sensors makes it easy to collect a
large amount of hyperspectral data, labeling the acquired data is expensive [1]. As a result
of this fact, semi-supervised hyperspectral image (HSI) classification methods have been
extensively investigated in the past decades [2–5]. In turn, the successful application of HSI
classification in urban mapping [6], environment monitoring [7], precision agriculture [8]
and other fields promotes the improvement of classification methods. Currently, it still
remains an issue worthy of further study to develop new semi-supervised methods to
classify an HSI fast and accurately, due to its characteristics of big data [9,10].

Unlike big data recorded in other fields, one of the remarkable features of hyperspec-
tral data is that it clearly contains spatial structure information in addition to spectral
information. This means that classification results may be improved by integrating spa-
tial and spectral information based on classification techniques or classifier. Satisfactory
classification results of plenty of existing spectral-spatial HSI classification methods have
demonstrated the feasibility of this integration [11–16]. Using fixed-size window technique,
the methods of Markov random field [17], guided filter [18], discontinuity preserving
relaxation [19,20], and recursive filtering [21] successfully adopted spatial information to
smooth the noisy pixels contained in the HSI. The use of these smoothing techniques in
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classification results in an effective reduction in the number of misclassified pixels. In
multiple kernels-based classification methods, the spatial and spectral information was
effectively fused by using composite kernels to enhance the classification of hyperspectral
images [22,23]. The spatial structure information was also used to correct some misclassi-
fied pixels in the classification map by majority voting rule [24,25]. Multi-scale covariance
maps were introduced to solve the overfitting problem of convolutional neural network-
based methods in HSI classification [26]. Additionally, the existing works show that in the
classification process, the combination of spatial information with dimensionality reduc-
tion [27], sparse representation [28,29], low rank representation [30], convolutional neural
network [31] and various techniques do contribute to improving the classification accuracy.

Among a mass of spectral-spatial HSI classification methods, the superpixel-based
approach is a representative method and has been extensively investigated in recent years
because superpixels are homogeneous and adaptive in size and shape [32–35]. Compared
with fixed-size window, the adaptive size and shape are more favorable to explore the
spectral and spatial relationships in HSI classification. Based on superpixels and multi-
view active learning, an HSI classification method was proposed, aiming at improving
the classification performance and reducing the manual labeling effort [36]. Under the
assumption of superpixel homogeneity, a series of superpixel-level HSI classification
methods have been introduced in recent years [34,37–40]. Xie et al. [37] developed a semi-
supervised spectral-spatial classification approach at the superpixel-level by the improved
simple linear iterative clustering and k-nearest neighbor classifier. Using k-nearest neighbor
rules twice, Tu et al. [39] defined the distance between superpixels to explore the optimal
representations of superpixels and then suggested a superpixel-level HSI classifier. One
of the advantages of superpixel-level classifier is to quickly implement the classification
process through reducing an HSI from the aspect of pixels. However, the adaptive size
and shape feature of superpixels makes it arduous to measure the similarity between
superpixels. Therefore, although there are many superpixel-based classification methods,
few works are dedicated to superpixel-level classification algorithms.

A great deal of work has shown that graph is a powerful tool in the fields of machine
learning, computer vision and remote sensing, due to its surprisingly flexible representation
ability [41–45]. By means of graph theory, label propagation rule or complex network
theory, HSI classification is successfully transformed into a graph partition in graph-based
HSI classification methods. Camps-Valls et al. early suggested a semi-supervised graph-
based classifier specifically designed for processing hyperspectral images [46]. Based
on superpixels and a spectral–spatial sparse graph, a semi-supervised adaptive label
propagation algorithm was depicted to address the pollution of label information by
random noise and boundary noise [47]. Using the spectral and spatial information extracted
from superpixels, Sellars et al. [40] constructed a weighted superpixel graph, where each
vertex represents a superpixel. Then a graph-based semi-supervised HSI classification
framework was proposed. Recently, graph convolutional network (GCN) schemes and
its various improvements have been proposed to classify HSI [48–51]. GCN adopts graph
to carry out the convolution on arbitrarily structured non-Euclidean data to improve the
classification performances of convolutional neural network with fixed size and weight
convolution kernel. In these graph-based HSI classification methods, various techniques for
constructing and partitioning graphs were adopted to achieve accurate classification of HSI.
In general, the performance of graph-based classification methods relies on the construction
and division of graphs. It is known that superpixel graphs usually have smaller sizes than
those with pixels as vertices. This means that for the same label propagation on graph
algorithm, it will take less time to complete the classification task. Therefore, it is interesting
to further develop novel superpixel graphs based HSI classification methods.

The applications of discrete potential theory on graphs have been previously inves-
tigated in various fields, such as image segmentation [52], text data classification [53],
community structure detection [54] and so on. Motivated by random walks and based on
discrete potential theory, Grady proposed a novel algorithm for image segmentation [52].
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An effective semi-supervised algorithm was developed to detect the community struc-
ture in complex networks through discrete potential theory [54]. The potential theory
on directed graph was discussed to discover factors of the network formation [55]. The
difference between different applications makes it meaningful to further extend this theory
to more fields, especially to remote sensing.

Inspired by the works on superpixel-level classifier, label propagation on graph and
discrete potential theory, in this work, a novel superpixel graph-based scheme is proposed
to classify HSI efficiently. In this proposal, a novel and computationally simple distance
is first defined to measure the similarity of two superpixels. A sparse superpixel graph
(with superpixels as vertices) is then constructed by local spatial connection and global
spectral connection. Based on the constructed superpixel graph and discrete potential
theory, the HSI classification is converted into an optimization problem that can be solved
by a system of linear algebraic equations. We here adopt the conjugate gradient descent
method (CGDM) to find the approximate solution because of its rapid convergence and
strong robustness. Finally, according to the greatest potential of each vertex computed by
the CGDM, superpixels can be properly labeled. A range of experimental and comparative
results on three benchmarks extensively validate our scheme.

