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Abstract: Detecting small objects (e.g., manhole covers, license plates, and roadside milestones) in
urban images is a long-standing challenge mainly due to the scale of small object and background
clutter. Although convolution neural network (CNN)-based methods have made significant progress
and achieved impressive results in generic object detection, the problem of small object detection
remains unsolved. To address this challenge, in this study we developed an end-to-end network
architecture that has three significant characteristics compared to previous works. First, we designed
a backbone network module, namely Reduced Downsampling Network (RD-Net), to extract infor-
mative feature representations with high spatial resolutions and preserve local information for small
objects. Second, we introduced an Adjustable Sample Selection (ADSS) module which frees the
Intersection-over-Union (IoU) threshold hyperparameters and defines positive and negative training
samples based on statistical characteristics between generated anchors and ground reference bound-
ing boxes. Third, we incorporated the generalized Intersection-over-Union (GIoU) loss for bounding
box regression, which efficiently bridges the gap between distance-based optimization loss and area-
based evaluation metrics. We demonstrated the effectiveness of our method by performing extensive
experiments on the public Urban Element Detection (UED) dataset acquired by Mobile Mapping
Systems (MMS). The Average Precision (AP) of the proposed method was 81.71%, representing an
improvement of 1.2% compared with the popular detection framework Faster R-CNN.

Keywords: mobile mapping; deep learning; convolution neural network (CNN); object detection;
small urban elements; reduced downsampling network; adjustable sample selection

1. Introduction

With the development of remote sensing technology, high-quality, fine spatial resolu-
tion optical remote sensing data can be obtained readily and provides a promising data
source for mapping urban elements. Aerial and satellite images have been utilized for
land use/land cover classification, building and cadastral identification, and transportation
infrastructure detection. However, some small urban elements (<0.6 m), such as manhole
covers, milestones, and license plates, are difficult to detect in aerial or satellite images
(with spatial resolutions typically larger than 0.3 m) when they often occupy less than 1% of
an image. These kinds of small urban elements are important for building detailed 3D city
models, assisting autonomous driving, and monitoring and maintaining urban facilities.
Mobile Mapping Systems (MMS), which use multiple sensors (e.g., digital cameras, lidars,
and global navigation satellite systems (GNSS)) operated on moving vehicles to collect
geo-referenced 2D and 3D data, provide a cost-efficient solution to capture small objects in
complex urban areas.
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MMS have been used to accurately detect 2D/3D urban elements. Detection of large
urban structures based on mobile 3D point cloud data has yielded good results, with
regard to pole-like street furniture recognition [1–3], street trees detection [4], road surface
reconstruction [5–7], and building footprint extraction [8,9]. Three-dimensional point
clouds of urban outdoor scenes contain detailed complex information about objects and
their backgrounds, and can help build comprehensive 3D urban models. However, mobile
3D point cloud data, especially in an urban scenario, are sparse in nature compared to
2D images, which makes it more challenging to detect small objects [10]. Small urban
elements in such sparse point cloud data are usually represented as a few points and
detection depends heavily on surface conditions. For example, manhole covers are hardly
distinguishable with 3D point cloud data, when the objects are occluded, during rain, or
when the road is icy. License plates and milestones are visible in only a few points and
often difficult to detect with mobile 3D point cloud data. Under such circumstances, high
spatial resolution 2D images acquired by MMS can provide more information-rich data
sources, such as perspective and bird’s eye view images, to detect small objects in urban
environments.

Recently, research on the detection of small urban elements has gained rapidly growing
attention in support of urban applications. For instance, detection of manhole covers is
critical for managing and mapping the drainage system that is hidden in satellite images.
Moreover, milestones, which are groups of steles built from the start to the end of a road at
equal lengths per kilometer for accurate positioning, are important geographical landmarks
for the transportation system and require regular maintenance. Automatically locating
and recognizing milestones can greatly reduce the need for manual road inspections and
maintenance to save human and non-human resources. In addition, in order to employ
MMS images for further applications, such as releasing street views to the public, detection
and blurring vehicle license plates is an essential task for privacy protection because license
plate numbers are considered as personally identifiable information in some regions.

