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Abstract: Oil spills represent one of the major threats to marine ecosystems. Satellite synthetic-
aperture radar (SAR) sensors have been widely used to identify oil spills due to their ability to
provide high resolution images during day and night under all weather conditions. In recent years,
the use of artificial intelligence (AI) systems, especially convolutional neural networks (CNNs),
have led to many important improvements in performing this task. However, most of the previous
solutions to this problem have focused on obtaining the best performance under the assumption
that there are no constraints on the amount of hardware resources being used. For this reason, the
amounts of hardware resources such as memory and power consumption required by previous
solutions make them unsuitable for remote embedded systems such as nano and micro-satellites,
which usually have very limited hardware capability and very strict limits on power consumption.
In this paper, we present a CNN architecture for semantically segmenting SAR images into multiple
classes. The proposed CNN is specifically designed to run on remote embedded systems, which have
very limited hardware capability and strict limits on power consumption. Even if the performance in
terms of results accuracy does not represent a step forward compared with previous solutions, the
presented CNN has the important advantage of being able to run on remote embedded systems with
limited hardware resources while achieving good performance. The presented CNN is compatible
with dedicated hardware accelerators available on the market due to its low memory footprint and
small size. It also provides many additional very significant advantages, such as having shorter
inference times, requiring shorter training times, and avoiding transmission of irrelevant data. Our
goal is to allow embedded low power remote devices such as satellite systems for remote sensing to
be able to directly run CNNs on board, so that the amount of data that needs to be transmitted to
ground and processed on ground can be substantially reduced, which will be greatly beneficial in
significantly reducing the amount of time needed for identification of oil spills from SAR images.

Keywords: oil spill; EO; CNN; low power; edge; on board data processing

1. Introduction

Early identification of oil spills is essential to prevent damages to marine ecosys-
tems and coastal territories. Synthetic-Aperture Radar (SAR) images are widely used to
accomplish this task due to their ability to provide high resolution images during day
and night under all weather conditions. Previous algorithms for identifying oil spills are
designed to be run on desktop or server computers on the ground using data provided by
satellites. Previous algorithms require the images to be downloaded from the satellite and
then processed, which prevents the use of these solutions in low latency applications. In
recent years, edge computing has gained more and more attention due to the increasing
capabilities of Hardware (HW) accelerators dedicated to embedded applications, especially
those able to run Neural Network (NN) inference efficiently. This makes it possible to
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move decision making to the edge by exploiting Artificial Intelligence (AI) algorithms. The
main benefits of the approach in this work are [1]:

• Low latency, useful for those applications that need to sense and act directly on
the satellite;

• Reduced data transmission, since data can be (at least partially) processed directly
on board the satellite so that the amount of data to be transmitted to the ground can
be reduced;

• Privacy enhancement, which is needed by applications that involve personal data.

We can easily identify application scenarios that can benefit from running AI algo-
rithms directly on board the satellite. For example, satellite missions that employ nano-
and micro-satellites are remote systems with strict HW restrictions on power consumption
and processor capability. In Earth Observation (EO) missions, the data workflow usually
consists of:

• Data acquisition, for example, hyperspectral or SAR images;
• Data processing, a usually basic operation such as compression of acquired data;
• Data transmission to the ground station;
• Data processing on ground.

The amounts of data acquired can be huge depending on the mission goal and bud-
get [2]. Data transmission (downlink) to the ground station can be very slow due to
multiple factors; for example, the low speed of low power–low bandwidth transmitters,
and the fact that transmission can usually only be done when the satellite is within the
transmission range of the ground station. Downlink problems are gaining attention due to
the very large amounts of data that new generation sensors can acquire. Some solutions
have already been proposed, and some new communications technology to address down-
link problems have been developed [3]. Benefits of applying AI algorithms to these kinds
of missions include:

• The ability to remove irrelevant data, for example, cloudy images, before transmission;
• Early notification of interesting events, such as wildfires or oil spills. By running AI

on board, the satellite will be able to identify specific situations directly on board and
will only need to transmit a notification to the ground.

Such improvements in the data workflow can lead to less waste of time and energy for
the satellite and provide early notification for those situations that require timely intervention.

In this paper, we present a Convolutional Neural Network (CNN) architecture for
semantically segmenting SAR images into multiple classes that is specifically designed to
run on remote embedded systems that have very limited hardware capability and strict
limits on power consumption. Our solution has the important advantage of being able
to run on remote embedded systems with limited hardware resources while achieving
good performance. We achieve this by adopting a design flow that takes into consideration
hardware constraints right from the beginning to develop a system with a memory footprint
that is as low as possible.

Due to our system’s small memory footprint, it can be run on dedicated HW accelera-
tors on board the satellite, which enables our system to identify oil spills from SAR images
in a significantly shorter amount of time.

The main objective of this work is to enable oil spills identification directly on board
resource constrained systems, i.e., nano- and micro-satellites, by leveraging dedicated
hardware accelerators to achieve low power and low inference time. A CNN model is
used to take advantage of commercially available hardware accelerators suitable for space
applications. A performance comparison between two different accelerators running the
proposed CNN is performed. In addition, a comparison with related works is shown to
highlight the strengths and limitations of the proposed solution.