The main technical contributions of the proposal include:

• An efficient HSI classification scheme is suggested based on sparse superpixel graph.
• A computationally simple but effective distance between superpixels is newly defined.
• A sparse superpixel graph is constructed by using spectral-spatial connection strategy.
• The use of CGDM in the proposal speeds up the process of label propagation on graph.

The rest of this paper is organized as follows: Section 2 details the process of the
proposed method, including superpixel segmentation, the new definition of distance
between superpixels, the construction of sparse superpixel graph and label propagation on
graph. Experimental and comparative results are reported in Section 3. Section 4 analyzes
the influence of the parameters used in our method. Finally, discussions and conclusions
are given in Sections 5 and 6.

2. Methods

In this section, we describe the proposed method in detail. The classification frame-
work includes dimension reduction, superpixel segmentation, construction of sparse su-
perpixel graph and label propagation on graph, as shown in Figure 1.

Figure 1. The flowchart of the proposed method. PCA: principal component analysis; ERS: entropy
rate superpixel segmentation; CGDM: conjugate gradient descent method.
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2.1. Superpixel Segmentation

Superpixel segmentation is often understood as the problem of region localization of
an image. Generally, the number of pixels contained in each superpixel is automatically gen-
erated in terms of local image structure by using superpixel segmentation algorithms. Thus,
different superpixels may have different shapes. These adaptive features of superpixels are
obviously propitious to good homogeneity of the generated superpixels.

Among many segmentation algorithms, the graph-based entropy rate superpixel
segmentation (ERS) [56] is commonly used in remote sensing because of its excellent
performance in good effectiveness and high efficiency. However, the high-dimension
property of hyperspectral data does not allow to divide an HSI into superpixels by using
classical ERS straightly. Therefore, we need to execute principal component analysis
approach in advance and take the first principal component to generate the base image
used for segmentation.

The ERS method is an optimization algorithm based on edge clustering. For user-
defined number of superpixel p and a set of edges M, the ERS approach splits the base
image into superpixels through optimizing the following objective function with restrict
conditions according to set M [56]:

max
M

(R(M) + ωB(M))

subject M ⊆ E∧ NM ≥ p,

∣∣∣∣∣∣∣ (1)

where R(M) and B(M) are entropy rate term and balancing term, respectively. NM indicates
the number of the obtained superpixels; ω is a balancing parameter, and E is an edge set.

In Equation (1), the introduction of entropy rate term is to include spatial neighbor
pixels with similar spectral information as much as possible in a superpixel. However,
this may cause significant differences in superpixel size. The use of the balance term and
balancing parameter effectively avoids this phenomenon. Interested readers can consult
with Liu’s work for more details of ERS method [56].

2.2. Distance between Superpixels

It is one of the key issues to properly define the distance between superpixels in the
superpixel-level HSI methods. A desired distance should not only better measure the
intimate relationship between two superpixels but also should be computationally simple.
However, this is a nontrivial task because superpixels have different sizes. In [34,37–40],
the distance/similarity of a pair of superpixels was defined by using various techniques.
Although the similarity of two superpixels can be better measured by these designed
distances, it is time-consuming to calculate them.

To address this problem, a simple but effective distance between superpixels is defined
in this work. In the suggested distance, we carefully consider the statistical features of a
superpixel, that is, mean, median and mode. Specifically, for a generated superpixels Si
containing ni pixels, we first construct the mean vector αi

1, the median vector αi
2 and the

mode vector αi
3 by orderly computing the mean, the median and the mode of each band of

these ni pixels. The superpixel Si is then approximately represented by a newly defined
sample with the same dimension as the original HSI,

αi = w1αi
1 + w2αi

2 + (1− w1 − w2)α
i
3 (2)

where w1 and w2 are the weights that control the importance of each component.
Finally, a novel distance between superpixels Si and Sj can be defined as

d(Si, Sj) = d(αi, αj) =

√
∑ B

h=1

(
αi,h − αj,h

)2
. (3)

where B is the number of bands.
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In Equation (3), distance between the vectors αi and αj may choose the desired distance,
for example, the commonly used Euclidean distance. Furthermore, the adoption of the
median vector and the mode vector in Equation (2) effectively reduces the impact of noise
pixels on distance computation. The advantage of the distance defined here is simple to
calculate because it is independent of the shape and size of the superpixels. The validity of
the above definition has been widely verified in the experiments carried out in this work.

2.3. The Construction of Sparse Superpixel Graph

A majority of existing work on HSI classification demonstrates that the graph-based
methods have a promising future, partially due to amazing data presentation ability of
graphs. In the field of remote sensing, a vertex of the graphs may represent a pixel or a
superpixel. We term a graph as a superpixel graph if the vertices in a graph represent
superpixels. It is clear that superpixel graph has a smaller size than the one with pixels as
vertices. This means that it is possible to take less time to partition a graph. Considering
this advantage of superpixel graph, we use a superpixel graph to represent an HSI for
classification.

It is known that there is abundant spatial information in a given HSI, besides rich
spectral information. Notably, the effective fusion of spectral and spatial information is
helpful to improve the classification results. Therefore, we adopt the method of global
spectral connection and local spatial connection to construct desired superpixel graph by
using KNN rule twice.

During the spectral connection, we firstly calculate the distances of the superpixel Si
to the rest according to Equation (3), and then arrange them in an ascending order. For
user-specified k1, we finally connect the superpixel Si to its first k1 superpixels. In this stage,
we only consider the spectral information of superpixels and search the nearest neighbors
of the superpixel in a global range. This connection approach attempts to deal with the
problem that the superpixels belonging to the same class are disconnected or far from each
other in space.