With the rapid evolution of deep learning technologies, convolution neural net-
work (CNN)-based approaches, such as Faster R-CNN [11], Feature Pyramid Networks
(FPN) [12], You Only Look Once (YOLO) [13–15], and Single Shot Detector (SSD) [16],
have shown significant potential in understanding image data, and have thus become
the state-of-the-art methods to complete object detection tasks. Compared to traditional
object detection methods where feature extraction requires a cumbersome trial-and-error
process and depends on expert experience, CNN-based models introduce a solution in
an end-to-end fashion—neural networks learn the underlying features and automatically
extract sematic information.

Although CNN-based object detection algorithms have yielded promising results
for natural scenes, existing CNN-based models are challenged by small urban element
detection because of their unique properties. First, small urban elements occupy only
a few pixels or a small proportion of the whole image, suggesting that regular feature
representation tends to be deficient. Generic CNN-based models adopt AlexNet [17],
VGGNet [18], GoogLeNet [19], ResNet [20], ResNeXt [21], and SENet [22] architecture,
which include a series of convolution and downsampling operations for feature extraction.
Deeper networks tend to have a large downsampling rate with a large receptive field,
which is practical and useful for classification by extracting robust feature maps, but
compromises localization capability due to high-resolution information loss in the output
layer. Furthermore, anchors generated by generic object detection CNN-based models
may be too large, which may lead to the loss of attention for small objects. Second, small
objects such as manhole covers are easily obstructed by non-target objects that are located
at arbitrary locations in the image. It is difficult to distinguish occluded small objects from
a noisy urban background.

In this article, we propose a novel CNN-based framework that not only maintains high
spatial resolution in deeper networks but also yields efficient training samples to detect
small objects in urban environments. We designed a Reduced Downsampling Network
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(RD-Net) backbone to extract feature representations. The Region Proposal Networks
(RPN) module takes extracted features from RD-Net as input and outputs a set of region
proposals, which are rectangular bounding boxes for possible locations of the objects. In
the RPN module, an Adjustable Sample Selection (ADSS) module was devised to select
high-quality positive and negative training samples according to statistical features of
objects. By further propagating extracted feature maps and region proposals into the
Region of Interest (RoI) module, a pooling operation is adopted to crop regions of the
feature map, and more conspicuous object representations are learned to predict object
categories and locations. The main contributions of this study are summarized as follows:

1. We introduce a new backbone network, RD-Net, with low downsampling rate and
small receptive field which preserves sufficient local information. The proposed
RD-Net can extract high spatial resolution feature representations and improve small
urban element detection performance.

2. ADSS module is adopted, which defines positive and negative training samples based
on statistical characteristics between the generated anchors and ground reference
bounding boxes. With this sample selection strategy, we can assign positive-negative
anchors in an adaptive and effective manner.

3. We incorporate generalized Intersection-over-Union (GIoU) loss for bounding box
regression to increase the convergency rate and training quality. GIoU is calculated
to measure the extent of alignment between the proposed and ground reference
bounding boxes. With a unified GIoU loss, we can bridge the gap between distance-
based optimization loss and area-based evaluation metrics.

To evaluate the performance of our proposed model, we conducted extensive ex-
periments on the public Urban Element Detection (UED) dataset [23] to detect manhole
covers, milestones, and license plates. Our model achieves a significant improvement for
small urban element detection compared with state-of-the-art CNN-based object detection
methods. The results demonstrate that our model can not only detect small urban elements
accurately, but also reduce false positive detections. In addition, detailed ablation and pa-
rameter analyses were performed to further explore how the proposed techniques improve
the detection model and acquire some insights concerning proper parameter settings for a
valid detection model.