In Section 2, we summarize related work, especially those related to automatic meth-
ods for identifying oil spills using CNNs. In Section 3, we will introduce the main embed-
ded devices and HW accelerators available for deploying AI applications directly on board
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the satellite. In Section 4, we will describe the dataset and the proposed CNN architecture.
In Section 5, we will discuss the results obtained in terms of inference time, power con-
sumption, size of the proposed CNN, and we will compare it with state-of-the-art solutions.
In Section 6, we will discuss the results. Finally, in Section 7, we will provide conclusions.

2. Related Work

Oil spill detection can be conducted with various methods, ranging from manual to
semi-automatic and fully automatic methods. With manual methods, skilled operators
analyze images to determine whether dark formations correspond to oil spills or not. With
semi-automatic methods, image features related to geometrical characteristics, physical
and textural information, and contextual information [4] are used as input to various types
of classification systems. In [5], for example, a forest of decision trees was applied to the
set of selected features to identify oil spills in satellite images based on the experience of
skilled operators. In [6], a set of selected features was used as input to drive an Artificial
Neural Network (ANN) able to classify a dark formation as oil spill or look-alike.

CNNs are one of the most widely used models in deep learning [7], and are able to
achieve state-of-the-art results in image analysis applications of different areas, i.e., image
forensic [8], sea ice detection [9], autonomous navigation [10], and agriculture [11]. They
represent a fully automatic way to address the problem of oil spill identification since they
do not require a human to define the specific features that are used to classify oil spill and
look-alike formations. The relevant features are automatically identified during the CNN
training process.

CNNs have been widely used to perform segmentation of SAR images to identify oil
spills [12–25]. One example of this approach can be found in [26], where a NN, specifically
the Multilayer Perceptron (MLP), was applied to SAR images for the first time. In [27],
a CNNs was used to semantically segment the input image and classify each pixel into
one of five different classes (Sea, Oil Spill, Look-Alike, Ship, and Land). In [28], the same
authors also presented a publicly available dataset consisting of pixel labeled SAR images.
In [29], a CNN was used to discriminate oil pixels from background pixels. In [30], a
deep learning fusion recognition method was proposed, which achieves good adaptability
and robustness when applied to images with a wide range of different attitude angles,
backgrounds and noise.

Automatic classification methods consist of one or more stages. Usually, single-stage
methods are faster, but achieve lower quality results compared to multistage ones. An
example of a single-stage method was proposed in [31], where a CNN (A-ConvNets)
performs the classification using SAR images. In [32], a two-stage framework based on two
CNNs was proposed to semantically segment SAR images. In [33], the authors presented
a three-stage method based on a Mask R-CNN model that is able to identify different
Region of Interests (ROIs) and segment them, obtaining state-of-the-art results in terms
of classification ability. CNNs are also used to identify oil spills from polarimetric SAR
images [34–36] and hyperspectral images [37] as well.

3. Boards and Hardware Accelerators for Neural Networks

The main goal of this research activity is to allow AI systems to directly run on
embedded devices with limited hardware resources in remote environments, such as
satellites that identify oil spills from SAR images. To this end, we need to know which
embedded devices are available to run NN inferences, and the strengths and limitations of
each of them. Here, we briefly introduce some of the most widely used embedded devices
and Commercial Off-The-Shelf (COTS) hardware accelerators specifically meant to run
NN inferences.

• Myriad: The Intel Movidius Myriad Vision Processing Units (VPUs) are hardware
accelerators able to run NN inferences using processors called Streaming Hybrid
Architecture Vector Engines (SHAVEs). Currently, there are two versions of this
accelerator: the Myriad 2 [38] and the Myriad X. They show the best performance
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accelerating NN with convolutional layers, such as Fully Convolutional Network
(FCN) and CNN. Their weakness is the limited intralayer memory available, which is
about 128 MB. This imposes a severe limit on the size of the output of each layer of
the NN that can be deployed on it.

• Google Coral: The Coral Edge Tensor Processing Unit (TPU) is an Application-Specific
Integrated Circuit (ASIC) developed by Google with the aim to accelerate Tensor-
Flow Lite models while maintaining a low power consumption. It can perform up
to 2 trillion operations per second (TOPS) per watt (W). The Google Coral TPU is
available in different form factors. These devices can run inferences of 8-Bit NN and
obtains maximum performance when running inferences of FCN. The drawback of
these devices is that some NN layers are not supported or only partially supported.
For example, at the time this paper is written, the Softmax layer supports only 1D
input tensor with a maximum of 16,000 elements. The layers that are not supported
can be run outside the accelerator on the host system; this generally leads to lower
performance and puts extra load on the host CPU preventing the use of the accelerator
when low latency is required.

• Nvidia Jetson Nano: The Nvidia Jetson Nano is a board that features both a Central
Processing Unit (CPU) and a Graphic Processing Unit (GPU). It can run an Operating
System (OS) and allows execution of many kinds of NNs due to the versatility of the
featured GPU. It can work with a maximum power consumption of 5 or 10 W. Its
main limitation is the limited amount of RAM it features, which is 4 GB in the largest
memory size version. To overcome this limitation TensorFlow Lite can be used which
allows one to use less hardware resources during inference time or to even quantize a
NN with minor loss of accuracy.