In the process of local connection, for each superpixel, one connects it to k2 nearest
neighbors in all its spatial adjacent superpixels in terms of Equation (3). This link strategy
aims to maintain local consistency by density connections.

The constructed graph is an efficient combination of spectral-based graph and spatial-
based graph. Please note that a superpixel may be linked twice in global and local connec-
tions. It has no effect on the constructed superpixel graph because we only record the link
regardless of the number of links.

The superpixel graph constructed here is an unweighted and undirected sparse graph.
This provides the basis to predict the classes of label-free vertices using a variety of classical
or popular label propagation techniques. In next subsection, we would like to use the
discrete potential theory and conjugate gradient descent algorithm to predict the class of
each unlabeled vertex in the constructed graph.

Let G = (V, E) be the constructed superpixel graph, where V =
{

v1, v2, · · · , vp
}

is the
set of vertices and E ⊆ V× V is the collection of edges. Commonly, we use an adjacent
matrix A to describe the graph G, where the element ai,j of A is equal to 1 if there is an
edge between vertices vi and vj and 0 otherwise.

The Laplace matrix of graph G is usually defined as

L = D−A, (4)

where the diagonal matrix D is the degree matrix of A. The matrix L is obviously symmetry
and positive semi-definite.
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2.4. Label Propagation on Graph

A graph can be regarded as an electrostatic field if one or more vertices are assigned
to an electric potential 1 and some vertices to 0. Particularly, the electrostatic field is termed
as m-label generation if we assign an unit potential to the vertices with label m and zero
to other labeled vertices with class label rather than m. This electrostatic field is simply
denoted by m-EF. The potentials of the reminding unlabeled vertices can be calculated by
solving a system of linear algebraic equations derived from combinatorial Dirichlet problem
with the boundary conditions [52]. In this sense, the process of potential transmission in the
electrostatic field may be considered as the procedure of label propagation on the graph.

In a continuous situation, for a field u and a region Ω, the Dirichlet integral is defined
as [52,54]

D(u) =
1
2

∫
Ω
|∇u|2dΩ. (5)

The Dirichlet problem is to find a harmonic function satisfying Laplace equation and
its boundary condition and minimize the Dirichlet integral.

The graph based discrete combinatorial formulation of Equation (5) can be expressed
as [54]

Min : D(X) =
1
2

XTLX, (6)

where p-dimensional vector X denotes the potentials of all vertices. Now, the aim is to
search for a vector X to minimize Equation (6).

It is easy to divide the set of vertices V into two groups, VL (labeled vertices) and VU
(unlabeled vertices) such that VL ∩VU = ∅ and VL ∪VU = V. Without loss of generality,
we put the labeled vertices in front, then label-free vertices. In light of matrix theory,
Equation (6) may also be decomposed into the following form

D(XU) =
1
2
(XT

LXT
U)

(
LL H
HT LU

)(
XL
XU

)
=

1
2
(XT

LLLXL + 2XT
UHTXL + XT

ULUXU), (7)

where the vectors XL and XU denote the potentials of labeled vertices and unlabeled
vertices, respectively. Differentiating D(XU) with respect to XU and setting it to zero yield
an algebraic system [54]

LUXU = −HTXL. (8)

In Equation (8), the matrix LU is sparse, symmetric and positive definite. The vector
XL is composed of 1 or 0 which can be easily determined by an m-EF (regardless of the
order of the labeled vertices). Among many methods to solve a system of linear algebraic
equations, the conjugate gradient descent method (CGDM) has been widely used in
various engineering problems because of its advantages of rapid convergence, less space
requirement and strong robustness [54,57]. In this work, we would like to adopt the CGDM
to solve the above equation. Therefore, the potentials of unlabeled vertices can be obtained
by the solution of Equation (8).

Assume that the given HSI consists of C different classes and at least one pixel in each
class is labeled. The superpixel will be assigned a class label if one or more pixels in this
superpixel are labeled. Thus, based on this assumption, C such systems are deduced by
using the proposed method. Solving these C systems, for each unlabeled vertex vi, one can
obtain its C potentials, that is, x1

i , x2
i , · · · , xC

i . Under the restriction condition ∑C
m=1 xm

i = 1
(for any vi), the potential xm

i may be understood as the probability that vertex vi belongs to
the m-th class. Accordingly, we use the following rule to label the unlabeled vertices

Class(vi) = arg}

m

max{xm
i }. (9)
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In Figure 2, we take a graph with nine vertices as an example to explain our method.
It is clear that this graph contains two apparent groups. Marking the vertex v1 and v6 as
labeled vertices, one can derive two algebraic systems like Equation (8). Using CGDM to
solve them, the electrostatic field shown in Figure 2b is generated. Similarly, we can get
another electromagnetic field illustrated in Figure 2c. As a result, one can easily classify
these vertices into two classes according to Equation (9).

Figure 2. A graph and two generated electrostatic fields. (a) A graph with nine vertices. (b,c) The electrostatic fields
generated by known potentials, respectively. Red digits represent the potential assigned to the labeled vertices, and the
other numbers are the potentials calculated by the CGDM.

The above labeling rule also means that we only consider the approximate solution of
Equation (8). In other words, the iteration process of the CGDM will be terminated early
by specifying a relatively large threshold, for example 10−2. Additionally, the realization of
finding the solutions to C systems can also be carried out in parallel. These considerations
are conducive to the fast implementation of our method.