The remainder of this article is organized as follows. Section 2 briefly reviews the
related work. In Section 3, the proposed model for small urban element detection is
illustrated in detail. Experimental results and discussions are presented in Sections 4 and 5,
respectively. Finally, we draw our conclusions in Section 5.

2. Related Work
2.1. Traditional Urban Element Detection

Traditionally, hand-crafted features are extracted for accurate identification of the
location and shape of urban elements. Although some studies have used 3D point cloud
data to detect urban manhole covers [24,25], most existing studies for manhole cover
detection are based on 2D images [26–29]. Sultani et al. [26] separated the image into
superpixels and adopted a support vector machine (SVM) classifier to detect different
pavement objects including manhole covers. Pasquet et al. [28] combined the Bhattacharyya
coefficient and linear SVM classifier to increase the detection performance for manhole
covers. In Wei et al. [30], high spatial-resolution ground images and high-precision laser
data were jointly incorporated to detect manhole covers. The modified histogram of
oriented gradients (HOG) and SVM algorithms were exploited for identification and
information acquisition of manhole covers. Although some encouraging results have been
obtained with traditional detectors for manhole covers, these methods are not end-to-end
approaches and are composed of multiple complicated steps.

Extensive research has been conducted in the field of vehicle license plate recognition.
Most of these studies extract hand-crafted features based on specific descriptors, such
as edge, shape, color, and texture [31–36]. In Hongliang and Changping [33], a hybrid
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license plate extraction algorithm was introduced, which was based on edge statistics
and morphology. Jia et al. [34] utilized a mean shift algorithm to divide the regions of
interest, and classified license plates with respect to extracted shape and edge density
features. Deb and Jo [35] proposed a hue, saturation, and intensity (HSI) color model to
select candidate regions which were applied with position histogram for final license plate
detection. In Hsu et al. [36], edge clustering, a texture-based approach, was formulated
to detect candidate license plates. These traditional methods that work in license plate
detection heavily rely on expert knowledge for model design. The manually designed
features take advantage of low-level image information and can lead to poor generalization
ability in certain scenarios. For road milestones, some studies have explored accurate
prediction of milestone positioning [37] but, to the best of our knowledge, none have
investigated extraction routines with traditional methods.

2.2. CNN-Based Object Detection

Deep CNN-based object detection models have achieved substantial improvement in
accuracy and speed compared with previous hand-crafted feature-based methods. Con-
temporary CNN-based object detection methods can be grouped into one- and two-stage
detection methods.

Two-stage detectors first filter out a set of region proposals and then feed the proposals
into region convolutional neural networks for classification and localization [11,38–45]. In
2014, Girshick et al. [38] first introduced a CNN for the object detection task and proposed
Regions with CNN features (R-CNN), which generates region proposals by Selective Search
and propagates each proposal to a convolutional network to extract features. To reduce
the computation cost of R-CNN [38], Spatial Pyramid Pooling Network (SPPnet) [39] and
Fast R-CNN [40] compute the whole input image through convolutional networks and
extract feature vectors with spatial pyramid pooling and Region of Interest (RoI) pooling,
respectively. Faster R-CNN [11] enables end-to-end object detection and further improves
the computing efficiency of two-stage detectors. It introduced a Region Proposal Network
(RPN) [11], which replaces the independent external proposal generation modules. Later,
various methods based on Faster R-CNN were proposed to improve object detection
performance, such as Region-based Fully Convolutional Network (R-FCN) [41], Light-head
R-CNN [42], Deformable convolutional networks (DCN) [43], Mask R-CNN [44], and
Cascade R-CNN [45].