• FPGA: Due to their high flexibility, Field-Programmable Gate Arrays (FPGAs) can
theoretically support any layer, provided that a sufficient amount of logical resources
are available. The drawback with this technology is that programming FPGAs usu-
ally requires specific skills and a longer development time [39,40] especially when
compared to COTS devices like the ones mentioned above. It is worth noting that
recently some FPGA manufacturers have released tools to help developers deploy
NNs on their FPGA boards. These tools usually come with some limitations such as
the number of supported layer types. Moreover, FPGAs for which the performance
can be compared to the performance of dedicated hardware accelerators are normally
more expensive compared to the dedicated hardware accelerators. The cost of FPGAs
can also increase when additional special technologies are required, such as when
radiation tolerance is required.

3.1. Radiation Hardened Devices

One of the main goals of this work is to be able to run AI systems directly on board
satellites. One of the most important requirements for technology used for space applica-
tions is the ability to work in an environment with radiation. Radiation can cause different
types of errors, for example:

• Single-Event Latch-up (SEL) Linear Energy Transfer (LET). This affects transistor
junctions and can have irreversible effects (permanent or hard errors).

• Single-Event Transient (SET). This is a spurious signal produced by radiation; it causes
temporary effects (soft errors).

• Single-Event Upset (SEU). This is a change in the state of a memory, it causes tempo-
rary effects (soft errors) on the device, but may cause the software to enter into an
inconsistent state until a reset is issued.

Embedded devices must guarantee that they can properly work in these environments.
The amount of radiation a device can tolerate is indicated as Total Ionizing Dose (TID).
Radiation tolerance of a device can be achieved in different ways [41–43] and depends
on both the design methodology and the technologies used to make them. Examples of
devices specifically built to work in space environment include the following:
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• RTG4 FPGA from Microsemi, which can tolerate a TID up to 160 Krad [44];
• GR740 from CAES, which features the LEON4 microprocessor. This board can tolerate

a TID of 300 Krad [45].

Concerning COTS HW accelerators, some radiation tests have been conducted both on
the Myriad 2 VPU and the Jetson Nano board. The Myriad 2 can be found in many different
devices, such as the Eyes of Things (EoT) board [46]. The results obtained shown that the
Myriad 2 can tolerate about 49 Krad [47]. For the Jetson Nano preliminary results suggest
that it can tolerate about 20 Krad [48]. Results for Myriad 2 and Jeston Nano suggest that
they can be employed in short missions, especially those for Low Earth Orbit (LEO) where
devices are subjected to less radiation compared with other missions, e.g., Medium Earth
Orbit (MEO) and Geosynchronous Equatorial Orbit (GEO) missions. In Table 1, the amount
of radiation that the aforementioned devices can tolerate is shown.

Table 1. Amount of radiation tolerated by different devices used in space applications. * indicates
preliminary results, while “-” indicates data not yet available.

RTG4 GR740 Myriad 2 Jetson Nano

TID (krad) 160 300 49 20 *

SEL LET (MeV cm2/mg) 103 125 8.8 -

SET upset rate (errors/bit-day) <108 - - -

3.2. Which Device Should Be Used to Run Our CNN?

As usual, there is no one perfect solution; it depends on the requirements of the
application we would like to deploy and the constraints of the problem we need to solve.
As already noted, the development of a CNN for an FPGA could require a considerable
amount of time; also, this process can differ slightly from one FPGA brand to another.
Moreover, in cases where the application scenario requires special technologies, the cost of
a suitable FPGA can be very high; for example, in satellite applications where radiation
tolerant or hardened FPGAs must be used [49,50]. Furthermore, we needed to rule out
Google Coral because it does not support some of the CNN layers that are required by our
application.

Considering these constraints, we selected the Intel Movidius Myriad 2 and the Nvidia
Jetson Nano as deployment targets for our system: Intel Movidius Myriad 2, because
it supports all the layers used to build our CNN, provided that we do not exceed the
amount of intralayer memory available; Nvidia Jetson Nano, because of the versatility
of the featured GPU and the fact that it is agnostic to the framework used to design and
develop the CNN. Our choice also takes into consideration the short deployment time
required by these devices. Since Nvidia made an OS with pre-installed GPU drivers
available for the Jetson Nano board, it is possible to directly run CNN inferences using the
TensorFlow environment. For the Movidius Myriad 2, the target device is the Movidius
Neural Compute Stick (NCS), a device that features a Myriad 2 chip and a USB form factor.
Once the CNN is deployed on the NCS it can also be used on the EoT board, which has
been tested for radiation tolerance. To be able to run a CNN on the Myriad 2, it must
be quantized and converted to a specific format. The quantization process converts the
weights of the CNN from 32 to 16 bits and can affect the performance of the CNN itself.
The conversion can be performed both via the Neural Compute Software Development Kit
(NCSDK) [51] or the OpenVINO toolkit [52].