The proposed algorithm can be summarized as follows

Algorithm 1. SSG

procedure (p, k1, k2, C)
Initialize A
Assign parameters to variables
Call for PCA to generate the base image
Execute ERS to segment the base image into p superpixels
for i = 1 to p

for j = 1 to p
Compute d

(
Si, Sj

)
if Sj belongs to the first k1 nearest neighbors of Si then

ai,j ← 1
qi ← the number of spatial neighbors of Si
for h = 1 to qi

Compute d(Si, Sh)
if Sh belongs to the first k2 nearest neighbors of Si then

ai,h ← 1
Compute D
L←D − A
for m = 1 to C

Derive Equation (8) from the m-EF
Execute CGDM to solve Equation (8)

Use Equation (9) to assign the class label to each unlabeled vertex
end procedure

The main computation time of the Algorithm 1 is spent on computing PCA, ERS,
global spectral connection and CGDM. Suppose the given HSI has n pixels, B bands
and C classes and is split into p superpixels. It will take about O(B2), O(nlogn + p2),
O(p2B + p2logp) and O(p2C) to implement above four steps, respectively. Therefore, the
complexity of the proposed method is approximately O(nlogn + p2B + p2C). Compared



Remote Sens. 2021, 13, 3592 8 of 18

with pixel-level classification methods with at least O(n2B) complexity (n� p), this means
that our superpixel-level classification scheme is computationally efficient.

3. Experiments
3.1. Description of Three Datsets

The Indian Pines scene, recorded by the AVIRIS sensor in June 1992, contains 16 differ-
ent types of crops planted in Indian Pines test site in Northwestern Indiana. The image
has a spatial resolution of 20 m per pixel and 200 bands of size 145 × 145 (after 20 water
absorption bands removing).

Different from Indian Pines image, Pavia University scene is an urban scene around
Pavia University, Pavia, Italy. This image acquired by ROSIS satellite sensor in 2001 has
103 bands (after 12 most noisy channels were abandoned) and is of size 610 × 340, with a
spatial resolution of 1.3m. It contains nine different urban ground objects.

The Salinas scene was also recorded by the AVIRIS sensor over Salinas Valley, CA,
USA, in October 1998. The image has 224 bands, the size of 512 × 217 and a spatial
resolution of 3.7m per pixel. Sixteen classes of interest are taken into account for this image.
The detailed class information for these three scenes is listed in Table 1.

Table 1. Number of training samples and test samples for each class on three images.

Indian Pines Pavia University Salinas

Class Name Train Test Name Train Test Name Train Test

1 Alfalfa 3 43 Asphalt 342 6489 Weeds_1 20 1989
2 Corn_no till 72 1356 Meadows 933 17,716 Weeds_2 37 3689
3 Corn_min till 42 788 Gravel 105 1994 Fallow 20 1956
4 Corn 12 225 Trees 153 2911 Fallow_P 14 1380
5 Grass/Pasture 24 459 Metal sheets 68 1277 Fallow_S 27 2651
6 Grass/Trees 37 693 Bare soil 252 4847 Stubble 40 3919
7 Grass/Pasture mowed 2 26 Bitumen 67 1263 Celery 36 3543
8 Hay_windrowed 24 454 Bricks 184 3498 Grapes 113 11,158
9 Oats 1 19 Shadows 48 899 Soil 62 6141
10 Soybean_no till 49 923 Corn 33 3245
11 Soybean_min till 123 2332 Lettuce_4wk 11 1057
12 Soybean_clean 30 563 Lettuce_5wk 20 1907
13 Wheat 10 195 Lettuce_6wk 9 907
14 Woods 64 1201 Lettuce_7wk 11 1059
15 Building_G_T_D 20 366 Vinyard_U 73 7192
16 Stone-steel_T 5 88 Vinyard_T 18 1789

518 9731 2152 40,894 544 53,582

3.2. Experimental Setup

To validate the performance of our proposal, we have tested the proposed classification
method SSG on three common hyperspectral benchmarks, that is, Indian Pines, Pavia
University and Salinas scenes. In our experiments, weighted parameters w1 and w2 are 0.5
and 0.4, respectively; k1 is equal to 2 for three images; the connection parameters k2 is 5 for
Pavia University and Salinas images and 6 for Indian Pines image. In our experiments, each
class is randomly labeled, and the number of labeled samples and label-free samples are
listed in Table 1. The training set consists of all labeled samples. The remaining label-free
pixels make up the test set. In order to objectively show the performance of the proposed
method, all experiments are reported using an average and standard deviation of ten
independent tests. Like in many exiting work, three evaluation criteria, Overall Accuracy
(OA), Average Accuracy (AA) and Kappa Coefficient (κ) are employed to evaluate the
whole performance of classification methods.

Additionally, we compared the proposed method with several competitors to prove
the superiority of our proposal. These comparative algorithms include graph convolutional
network (GCN) [48], edge-preserving filters (EPF) [58], image fusion and recursive filtering
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(IFRF) [21], superpixel-based classification via multiple kernels (SCMK) [22], spectral–
spatial HSI classification method at superpixel level (SSC-SL) [37], multiscale dynamic
graph convolutional network (MDGCN) [50] and superpixel pooling convolutional neural
network (SPCNN) [10]. We re-implemented these seven comparison methods (the authors
have shared their codes) which use the same parameter settings as the original. The
methods of GCN, MDGCN and SPCNN are based on deep learning; SCMK, SSC-SL,
MDGCN and SPCNN are superpixel level HSI classification methods; EPF and IFRF are
pixel-wise spectral–spatial HSI classification methods.

3.3. Classification Results

The classification results of seven competitors and our method on Indian Pines image
are tabulated in Table 2. The classification accuracy obtained by the five superpixel-level
classification methods is better than that of the other three pixel-wise classification algo-
rithms. This may be due to the fact that the spatial spectral information of this image can
be more fully explored by using adaptive size and shape of superpixels in the classification.
Compared with IFRF, the accuracy of EPF method is relatively low (82.59%), probably
because the edge-preserving filtering technique is only used in the classification maps to
correct misclassified pixels. The classification accuracy of our method is improved by at
least 2% (97.85% vs. 95.83%) contrast to other four superpixel-level competitors, SCMK,
SSC-SL, MDGCN and SPCNN. Furthermore, the proposed SSG method outperforms other
competitive algorithms in terms of the three evaluation indicators. The visualization of
classification results of eight different methods are shown in Figure 3.