Compared with two-stage object detection methods, one-stage detectors are more
computationally efficient because they eliminate the proposal generation step, but the
detection performance tends to be inferior in most cases. For instance, YOLO [13] divides
the input images into grids. If the center of an object falls in the grid, the grid predicts
bounding boxes and confidence scores for the boxes. The advantage of YOLO is the high
detection speed, but the accuracy is not as good as that of two-stage detectors. YOLOv3 [15],
the upgraded version of YOLO, utilizes a deeper network and multiscale training. SSD [16]
incorporates multiple scale feature maps in a one-stage detector to predict bounding boxes
and category scores. SDD is faster than the one stage detector YOLO, and more accurate
than the two-stage Faster R-CNN model. RetinaNet [46] proposes focal loss to solve the
foreground-background class imbalance problem of one-stage detectors.

2.3. CNN-Based Small Object Detection

Although CNN-based detection models perform well in generic object detection, it
remains challenging to detect small objects that occupy only a small proportion of an image.
Multiscale feature learning is one crucial strategy for small object detection [12,47–49].
FPN [12] establishes a top-down feature pyramid network with lateral connections to
produce multiscale feature maps and predictions at different feature pyramids, improv-
ing the accuracy of small object detection. Trident Network (TridentNet) [48] constructs
three scale-aware parallel branches which share the same parameters but have different
receptive fields to improve small object detections. Different receptive fields for objects of
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different scales have the same motivation as the feature pyramid, aiming for multiscale
learning. Although multiscale feature learning can benefit small object detection, too large
a receptive field may lead to information loss for small objects. Recent works have shown
that integrating contextual information can improve object detection accuracy, especially
for small objects [49–53]. Inside-Outside Net (ION) [51] integrates contextual information
outside the RoI and adopts skip pooling for multiscale information extraction, which is
effective in detecting small objects. Liu et al. [53] presented Structure Inference Network
(SIN), which makes use of scene contextual information and object relationships to promote
object detection, especially for small objects. All of the above CNN-based models were
evaluated on PASCAL VOC [54] and MS COCO [55] datasets, in which most instances
occupied more than 1% of the whole image area. However, because small urban elements
detected in this study are even smaller than generic objects in natural scenes, the generic
object detection models cannot achieve optimal performance when directly used for small
urban element detection.

2.4. CNN-Based Urban Element Detection

With the development of CNN in generic object detection, deep CNN-based methods
have begun to be widely used to detect urban elements. Research on manhole cover
detection utilizing CNN-based models has emerged in recent years [56–58]. Boller et al. [56]
and Hebbalaguppe et al. [57] used Faster R-CNN to automatically detect drain inlets
and manhole covers and demonstrated that the CNN-based model was more powerful
than traditional computer vision methods. Liu et al. [58] proposed a multiscale feature
extraction network and a multilevel convolution matching network, such that the precision
and recall rate for small and dense manhole cover detection was boosted. The success of
deep CNN-based methods has also inspired automatic license plate recognition, which
focuses on identifying numbers and letters on the license plates [59–64]. Li et al. [59]
proposed a cascade architecture that began with a four-layer CNN to generate a saliency
map and then used Recurrent Neural Networks (RNNs) to detect and recognize characters.
Several studies developed and modified the state-of-the-art YOLO detector for license plate
recognition [60–64]. Hendry and Chen [63] reduced the original YOLO network to create a
tiny version for each class with 36 models and ran a sliding window for all classes to detect
small license plates and characters. Kessentini et al. [64] proposed a two-stage deep neural
network to recognize multinorm and multilingual license plates. The first stage employed
the YOLO detector to detect license plates, and the second stage combined two modules,
a segmentation-free module based on RNN and a joint detection/recognition module, to
identify characters. Compared with the above existing detection methods, our proposed
approach focuses on three small urban elements which occupy less than 1% of the image
area. Our method can effectively reserve local information of small objects and generate
high-quality training samples with a more adjustable sample selection strategy.