Finally, these two COTS devices represent a desirable choice for satellite applications.
The Myriad 2 chip has passed the preliminary radiation tests at CERN [47] and it has
already been used in the PhiSat-1 mission [53]. Furthermore, some products of the Nvidia
Jetson family are currently being considered for possible use in future missions [54].
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4. Methods
4.1. Dataset Description

Although SAR images represent a powerful tool to monitor oil spills, there is a lack
of publicly available labeled datasets. This limits the research in this topic area making
different studies difficult to compare; especially when AI techniques are involved. To
overcome this problem, we used the dataset described in [28]. That dataset consists of
SAR images (originally acquired from the Sentinel-1 European Satellite missions) col-
lected via the European Space Agency (ESA) database, the Copernicus Open Access Hub
(https://scihub.copernicus.eu/ (accessed on 6 September 2021)), while the location and
timestamps of the oil spills were provided by the European Maritime Safety Agency
(EMSA) (CleanSeaNet service). Oil spill information refers to pollution phenomena that
took place from 28 September 2015 to 31 October 2017. As specified in [28], the SAR images
provided in this dataset have been pre-processed by applying radiometric calibration,
speckle filtering, and dB to luminosity conversion. These operations are usually affordable
in terms of processor capability and energy budget of satellite systems. Considering the
case where these operations are not affordable for a specific mission with very low budget,
it is probably not worth implementing onboard SAR images processing for this type of
mission. Sharing the same dataset allows us to easily compare results from different studies.
The dataset comprises 1002 images for the training and validation sets and 110 images for
the test set. Each image is (1250, 650) pixels. Since the original image size was too large to
fit into a small CNN, we needed to split input images into tiles. We needed to choose a tile
size small enough to save memory at inference time while containing as much scene context
as possible; hence, we set the input size as (320, 320) pixels. A smaller tile dimension size
could lead to poor segmentation results due to the lack of context information. Moreover
(320, 320) pixels are the same tile size used in [28] and this allows for an easier comparison
between the two solutions. We randomly sampled 6400 tiles for the training set and 1616
for the validation set, while the test set consists of 880 tiles. In the dataset we can find
five different object classes, and their labels classify each pixel in the image into one of the
following classes:

• Sea;
• Oil spill;
• Look-alike;
• Ship;
• Land.

Look-alike areas are caused by wind and other natural phenomena; they look a lot like
oil spills and represent one of the main challenges in any multi-class classification problem
that tries to distinguish between these two classes.

The distribution of the pixels among the classes is shown in Table 2. We can see that
there are skew classes, in particular, the Oil Spill class represents only 1% of the entire
dataset. This class imbalance represents another challenge since we have very few examples
from which our CNN can learn to distinguish between Oil Spill class and other classes.
Figure 1 shows three tiles that are used to train the CNN.

Table 2. Class distribution of pixels in the dataset.

Class Percentage of Pixels (%)

Sea 88.32

Oil Spill 1.01

Look-Alike 5.58

Ship 0.03

Land 5.06

https://scihub.copernicus.eu/
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Figure 1. Example of input tiles used to train the proposed Convolutional Neural Network (CNN).

4.2. Network Architecture

The CNN that we designed and developed consists of two sections: the first section
extracts information from the input tile and codes it into an embedding by repeatedly
shrinking the feature maps, while the second section up-scales the previously generated
embedding up to the original dimension and classifies each pixel of the tile. In Figure 2,
blocks with light blue background belong to the first section, while blocks with light
green background belongs to the second section. Conv Block contains 4 sub-blocks. Each
sub-block consists of a Convolution layer, with 3 × 3 kernel and stride 2, followed by a
MaxPooling layer and produces as an output a feature map with an output stride of 2.
Since there are 4 sub-blocks inside Conv Block, the feature map obtained as output has an
output stride of 16. Multigrid Block employs multiple Convolution layers with different
dilation rates, which allow one to control the receptive field without increasing the number
of weights of the CNN [55]. In ConvTranspose Block, there are 4 sub-blocks. Each sub-block
consists of a transpose convolution and a Convolution layer, used to upscale the feature
map by a factor of 2. ConvTranspose Block allows one to upscale the feature maps up
to the original dimension of the input tile. A skip connection connects the feature maps
from the Conv Block, when output stride is 8, to the ConvTranspose Block to improve the
reconstruction of the fine detail during the upscaling process. Finally, a Convolution layer
and a Softmax layer are used to generate the output mask. An argmax can be used as a
post processing operation to obtain a 2-dimensional mask with the predicted class for each
pixel. The proposed CNN is kept as shallow as possible to obtain low inference times even
on resource constrained devices. Our CNN employs only four types of layers and two
activation functions:

• Convolution;
• Max pooling;
• Transpose convolution;
• Add;
• ReLU and Softmax as activation functions.

These are some of the most common layers used to build CNNs. In this way, we
aim to make our CNN model as compliant as possible with the set of layers supported by
hardware accelerators currently available on the market.