For Indian Pines image, there are 145 × 145 (21,025) pixels. Among them, the number
of pixels to be classified is 10,249. The classification accuracy 97.83% means that there
are about 223 misclassification pixels. Assuming that this image is divided into 1000
superpixels, each one contains approximately 20 pixels. Therefore, at least 21 superpixels
are misclassified because of many misclassified small volume superpixels produced after
removing the background pixels. This is why the visuals are unsatisfactory.

Table 2. Classification results (%) of eight methods for Indian Pines image.

GCN EPF IFRF SCMK SSC-SL MDGCN SPCNN SSG

1 93.65 ± 0.35 26.28 ± 6.43 94.41 ± 1.86 95.25 ± 0 76.51 ± 3.67 90.23 ± 1.47 96.38 ± 0.92 97.39 ± 1.95
2 51.36 ± 1.83 68.69 ± 5.64 86.14 ± 3.68 90.07 ± 2.54 94.65 ± 2.01 93.37 ± 1.22 91.96 ± 0.41 97.46 ± 0.55
3 50.30 ± 3.02 58.74 ± 2.62 84.67 ± 4.67 92.89 ± 3 92.4 ± 1.71 92.66 ± 4.70 95.80 ± 1.82 97.87 ± 1.49
4 25.41 ± 6.98 40.89 ± 18.71 73.16 ± 6.67 84.51 ± 3.44 71.25 ± 9.75 94.80 ± 5.68 89.61 ± 0.18 98.39 ± 2.16
5 0 ± 0 91.77 ± 2.51 91.18 ± 4.52 93.57 ± 4.20 92.07 ± 3.67 93.34 ± 3.44 89.32 ± 2.16 95.57 ± 1.87
6 97.52 ± 1.42 99.73 ± 2.77 98.44 ± 1.12 98.68 ± 1.15 99.34 ± 0.79 97.89 ± 0.70 99.04 ± 0.29 99.81 ± 0.06
7 98.3 ± 2.34 93.46 ± 8.07 94.62 ± 10.77 96.17 ± 1.35 97.31 ± 4.07 90.77 ± 7.30 95.1 ± 2.28 96.43 ± 0.24
8 97.46 ± 0.37 99.96 ± 0.13 100 ± 0 99.62 ± 0.15 94.58 ± 4.47 99.47 ± 0.56 99.39 ± 0.02 100 ± 0
9 100 ± 0 0 ± 0 100 ± 0 46.62 ± 5.21 82.63 ± 5.22 57.37 ± 30.93 95.06 ± 1.14 100 ± 0
10 73.58 ± 1.73 68.63 ± 4.93 87.56 ± 3.39 91.36 ± 2.56 93.65 ± 1.54 93.26 ± 1.46 92.48 ± 2.17 94.01 ± 0.74
11 78.38 ± 5.82 93.64 ± 2.91 98.03 ± 0.59 95.19 ± 1.9 96.84 ± 0.85 97.50 ± 0.78 81.02 ± 2.41 98.60 ± 0.81
12 56.37 ± 2.27 54.49 ± 13.27 74.46 ± 9.43 91.3 ± 2.2 85.81 ± 4.08 92.43 ± 3.17 97.83 ± 0.02 95.95 ± 1.76
13 99.01 ± 0.09 99.43 ± 0.15 99.07 ± 0.6 97.42 ± 1.23 98.09 ± 2.85 99.23 ± 1.24 99.43 ± 0.02 99.12 ± 0.43
14 99.6 ± 0.08 99.54 ± 0.25 98.75 ± 0.92 99.3 ± 0.56 98.96 ± 0.63 99.78 ± 0.13 96.36 ± 0.17 99.84 ± 0.08
15 76.67 ± 2.40 57.9 ± 12.90 94.97 ± 3.11 92.94 ± 3.76 95.33 ± 3.79 96.39 ± 5.71 100 ± 0 98.86 ± 0.28
16 89.24 ± 2.54 98.98 ± 1.07 98.86 ± 1.17 86.69 ± 6.51 71.14 ± 3.88 95.80 ± 2.98 98.15 ± 0.60 95.70 ± 1.52

OA 67.86 ± 0.59 82.59 ± 1.42 91.94 ± 1.38 94.21 ± 0.54 94.29 ± 0.61 95.83 ± 0.32 95.26 ± 0.53 97.85 ± 0.07
AA 70.79 ± 3.26 72.01 ± 3.17 92.15 ± 3.28 90.76 ± 3.05 90.05 ± 5.6 92.77 ± 2.33 94.89 ± 1.16 97.75 ± 1.80
κ 63 ± 0.02 80 ± 0.16 91 ± 0.43 93 ± 0.06 91 ± 0.01 95 ± 0.01 94 ± 0.01 98 ± 0.08
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Figure 3. Indian Pines image. (a) The false-color composite image. (b) Ground-truth. The clas-
sification maps of (c) GCN, (d) EPF, (e) IFRF, (f) SCMK, (g) SSL-SL, (h) MDGCN, (i) SPCNN and
(j) SSG.