3. Method
3.1. Overview of Our Method

We developed and tested a deep learning-based detection framework which includes
several network modules, namely a Reduced Downsampling Network (RD-Net) backbone,
a sample-balanced RPN module, and RoI-based network heads for classification and
localization (Figure 1). The convolutional feature extraction network RD-Net utilizes the
basic stem and a series of residual blocks with convolutional layers, rectified linear unit
(ReLu) layers, and pooling layers to forward propagate the input remote sensing image.
Five sequentially stacked stages compose the RD-Net to extract feature maps M from the
fourth stage. Considering a single image I ∈ RW×H×C where W, H, and C denote the
spatial width, height, and channel number, respectively, the process can be formulated
as follows:

M = FRD−Net(I), (1)

where FRD−Net() denotes the RD-Net backbone for feature extraction.
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The feature maps M are fed into the sample-balanced RPN module to generate a set of
rectangular proposals telling the RoI module where to look. By going through the RPN
head, we slide a 3× 3 spatial window over the convolutional feature maps M and then
have two parallel convolutional layers with a 1× 1 spatial window for classification and
box regression, respectively. Instead of employing traditional strategy of hard Intersection-
over-Union (IoU) thresholds to select training samples [11,45,48], the ADSS module defines
positive and negative training samples according to the statistical characteristics of simi-
larity measures between generated anchors and ground reference objects. The process to
generate region proposals P can be formulated as:

P = FRPN(M), (2)

where FRPN() denotes the sample-balanced RPN module.
Then we adopt a module to combine feature maps M and region proposals P into

unified network features. The feature maps M are cropped by the RoIAlign operation to
obtain fixed-sized feature vectors, and then are propagated to a sequence of convolution
layers which are the last stage of RD-Net. The output features are finally transmitted to
fully-connected layers to optimize the classifier and bounding box regressor when training,
and predict the object category and localization when inferencing. The process can be
formulated as:

O = FRoI(M, R), (3)

where FRoI() denotes the classification and localization RoI module, and O refers to the
object detection results.

3.2. RD-Net

Recently, object detectors have often adopted large and deep backbones, which stack
a small number of convolutional-ReLu layers followed by pooling or convolutional layers
whose stride is greater than 1, and then repeat this pattern to extract outputs of small
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size and high receptive field. A deep convolutional network can abstract semantically
meaningful features that are beneficial to recognize the category of objects. However, it
is unfavorable for small object localization because the information from small objects is
weakened due to the large stride and coarse spatial resolution of feature maps with respect
to the input image [65,66]. A higher input resolution may result in better detection results
than a lower input resolution image [47], but experiments are often limited by the input
data, whose spatial resolution is not high enough to preserve information for small objects
with a large stride and a large receptive field.

Inspired by [23,66,67], we proposed the Reduced Downsampling Network (RD-Net)
backbone to address the problem of small object detection. We adopt ResNet-50 [20]
as the baseline network, which includes five network stages with standard bottleneck
blocks as network units. There are two types of shortcut connections to transform the
plain network to the counterpart residual version of bottleneck block. The projection
shortcut utilizes a 1× 1 convolutional layers to match the input and output dimensions,
and the identity shortcut directly connects layers of the same dimension. As illustrated
in Figure 2, the 7× 7 convolutions with a stride of 2 are applied to the input images in
the first stage, followed by 3, 4, 6, and 3 bottleneck blocks for the subsequent four stages,
respectively. In the second stage, the output feature maps from the first stage are fed
into 3× 3 pooling layers for downsampling, and the downsample operation is performed
directly by convolutional layers that have a stride of 2 in the following stages. The strides
for the five stages of ResNet-50 are 2, 4, 8, 16, and 32, respectively, with one downsampling
operation in each stage that can significantly affect small object detection accuracy. To
overcome the disadvantage of the ResNet-50 backbone and ensure computing efficiency,
we remove the downsampling operation of the third stage by substituting the convolutions
of stride 2 for the convolutions of stride 1 (Figure 2). Our insight is that such network
adaptation is necessary to place more attention on detecting high spatial resolution features
in a small area, which is thus beneficial for the small object localization task. With such
information-rich output features of high spatial resolution and the consecutive RPN and
RoI modules, our proposed method is more powerful and robust in locating positions of
small objects.