Techniques like Atrous Spatial Pyramid Pooling (ASPP) [56] and multigrid [57] are
not used because they may require a large amount of memory depending on the size of
the feature map they need to work on. Other solutions, like [28], use MobileNetV2 [58]
as the first section of the CNN. While MobileNetV2 is found to be effective in the feature
extraction task, it employs sequences of bottleneck residual blocks that can drastically
increase inference time and memory footprint due to the expansion factor used by these
blocks. In our solution, dilated convolutions [59] are used since they can increase the
receptive field of the filter without requiring additional parameters and thus resources.
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Figure 2. Architecture of the proposed CNN.

4.3. Training Phase

The obtained CNN is a relatively shallow network with a few thousand parameters.
This allows one to use a large batch size value without running out of memory during
the training phase. We train the CNN on an Nvidia Tesla T4 and we choose a batch size
of 32 and Adam [60] as the optimizer. Since our dataset presents a strong foreground–
background class imbalance, we use the α-balanced version of the focal loss [61], shown in
Equation (1), that is found to be effective in handling problems with strong class imbalances.

FL(pt) = −αt(1− pt)
γ log(pt) (1)

Focal loss exploits the modulating factor (1− pt)γ that helps to focus the training
process on hard examples. The αt and γ parameters can be tuned according to the problem
to be solved, while pt is defined as:

pt =

{
p if y = 1
1− p otherwise

(2)

where y is the ground truth class and p is the output of the CNN.
One epoch takes about 90 s on Nvidia Tesla T4 GPU. The duration of the train phase

lasts about 270 epochs; at this point, the training process stopped, because the CNN started
to overfit on the training set, as shown in Figure 3 where the loss on the training set
continued to decrease while the one on the validation set did not.

Figure 3. Loss value for both train and validation sets during the training phase.
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5. Results

When evaluating the performance of a CNN, previous solutions usually only consider
the accuracy and, sometimes, consider the inference time. In order to run CNNs directly
on board in embedded systems, we need to consider other parameters, such as power
consumption, the amount of hardware resources required, and deployment time. Here, we
present the performance of the CNN that we have designed, using the following criteria:

• Intersection over Union (IoU), one of the most used metrics to evaluate the goodness
of segmentation CNN;

• Inference time, the time needed to run 1 inference of the proposed CNN on the devices
chosen as deployment target;

• Power consumption, an estimate of the power per inference needed on the selected
deployment targets;

• Size of the CNN, i.e., the file size of the stored CNN model. This parameter can be of
special importance, because many types of remote embedded systems require wireless
communication so a smaller file size means less time to deploy the CNN to the system.

5.1. IoU Results

IoU tells us how capable the CNN is in classifying each pixel of the image. It is defined
as shown in Equation (3).

IoU(A, B) =
|A ∩ B|
|A ∪ B| (3)

Above, A and B are the set of pixels predicted to belong to the output class and the
ground truth, respectively. For multi-class problems, the mean IoU can be used to evaluate
the overall CNN IoU performance. It consists of the mean of the IoU for each output class,
as shown in Equation (4).

mean_IoU =
n

∑
i=1

IoU(Ai, Bi) (4)

Above, n is the number of classes of the problem, Ai is the set of predicted pixels for
class ith, and Bi is the set of ground truth pixels for class ith.

Results in terms of IoU are shown in Table 3 for the Nvidia Tesla T4 (where the CNN
was trained), the Nvidia Jetson Nano, and the Movidius NCS. We can see that IoUs do
not change between the two GPUs, as we can expect, while for the Movidius NCS there
is a slight difference for some output classes due to the quantization process mentioned
earlier. It must be noted that the mean IoU over all classes is lower than state-of-the-art
solutions [33]. This is due to the small number of layers and channels per layer used in
our CNN, and the fact that we do not employ strategies that are demanding in terms of
memory and inference time.

Table 3. Performance of the proposed CNN in terms of IoU on the selected boards.

Single Class IoU (%)
Mean IoU (%)

Sea Oil Spill Look-Alike Ship Land

Nvidia Tesla T4 93.6 25.8 20 5.9 71.8 43.4

Nvidia Jetson Nano 93.6 25.8 20 5.9 71.8 43.4

Movidius NCS 93.3 26.1 19.3 6.6 70.5 43.2

Here five sample images taken from the test set are shown and discussed. For each
sample, we show the input SAR image, the ground truth, and the predicted mask obtained
from our solution. In the first sample (left column of Figure 4) land, look-alike, and a small
oil spill are shown. In this sample, the three classes are recognized, but their shape is not
very well defined, especially the border.
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In the second sample (right column of Figure 4), two large oil spills on the left, a
long oil spill with a ship at its top and a look-alike formation on the top of the image are
shown. In this sample, the ship is well recognized, while the thinnest part of the oil spill is
not recognized; also, the fine grain details of both oil spills on the left and look-alike are
missing. Moreover, some small spots of look-alikes appear in the right of the predicted
mask. These spots are False Positive (FP) results and contribute to decreasing the IoU for
that class.

The third sample (left column of Figure 5) features three small oil spills, two main
look-alike formations, and a big land area on the right. In this case, land is well recognized,
while oil spill class shows some FP spots where look-alike areas should appear. Other
look-alike areas are recognized except for the fine detail on the border. A look-alike area
appears on the bottom of the predicted mask, which represents a FP result.