Table 3 reports the statistical results of eight algorithms on Pavia University scene.
With the exception of the GCN method, the classification results of all spatial-spectral
methods are satisfactory (greater than 95%) because of the high resolution of the image
and the good spatial separation between classes. Both MDGCN, SPCNN and our method
have a classification accuracy of more than 98.5%. There is no significant difference in
the classification results of these three methods. This shows that the proposed method is
comparable to that based on deep learning. Compared with EPF, IFRF, SCMK and SSC-SL
methods, the classification accuracy raised by at least 2.6%. Of the eight approaches, the
GCN method has the lowest classification accuracy. The reason should be that, on the
one hand, this method utilizes only spectral information for pixel-wise classification. On
the other hand, the neural network classifier adopted in GCN requires a large number of
training samples to achieve satisfactory result. The classification maps of these methods
are presented in Figure 4.

Table 3. Statistical results (%) of seven competitive algorithms and the proposed method for Pavia University image.

GCN EPF IFRF SCMK SSC-SL MDGCN SPCNN SSG

1 62.85 ± 12.37 99.75 ± 0.43 97.54 ± 1.06 95.94 ± 0.82 99.32 ± 0.12 99.24 ± 0.33 99.03 ± 0.06 99.76 ± 0.08
2 58.07 ± 2.23 99.94 ± 0.22 99.85 ± 0.14 95.65 ± 0.29 99.92 ± 0.05 99.73 ± 0.07 99.26 ± 0.03 99.95 ± 0.04
3 46.56 ± 9.28 72.32 ± 5.33 84.08 ± 5.18 93.60 ± 4.87 78.28 ± 0.25 97.25 ± 0.99 99.19 ± 0.04 99.37 ± 0.48
4 53.45 ± 8.45 95.77 ± 0.69 93.04 ± 1.24 95.74 ± 0.83 96.46 ± 0.21 96.22 ± 1.02 98.94 ± 0.16 88.11 ± 0.65
5 88.72 ± 2.51 99.92 ± 0.23 99.83 ± 0.13 94.33 ± 0.15 99.92 ± 0.29 98.56 ± 1.06 100 ± 0 99.73 ± 0.13
6 59.57 ± 6.22 77.25 ± 0.07 99.75 ± 0.03 96.16 ± 1.29 90.24 ± 0.06 99.99 ± 0.03 99.27 ± 0.02 99.90 ± 0.07
7 88.81 ± 2.27 90.50 ± 0.39 97.66 ± 1.32 92.23 ± 5.82 91.53 ± 0.26 97.92 ± 1.98 99.32 ± 0.04 100 ± 0
8 76.06 ± 2.26 98.91 ± 0.85 86.41 ± 2.12 95.2 ± 1.06 98.91 ± 0.15 96.14 ± 1.32 98.45 ± 0.04 98.65 ± 1.51
9 81.34 ± 4.52 96.89 ± 3.37 42.67 ± 2.68 97.59 ± 0.6 97.33 ± 0.28 93.58 ± 2.27 98.26 ± 0.68 99.62 ± 0.55

OA 75.78 ± 2.64 95.14 ± 0.32 95.73 ± 0.32 96.49 ± 0.15 96.47 ± 0.03 98.77 ± 0.13 98.53 ± 0.03 99.12 ± 0.12
AA 77.50 ± 3.57 92.36 ± 1.28 88.98 ± 4.30 95.29 ± 2.86 94.66 ± 0.19 97.63 ± 0.38 99.06 ± 0.28 98.34 ± 3.64
κ 75 ± 0.04 93 ± 0.43 94 ± 0.24 96 ± 0.19 96 ± 0.01 98 ± 0.01 98 ± 0.01 99 ± 0.15
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Figure 4. Pavia University image. (a) The false-color composite image. (b) Ground-truth. The classification maps of (c) GCN,
(d) EPF, (e) IFRF, (f) SCMK, (g) SSL-SL, (h) MDGCN, (i) SPCNN and (j) SSG.

Table 4 lists the classification results of various algorithms for Salinas image. The
classification accuracy of seven methods is greater than 90% in the case of 1% pixels ran-
domly labeled per class. The classification accuracy of EPF and IFRF methods is 91.55% and
92.06%, respectively, which is lower than that of the other five superpixel based methods.
It may be due to the use of dimensionality reduction technique in these two methods, re-
sulting in the loss of some information. There was no significant difference in classification
results (from 95. 88% to 96.83%) among of SCMK, SSC-SL and SPCNN methods since they
all used spatial adaptation technique. Our method is slightly better than the MDGCN
method, which reaches 98.97%. In particular, for the two classes easily misclassified, i.e.,
the 8-th class and the 15-th class, the average accuracy of 99.52% and 99.26% indicates the
superior performance of our method locally. As can be seen from Figure 5, our method
shows good classification performance in both the global and local regions.



Remote Sens. 2021, 13, 3592 12 of 18

Table 4. Classification results (%) of eight spatial-spectral approaches on Salinas.