3.3. Adjustable Sample Selection Module

In the baseline detector Faster R-CNN, the output feature representations from VGG
or ResNet backbone are fed to a RPN module, which consists of a neural network RPN
head and an operation to produce region proposals [11]. Through the proposal generation
part of Faster R-CNN, m× n anchors are generated at each grid point of the feature map
with m scales and n aspect ratios. All the anchors are paired with each ground reference
box to calculate an Intersection-over-Union (IoU) overlap. The positive/negative anchor
assignment is decided by a hard thresholding process. Anchors that have an IoU with any
ground reference box greater than the pre-defined threshold (typically 0.7) or that have
the highest IoU are set as positive, and anchors that have an IoU smaller than another
threshold (typically 0.3) are set as negative. However, this hard thresholding method
may lead to a highly imbalanced distribution of anchors—there are usually significantly
more negative anchors than positive anchors. To avoid bias caused by dominant negative
samples, 256 anchors are selected randomly per image to optimize the loss function,
half of which are positive. Negative anchors are sampled to pad the mini-batch if the
corresponding positive anchors are less than 128 [11]. Anchors that are not sampled by the
assignment process are ignored for training. There are some vulnerabilities of the RPN
sample selection module for small object detection. The sample selection procedure adopts
IoU thresholds to determine positive and negative training samples; this process is prone to
neglecting some outer objects and sensitive to changes in the IoU threshold hyperparameter.
Recently, Zhang et al. proposed an adaptive scheme for the one-stage anchor-based object
detector to automatically effectively select positive and negative samples without the IoU
threshold hyperparameter [68].
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To tackle weaknesses of the sample selection module and improve discriminative
capability of small object detection, we proposed the Adjustable Sample Selection (ADSS)
module. Algorithm 1 describes the details of the method. We first use m scales and n aspect
ratios to yield m× n anchors at each position of the input feature maps. For each ground
reference box t, we then select the top k candidate positive samples based on the shortest L2
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distance between the anchor center and ground reference box center. Then, we calculate IoU
between the k candidate positive samples and ground reference box t as Ut, and compute
the adjustable IoU threshold thrt by adding the mean of Ut and the standard deviation of
Ut. For the ground reference box t, we select final positive anchors from the candidates
that are greater than or equal to the threshold IoU thrt. For an anchor passing the positive
sample selection for multiple ground reference boxes, we assign it to the ground reference
box with the highest IoU. Negative samples are picked randomly from the remaining
anchors to fill 256 training samples. Finally, as in Faster R-CNN [11], the selected samples
and anchors are employed with the RPN head, where feature extractions from the backbone
go through 3× 3 convolutional layers and two parallel 1× 1 convolutional layers for object
existence and bounding box regression, to train and result in a better region proposal.

There are two main changes of the ADSS module compared with the original sample
selection module of Faster R-CNN. First, we exploit distanced-based strategy to select
candidate positive samples that are closer to the objects and can lead to high-quality
detections. Second, an adjustable value, namely, is the sum of the mean and standard
deviation of the IoU of positive samples, is used to free the sensitive fixed IoU threshold
hyperparameter. It is more functional and practical to integrate our ADSS module and
RPN head to generate region proposals.

Algorithm 1 Adjustable Sample Selection (ADSS)

Input:
M: feature maps from RD-Net backbone
T: a set of ground reference boxes
v: hyperparameter of anchor sizes in absolute pixels with default of [82, 162, 322, 642, 1282]
r: hyperparameter of anchor aspect ratios with default of [0.5, 1.0, 2.0]
k: hyperparameter to select anchors with default of 15
n: hyperparameter of number of anchors per image to sample for training with default of 256