The fourth sample (right column of Figure 5) features two oil spills in the middle and
a huge look-alike formation in the top left. In this case, both classes are well recognized.
Only a small portion of misclassified pixels appear as FP results in the predicted mask. We
can notice that the predicted mask classifies two dark formations in the top left and the
middle right of the image. These two dark areas are also visible in the input images, but
are not classified as look-alike in the ground truth mask.

Finally, a non-correct classification is shown in the fifth sample (Figure 6). This sample
features a ship on the top, a long oil spill in the middle, and a huge irregular shape look-
alike area. Here, the ship is correctly recognized, and the look-alike formation is only
partially recognized while the oil spill is completely missing since it is overlapped with
the huge look-alike area. There is also a big FP area in the look-alike class on the left of the
predicted mask.

Figure 4. Input image, ground truth, and output of the proposed CNN for example 1 and 2, respec-
tively, on the left and right column.
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Figure 5. Input image, ground truth, and output of the proposed CNN for example 3 and 4, respec-
tively, on the left and right column.

Figure 6. Input image, ground truth, and output of the proposed CNN for example 5.
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5.2. Inference Time Results

Here, we compare and discuss the inference times of the proposed CNN for the
two selected target devices mentioned earlier and for the Nvidia Tesla T4 GPU used to
train the CNN. Figure 7 shows inference times for the Nvidia Tesla T4 and Jetson Nano
GPUs. For the latter, we can see how power consumption affects the inference time: when
power consumption increases from 5 W to 10 W, the inference time decreases by around
28%. Given the small number of parameters of the proposed CNN, the memory footprint
depends almost entirely on the framework used to run the inference.

For the Movidius NCS, we run the CNN using different numbers of SHAVEs and
different software configurations. The Movidius NCS can work using from 1 to 12 SHAVEs.
When only 1 SHAVE is used, the Movidius NCS delivers minimum performance and
power consumption; when 12 SHAVEs are used, it delivers maximum performance and
power consumption. We choose to evaluate configurations employing 1, 6, and 12 SHAVEs
to show when best and worst performance are obtained, and when a balanced configu-
ration between performance and power consumption is achieved. Regarding software
configurations, we choose to evaluate our CNN both with and without the final Softmax
layer. This decision was made based on two observations. The first observation is that the
actual 2D mask of the predicted classes must be obtained through an argmax operation on
the CNN output and since the argmax(So f tmax(x)) gives the same result as argmax(x) we
can safely remove the final Softmax layer during deployment time without any negative
impact. The second observation is that in our case the tools provided by NCSDK indicate
that the proposed CNN with the Softmax layer cannot be used with the Movidius NCS.
This indicates that the output of the CNN with Softmax layer could be incorrect. Using our
dataset we did not observe any difference in the output masks generated by the proposed
CNN with or without the Softmax layer. Based on these observations, we decided to choose
the CNN version without the final Softmax layer to be deployed on the Movidius NCS for
real work usage, and to evaluate the performance of both versions of the CNN to show
how much the Softmax layer affects the inference time on this device.

Figure 8 shows the inference times when using 1, 6, and 12 SHAVEs and using the
CNN version together with the final Softmax layer. We can see that inference time decreases
as the number of SHAVEs used increases. Inference time decreases around 0.2 s when the
number of SHAVEs used increases from 1 to 6, while there is no significant improvement
when the number of SHAVEs used increases from 6 to 12.

Figure 9 shows the inference times when using 1, 6, and 12 SHAVEs and when using
the CNN version without the final Softmax layer. Furthermore, in this case, inference time
decreases as the number of SHAVEs used increases. Inference time decreases from 0.3 to
0.08 s, which is 3.7 times better, when the number of SHAVEs used increase from 1 to 6. As
in the previous case, no significant improvement is obtained when the number of SHAVEs
used increase to 12.

Analyzing this data, we have come to the conclusion that the presence of the final
Softmax layer has a negative impact on the inference time performance. We believe that this
shows that the Movidius NCS device is not optimized to perform this type of computation
while it is highly effective in accelerating Convolution layers as evidenced by the inference
time obtained when the Softmax layer is removed. We believe that this does not mean that
the Softmax layer should always not be used when deploying CNN to this device, but
only shows that the Softmax layer affects the performance of the system negatively in our
particular application. It is worth noting that our particular application requires computing
the softmax operation for each pixel of the output mask, that is 320× 320 = 102,400 times
each time on 5 values. Another thing we have observed is that the Movidius NCS achieves
better inference times compared with the Nvidia Jetson Nano, provided that enough
SHAVEs are used.
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Figure 7. Inference time of the proposed CNN when deployed on the Nvidia Tesla T4, and the Nvidia
Jetson Nano for 5 and 10 W of power consumption.

Figure 8. Inference time of the proposed CNN, when deployed on the Movidius Neural Com-
pute Stick (NCS), with Softmax as the last layer and using different numbers of Streaming Hybrid
Architecture Vector Engines (SHAVEs).

Figure 9. Inference time of the proposed CNN, when deployed on the Movidius NCS, without
Softmax as the last layer and using different numbers of SHAVEs.