GCN EPF IFRF SCMK SSC-SL MDGCN SPCNN SSG

1 100 ± 0 99.59 ± 1.10 99.80 ± 0.02 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
2 99.78 ± 0.05 99.86 ± 0.16 99.21 ± 0.26 99.78 ± 0 97.84 ± 0.17 99.85 ± 0.16 99.16 ± 0.02 100 ± 0
3 100 ± 0 88.18 ± 3.03 100 ± 0 97.11 ± 0.76 98.38 ± 5.13 99.36 ± 0.93 100 ± 0 100 ± 0
4 92.38 ± 0.25 99.56 ± 0.17 96.27 ± 2.26 95.78 ± 3.33 96.07 ± 6.44 96.12 ± 4.79 99.67 ± 0.04 95.56 ± 2.73
5 98.91 ± 0.16 99.26 ± 0.34 97.79. ± 0.43 94.95 ± 0.21 96.9 ± 0.2 96.94 ± 0.88 99.21 ± 0.07 97.21 ± 1.44
6 99.67 ± 0.21 99.98 ± 0.01 99.28 ± 0.01 99.69 ± 0.18 95.88 ± 0.05 99.93 ± 0.01 99.02 ± 0.12 100 ± 0
7 99.40 ± 0.04 99.75 ± 0.03 99.57 ± 0.21 95.27 ± 0.31 99.85 ± 0.1 99.48 ± 0.70 99.07 ± 0.04 99.80 ± 0.13
8 68.78 ± 0.63 92.49 ± 0.03 74.34 ± 9.24 93.01 ± 2.7 95.53 ± 1.01 99.02 ± 0.82 98.45 ± 0.80 99.52 ± 0.33
9 99.90 ± 0.01 99.5 ± 0.62 99.98 ± 0 96.67 ± 1.85 96.77 ± 0.29 99.99 ± 0.03 99.81 ± 0.01 99.93 ± 0.05
10 91.91 ± 0.43 90.71 ± 1.65 98.94 ± 0.97 96.38 ± 1.24 96.84 ± 1.78 98.89 ± 0.82 98.61 ± 0.07 98.75 ± 0.40
11 99.19 ± 0.03 97.68 ± 1.32 93.87 ± 3.93 94.19 ± 3.39 98.19 ± 0.81 96.40 ± 1.81 100 ± 0 96.27 ± 2.11
12 87.66 ± 0.91 100 ± 0 98.26 ± 2.56 97.34 ± 3.23 100 ± 0 93.32 ± 3.91 93.42 ± 1.03 93.95 ± 1.84
13 98.04 ± 0.28 97.79 ± 0.42 86.24 ± 6.85 97.12 ± 0 96.83 ± 3.11 87.48 ± 13.82 98.44 ± 0.11 98.07 ± 0.19
14 95.21 ± 1.30 93.54 ± 6.21 93.45 ± 1.46 95.46 ± 3.68 92.96 ± 6.41 91.08 ± 3.37 93.22 ± 0.07 95.44 ± 2.38
15 69.01 ± 2.27 59.94 ± 2.47 89.62 ± 9.58 93.5 ± 3.33 95.04 ± 1.73 98.02 ± 1.76 93.69 ± 2.46 99.26 ± 0.33
16 97.22 ± 0.35 97.51 ± 2.96 97.51 ± 0.47 94.64 ± 4.66 94.05 ± 0.34 99.11 ± 2.12 96.71 ± 0.25 97.71 ± 1.97

OA 88.67 ± 0.96 91.55 ± 1.87 92.06 ± 2.07 96.01 ± 0.27 96.83 ± 0.36 98.41 ± 0.35 95.88 ± 0.14 98.97 ± 0.08
AA 88.63 ± 1.03 94.51 ± 2.7 92.59 ± 3.71 96.12 ± 1.80 96.01 ± 1.72 97.19 ± 0.81 98.02 ± 1.36 98.22 ± 1.92
κ 87 ± 0.01 91 ± 0.32 91 ± 0.58 96 ± 0.03 95 ± 0.04 98 ± 0.01 95 ± 0.12 99 ± 0.10

Figure 5. Salinas image. (a) The false-color composite image. (b) Reference image. The classification maps of (c) GCN, (d)
EPF, (e) IFRF, (f) SCMK, (g) SSL-SL, (h) MDGCN, (i) SPCNN and (j) SSG.
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4. Effect of the Number of Superpixels and Different Number of Training Samples

The classification results of our proposed scheme depend on the choice of superpixel
number and labeled sample number. As with many existing superpixel-based methods,
the optimal parameter value was obtained as an experimental result, not as a pre-specified
one. Therefore, the effect of different superpixel number and different number of training
samples on the performance of the proposed SSG approach will be analyzed in this section.
The OA values recorded in our experiments are the average of ten independent runs.

In our experiments, the test superpixel number was from 700 to 1800. The number of
training samples and test samples is the same as that listed in Table 1. In Figure 6, with the
increase of the number of superpixels, the change of OA values shows a similar trend on
three scenes, that is, rising first and then decreasing. The difference between them is that
the superpixel number corresponding to the optimal OA value and the magnitude of the
change are different. The reason may be that a small superpixel number usually means
that the generated superpixels have large sizes. This increases the risk that the objects
belonging to different classes are located in the same superpixel. In addition, although the
superpixel with small size has better homogeneity, it weakens the role of spatial information
in classification. The experimental results show that when the number of superpixels is
equal to 1000 for Indian Pines and Pavia University images and 1500 for Salinas image, our
method provides satisfactory classification results on three scenes.

Figure 6. Variation of classification results with different superpixel numbers on three scenes.

The performance of semi-supervised classification methods generally relies on the
number of training samples. Although excellent classification results can be obtained using
a large number of training samples, the marking of samples is expensive. Thus, using
a small number of labeled samples to obtain satisfactory classification results can often
verify the performance of the classifier. The number of superpixels is identical to that
determined in the previous part. Figure 7 displays the impact of different numbers of
training sample on several classification methods. The number of randomly labeled pixels
per class varies from 5 to 30 for these three scenes. It is easy to see that the classification
accuracy of all methods gradually improves as the increase of training pixels. Due to lack
of spatial information and the use of neural network in classification, the classification
results of GCN were unsatisfactory. Compared with other six spectral-spatial classification
algorithms, the proposed scheme can always acquire better performances for different
numbers of training samples for different images.
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Figure 7. Change of classification accuracy on three images with the increase of the number of labeled pixels. (a) Indian
Pines. (b) Pavia University. (c) Salinas.