Output:
Pt: a set of positive samples for ground reference t ∈ T
Nt: a set of negative samples for ground reference t ∈ T
1: A← Generate a set of anchor boxes A from M with each cell creating |v| × |r| anchors
2: for each ground reference t ∈ T do
3: St ← Initialize a set of candidate positive samples St by selecting top k anchors whose center are closest to the center of

ground reference t based on L2 distance
4: Calculate IoU between St and ground reference t: Ut = IoU(St, t)
5: Calculate mean of Ut: µt = mean(Ut)
6: Calculate standard deviation of Ut: σt = std(U)
7: Set adjustable IoU threshold to select positive sample: thrt = µt + σt
8: for each positive candidate sample s ∈ St do
9: if IoU(s, t) ≥ thrt
10: Pt = Pt ∪ s
11: end if
12: end for
13: Calculate the number of negative samples for training nneg: nneg = n− npos where npos is number of elements in Pt
14: Nt ← Select nneg anchors from A− Pt randomly
15: end for
16: return Pt, Nt

3.4. RoI Module

The RoI module incorporates feature representations from RD-Net and region pro-
posals from RPN into unified network features. Previous object detectors adopt the
RoIPool [11,40] or RoIAlign [44] operations to crop and resize specific convolutional maps
using proposals. In this study, we utilize RoIAlign, which introduces bilinear interpolation
to calculate exact values of extracted feature maps from the RD-Net at four sampled loca-
tions in each RoI bin, avoiding round-off errors of RoIPool. After RoIAlign, the specified
size feature vectors are fed into three bottleneck blocks with one downsampling operation
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in the first convolutional layer, and then transferred to fully convolutional layers to enable
localization and bounding box labeling.

3.5. Loss Function

We denote pi as the probability of an anchor i belonging to a positive class. For the
ground reference class, based on the ADSS sampling result, we define p∗i as a binary
indicator that is 1 if the anchor is positive, and 0 for negative. By implementing binary
cross-entropy loss, the classification loss for RPN can be formulated as:

LRPN
cls (pi, p∗i ) = −

1
Ncls

∑
i
[p∗i ln(pi) + (1− p∗i )ln(1− pi)], (4)

where Ncls is a normalization term.
We define Bi =

{
bi,tl , bi,br

}
as the predicted anchor bounding box i, where bi,tl and

bi,br are the top-left and bottom-right points of the bounding box, respectively. The ground

reference anchor bounding box is defined as B∗i =
{

b∗i,tl , b∗i,br

}
in the same fashion. We

propose applying a generalized Intersection-over-Union (GIoU) loss [69] to measure the
extent of alignment between the anchors and ground reference bounding boxes. Compared
to a standard IoU, which cannot be optimized when there is no overlap between bounding
boxes, we calculate the GIoU of two boxes, which overcomes the weakness and preserves
major characteristics of IoU (Figure 3). For the predicted anchor Bi and ground reference
bounding box B∗i , we first find the minimum bounding box Ci that encloses Bi and B∗i .
Then we compute the ratio of the area of Ci excluding Bi and B∗i to the total area of Ci.
Finally, GIoU between Bi and B∗i is calculated to be the IoU value minus the ratio. We can
use the GIoU as a loss term for bounding box detection, which can be formulated as:

LRPN
loc (Bi, B∗i ) =

1
Nloc

∑
i

p∗i (1− GIoU(Bi, B∗i )), (5)

where Nloc denotes a normalization term, and GIoU() the calculation of GIoU between
bounding boxes.
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With these definitions, we formulate the loss function for RPN as follows:

LRPN = λ1LRPN
cls (pi, p∗i ) + λ2LRPN

loc (Bi, B∗i ), (6)

where λ1 and λ2 are balancing weights that are both equal to 1.
For classification and detection heads, the loss function can be formulated as follows:

Lhead = λ3Lhead
cls (ci, c∗i ) + λ4Lhead

loc (Bu
i , Bu∗

i ), (7)

Lhead
cls (ci, c∗i ) = −

1
Kcls

∑
i

ln
(

cic∗i

)
, (8)