5.3. Power Consumption Results

Since we are particularly interested in being able to run CNNs in remote embedded
systems with limited hardware resources, an important part of this research is to explore
various techniques for reducing power consumption. Here, we present an analysis of the
target devices’ power consumption when running the proposed CNN model.
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As mentioned earlier, the power consumption of the Nvidia Jetson Nano can be set to
a max value of 5 W or 10 W using a tool; we saw in Section 5.2 how this affects performance
of the proposed CNN model in terms of inference time. The ability to set and know in
advance the maximum power consumption of the device can make the task of a system
designer much easier.

The power consumption of the Movidius NCS depends on how many SHAVEs are
used during the inference process. This parameter must be set during the quantization
operation. Monitoring the power consumption on the USB port where the NCS was
connected can give an estimation of how much power the device requires during the
inference process. This setup allows one to monitor how much current is consumed in
addition to the power consumption. To obtain a meaningful estimation for the power
consumption per inference, we used the average of the power consumption measured over
1000 inferences; the same procedure was also used for estimating the current consumption.
For inference time evaluation, we repeat this procedure using 1, 6, and 12 SHAVEs. We
evaluated the proposed CNN both with and without the Softmax as the last layer. The 1,
6, and 12 SHAVEs average and maximum values for current and power consumption are
shown in Figures 10 and 11, respectively. We note that increasing the SHAVEs used from
1 to 6 leads to an increase of about ∼1.16 times for current and power consumption, and
increasing the SHAVEs used from 6 to 12 SHAVEs results in an increase of ∼1.17 times for
the same quantities. We can note similar behavior when the final Softmax layer is not used
as shown by the power and current consumption shown in Figures 12 and 13, respectively.
The only noticeable difference occurs only when 1 SHAVE is used; in that case the CNN
version without the Softmax layer has slightly lower consumption.

These results must be considered in combination with the inference time, which
has been analyzed in Section 5.2, to assess the total energy consumption required by the
CNN model. This way the balance between consumption and performance can be tuned
according to the energy budget of the entire system; that is a crucial factor when designing
embedded systems for remote missions.

Figure 10. Power consumption (W) during inference time using Softmax as the last layer and different
numbers of SHAVEs on the Movidius NCS.
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Figure 11. Current consumption (A) during inference time using Softmax as the last layer and
different numbers of SHAVEs on the Movidius NCS.

Figure 12. Power consumption (W) during inference time without using Softmax as the last layer
and different numbers of SHAVEs on the Movidius NCS.

Figure 13. Current consumption (A) during inference time without using Softmax as the last layer
and different numbers of SHAVEs on the Movidius NCS.

5.4. CNN Size

In the past, CNN designers and developers have paid very little attention to this
issue, but now this issue is gaining more and more importance and attention, because in
many CNN applications, one needs to take into consideration the ability to reconfigure
remote systems after their deployment. Reconfiguration during a satellite’s lifetime can
occur when updating the software becomes necessary, due to bugs or the need to upgrade
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performance with new algorithms, or to re-target the mission when a previous goal has
been completed and the satellite can still operate properly. In these situations, the amount
of time needed to develop the new software (train the CNN in our case) and transmit it to
the remote system needs to be reduced as much as possible, since it represents a significant
cost for the entire mission. For example, for satellite systems, efficient use of bandwidth is
extremely important, especially for low budget–low power missions such as nano- and
micro-satellites used for remote sensing that cannot afford to use expensive transmission
systems with high bandwidth. Furthermore, satellites can send/receive data only when
they are in the line of sight with a ground station.

We can now see the value of a CNN with a small number of parameters that reduce
training times, compared to bigger CNNs with a very large number of parameters, and
the value of a small file size, which enables system reconfiguration with affordable cost in
terms of bandwidth and time needed for the transmission of the file itself. As shown in
Table 4, the proposed CNN can be stored in about 270 KB for the Nvidia Jetson Nano, and
only 20 KB is required for the Movidius NCS.

Table 4. File size of the developed CNN.

N. of Parameters TensorFlow Model Movidius NCS Model

9.7 K 270 KB 20 KB

5.5. Comparison with Related Work

Here we summarize the results of the proposed CNN compared with similar solutions
from related work highlighting its strengths and limitations. Table 5 shows results in terms
of performance, memory footprint, inference time, and the number of stages of related
work, in particular those involving NNs. Compared with related work that reports memory
footprint and inference time, our solution exhibits a significant advantage regarding these
two metrics, even though it achieves a lower mean IoU as already explained in previous
sections.

Table 5. Comparison of different methods for oil spills identification.