Additionally, we further compared the running time of these classification methods.
All experiments were implemented using MATLAB 2018a on the computer with TM i7-
6700 CPU, 3.40GHz, 16GB memory and NVIDIA GEFORCE RTX 1660 GPU. The running
time here includes all the computational times for PCA, ERS, graph construction, label
propagation and classification. Table 5 reports the running time (average of ten runs) of
these methods on Indian Pines (IP), Pavia University (PU) and Salinas (SA) images with
30 labeled pixels per class. Three deep learning-based classification framework, GCN,
MDGCN and SPCNN, are time-consuming since there are massive parameters to be opti-
mized. One can observe from Table 5 that the computation time of our method is less than
10 seconds on three images and much less than that of other competitors. This satisfac-
tory result benefits from the computational efficiency of the ERS algorithm, the abstract
representation of superpixels, the computational simplicity of the graph construction and
the rapid implementation of solving algebraic equations by CGDM approach. The results
in Tables 2–5 confirm that the proposed method can accurately and quickly realize the
classification of hyperspectral data.

Table 5. Running time (seconds) of eight classification methods on three images.

GCN EPF IFRF SCMK SSC-SL MDGCN SPCNN OURS

IP 58.72 ± 0.36 13.041 ± 0.36 4.732 ± 0.11 6.23 ± 0.09 15.09 ± 0.56 44.64 ± 0.53 65.83 ± 2.92 1.481 ± 0.01

PU 783.06 ± 2.21 17.564 ± 1.22 12.864 ± 0.56 12.97 ± 0.21 21.33 ± 1.02 154.16 ± 3.86 205.86 ± 3.51 4.267 ± 0.26

SA 73.59 ± 1.64 27.693 ± 0.21 14.122 ± 0.14 14.33 ± 0.21 23.77 ± 0.69 24.53 ± 0.91 51.54 ± 3.73 6.057 ± 0.38

5. Discussions

Based on Tables 2–4 and earlier studies [10,20,22,27,32,34–40], although superpixel-
based HSI classification methods can achieve better classification results than pixel-based
ones, superpixel-based HSI classification methods often suffer from two problems.

One is how to determine the optimal number of superpixels. As shown in Figure 5,
different superpixel segmentation scales will result in different classification results. To
date, the determination of the optimal number of superpixels still depends on the experi-
mental results [10,20,22,27,32,34–40]. Although the multiscale-based approach can partially
address this problem [18,33], the problem of how to choose segmentation scales still re-
mains. There may be two ways to address this problem: (1) define an indicator to determine
superpixel segmentation scale for a given hyperspectral image; (2) eliminate or alleviate
the effect of segmentation scale on the classification results by merging superpixels.

The other is how to properly measure the similarity between two superpixels and
pixels. Generally, it is difficult to properly define the distance between the two superpixels
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due to its characteristic of adaptive shape and size. In [32,37–40], the authors try to use
various techniques to address this problem, such as affine hull model [32,38], covariance
matrix [40], KNN-based [37,39]. The computation complexity of the distance between two
superpixels is at least O (ni × nj × B) in these studies. In our work, the complexity of
calculating the distance between the two superpixels is approximately O (ni + nj)× B. As
expected, calculating the defined distance is more efficient than existing methods.

In Equation (2), we only consider three commonly used statistical features of super-
pixels to construct a new sample to approximately represent a superpixel. Perhaps, more
factors should be considered in such a representation, for example, the entropy, texture
features or variance of superpixels. In addition, it is also important to choose an appropriate
metric when calculating the distance between superpixels defined in Equation (3). For
example, if the Euclidean distance (ED) in Equation (3) is replaced with spectral angular
mapping (SAM) [59], different classification results and running times are obtained, as
shown in Table 6. In general, using different metrics may yield different classification
results for the same classification algorithm. Thus, it is necessary to choose the appropriate
metrics for different data types.

Table 6. Classification results and running time (seconds) on three images.

Indian Pines Pavia University Salinas

SAM ED SAM ED SAM ED

OA 94.8 ± 2.01 97.85 ± 0.07 97.97 ± 0.27 99.12 ± 0.12 92.12 ± 4.21 98.97 ± 0.08
AA 93.02 ± 9.58 97.75 ± 1.80 96.36 ± 4.82 98.34 ± 3.64 88.67 ± 8.98 98.22 ± 1.92
κ 94.1 ± 2.28 98 ± 0.08 97.54 ± 0.39 99 ± 0.15 91.26 ± 4.65 99 ± 0.10

Times 1.82 ± 0.50 1.481 ± 0.01 4.75 ± 0.07 4.267 ± 0.26 6.375 ± 0.08 6.057 ± 0.38

It is also important to select the appropriate metrics when calculating the distance
between the superpixels defined in Formula (3).

Additionally, the sparse superpixel graph constructed here is an unweighted graph.
Thus, some popular graph partitioning algorithms can be used directly. Theoretically,
weighted directed graphs can better represent the close relationship between vertices.
However, the intimacy between the two vertices is often asymmetric. In this case, the
proposed method cannot work well, and a redesign of new label propagation method is
required. Therefore, it is still worth to further explore how to represent hyperspectral data
with a weighted directed superpixel graph and study its division.

6. Conclusions

Based on the constructed superpixel graph and discrete potential theory, in this work,
we present a superpixel-level semi-supervised HSI classification method. The merits of the
proposal are the following: (i) Unlike the existing definition of distance between superpixels,
the only use of a vector to approximately represent a superpixel makes it easy and fast
to calculate the defined distance between a pair of superpixels. (ii) The classification
results of three scenes demonstrate that the strategy of global spectral connection and
local spatial connection can better preserve the spectral and spatial relations of the HSI
in the constructed superpixel graph. (iii) In the constructed superpixel graph, taking
each superpixel as a vertex instead of a pixel actually reduces the hyperspectral data
spatially, so that our method can be realized quickly. (iv) The label propagation procedure
based on discrete potential theory, the CGDM and approximate solution speeds up the
implementation of the scheme again. Experimental and comparative results in this paper,
respectively, confirm the validity of the proposed classification scheme and outperform
other state-of-the-art methods in terms of classification accuracy and running time.
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