Method Performed Task Performance Memory Footprint Inference Time Stages

Mask R-CNN [33]
Semantic
segmentation in four
different classes

Mean IoU at 93.6% — — Three stages

Auto-encoder and
Super-pixel [34]

Semantic
segmentation in five
different classes

Mean IoU of 90.5% 130 MB
192–2115 s
depending on
input size

Multi stage

CNN [28]
Semantic
segmentation in five
different classes

Mean IoU at 65.1% 4.9 GB 117 ms Single-stage

Auto-encoder [25] Segmentation of oil
spills F1 score of 93.01% — — Single-stage

CNN [20] Classification of oil
spill and look-alike

Accuracy of
94.01% — — Single-stage

NN [62] Segmentation of oil
spill and look-alike Accuracy of 95.2% — — Two-stage

CNN
Semantic
segmentation in five
different classes

Mean IoU of 43.4% <128 MB

44 ms on GPU;
128 ms on Jetson
Nano; 73 ms on
Myriad 2

Single-stage
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Since both our solution and the one proposed in [28] are single-stage methods based on
CNN, share the same dataset, and have the same goal of semantically segmenting images
into five different classes, it is possible to make meaningful comparisons between them.
When comparing these two CNNs, the proposed CNN consists of only 9.7 K parameters, is
200 times smaller, can run an inference in about 73 ms, is 1.5 times faster, when run on a
dedicated hardware accelerator with a power consumption of about 1.1 W and a negligible
memory footprint.

A similar comparison can also be made with [34], even if in this case the difference in
the adopted approach and dataset between the two solutions make the comparison less
meaningful. Comparison with other solutions is more difficult due to the lack of data in
terms of inference time and memory footprint.

6. Discussion

As shown in Table 3, the main reason that the Mean IoU of our CNN is slightly lower
than the CNNs that achieved state-of-the-art accuracy is because of the design choices in
the CNN architecture that we have adopted in order to reduce the memory footprint, power
consumption, and time usage during both training and inference phases. The restrictions
that we have adopted include:

• Reduced number of layers. Our CNN is designed to be as shallow as possible;
• Reduced number of channels in each layer to reduce the amount of memory used to

store intermediate results;
• Avoidance of the use of memory hungry techniques, such as ASPP;
• Use of layer types commonly supported by most hardware accelerators and COTS de-

vices. This choice aims to develop a CNN compatible with most hardware accelerators
available on the market.

As we can see in the results shown in Section 5, one of the most noticeable limitations
of our solution is the lack of fine grain detail that can be explained by the restrictions
adopted in the CNN architecture. Moreover, the proposed CNN does not perform well
in all scenarios included in the test set. When challenging scenarios are detected, i.e.,
images with high numbers of both oil spills and look-alikes, more in-depth analysis may
be required to accurately discriminate between these two classes. A post-processing can
be applied to the output of the proposed CNN to identify these situations and send the
selected images to the ground. This kind of post-processing can be done by simply counting
the oil spill and look-alike pixels in the output masks produced by the proposed CNN. The
cost in terms of processor capability is considered affordable as it is not higher than that of
the pre-processing operations mentioned in Section 4.1.

On the other hand, our solution exhibits low inference time, a negligible memory
footprint, and low power consumption when deployed on dedicated hardware accelerators.
Even if this solution does not break new ground in terms of results accuracy, it has the very
important advantage of being suitable for embedded applications such as satellite used for
remote sensing where low power consumption, short inference time and small memory
footprint are major requirements. Moreover, due to the small file size, it is possible to
upload an updated version of the CNN to the remote system with significantly less effort,
enabling mission goal re-targeting during the mission lifetime.

Solutions like the one presented in this paper can be used to process SAR images to
identify relevant phenomena directly on board the satellite and transmit only the results
of the processing of SAR images to ground. This can contribute to save bandwidth,
transmission time, and reduce power consumption, and effectively reduce the overall
mission cost. Other applications include illegal bilge dumping; this can be carried out by
post-processing the output of the proposed CNN to correlate the position of a ship and an
oil spill when both are detected in the same SAR image. If a correlation is found, the specific
SAR image can be sent to the ground for further analysis. This kind post-processing, i.e.,
measuring the distance between a ship and an oil spill, should not require more compute
capability than the other pre- and post-processing operation mentioned earlier.
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7. Conclusions

Nowadays, SAR images are widely used to monitor marine ecosystems and to identify
oil spills. In recent years, AI solutions, especially CNNs, have gained much greater visibility
due to their ability to automatically identify features from images. This has encouraged
the development of CNN-based applications to identify oil spills, and in some cases other
features, from SAR images. In the past, such applications often rely on general purpose
CNNs designed to be deployed on desktop or server machines and were developed using
result accuracy performance as the sole criteria, which means that they seldom take possible
constraints on hardware resources into consideration. As a result, previous CNN solutions
are most often not suitable for embedded devices that cannot afford to use large amounts
of expensive hardware resources. Any CNN solution that is meant to run on embedded
devices must address these limitations in its early design stages. Our solution is meant
to be useful for embedded devices used in remote environments that have very limited
hardware resources and that require very low power consumption. Remote embedded
systems, such as satellites used for oil spill identification from SAR images, can benefit
from this work by running AI algorithms directly on board so that the amount of data that
needs to be transmitted to ground and processed on ground can be reduced, which will be
greatly beneficial in reducing the amount of time needed for identification of oil spills from
SAR images. The proposed CNN consist of 9.7 K parameters, exhibits an inference time of
73 ms, a power consumption of 1.1 W, and a negligible memory footprint. The ability of
the proposed CNN to run on the Nvidia Jetson Nano and the Movidius NCS, featuring the
Myriad 2 VPU, make it very suitable for use in missions employing those devices, such as
short-duration LEO missions.
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