Lhead
loc (Bu

i , Bu∗
i ) =

1
Kloc

∑
i
[c∗i ≥ 1](1− GIoU(Bu

i , Bu∗
i )), (9)

where i is the index of a RoI instance, ci is the probability distribution for the predicted
classes, c∗i is the ground reference class, Bu

i and Bu∗
i are the predicted and ground reference

bounding boxes, respectively, and λ3 and λ4 are balancing weights which are both set to 1.
Lhead

cls is implemented by cross-entropy loss for multiple classes, and Lhead
reg by GIoU loss,

with normalization factors Kcls and Kreg, respectively.
By adding the loss functions defined above, we can calculate the total loss as:

L = LRPN + Lhead. (10)

In two-stage object detection models, smooth-L1 loss is widely used for the localiza-
tion task, which assumes that coordinates of four points are independent from each other;
however, in reality, there is a certain correlation of the four locations. Performance evalu-
ation of object detection relies on IoU metrics which focus on areas and are invariant to
the scale. Theoretically, optimization of smooth-L1 loss does not ensure equally optimized
detection measured by IoU-related metrics. Therefore, we adopt GIoU loss rather than
smooth-L1 loss for localization to improve detection results.

4. Experiments
4.1. Dataset, Implementation Details, and Evaluation Metrics
4.1.1. Dataset

To evaluate the effectiveness of our proposed method for small urban element de-
tection, we conducted experiments on the publicly available Urban Element Detection
(UED) dataset [23].

The UED dataset is a three-class object detection dataset, acquired by mobile mapping
systems (MMS), and includes high spatial resolution images of road surface and panoramic
images. The dataset contains a total of 19,693 images, of which 3695 have targets and 15,998
are background images without targets. We conducted experiments on the positive dataset
with target objects and divided it into 70% for training, 15% for validation, and 15% for
testing. The dataset include three classes: manhole cover (“manhole”), milestone (“lcz”),
and license plate (“numplate”) (Figure 4). The statistics of the UED dataset are shown in
Table 1. The image sizes range from 492 × 756 to 1024 × 2048 pixels. It is noteworthy that
most objects occupy small portions of images (Figure 5). About 73.21% of instances are
small objects which occupy less than 1% of image area, and 19.41% of instances occupy
1~2% of the total area of image.
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Table 1. Statistics of the UED dataset.

Class Image Size
(Pixel)

Object
Size

(Pixel)

# of
Object

# of Small
Objects
(P% < 1)

# of Object
(1% < P% < 2%)

Mean
(P%)

Median
(P%)

Std
(P%)

Min
(P%)

Max
(P%)

Trainval
data

manhole 1024 × 2048 41 × 92 to
175 × 198 840 694 146 0.78 0.77 0.25 0.14 1.68

lcz 492 × 756 to
642 × 756

14 × 25 to
90 × 239 934 582 205 1.16 0.78 1.10 0.08 8.48

numplate 492 × 756 to
592 × 756

8 × 25 to
115 × 136 1599 1192 302 0.74 0.48 0.65 0.05 4.34

Test data
manhole 1024 × 2048 29 × 99 to

126 × 178 145 122 23 0.74 0.71 0.26 0.06 1.51

lcz 492 × 756 to
642 × 756

16 × 27 to
143 × 214 174 104 43 1.17 0.81 1.04 0.10 6.31

numplate 492 × 756 to
592 × 756

13 × 36 to
122 × 137 280 214 52 0.77 0.54 0.71 0.08 5.15

Total data
manhole 1024 × 2048 29 × 99 to

175 × 198 985 816 169 0.77 0.76 0.25 0.06 1.68

lcz 492 × 756 to
642 × 756

14 × 25 to
143 × 214 1108 686 248 1.17 0.78 1.09 0.08 8.48

numplate 492 × 756 to
592 × 756

8 × 25 to
122 × 137 1879 1406 354 0.75 0.49 0.66 0.05 5.15

manhole: manhole covers; lcz: milestone; numplate: number plate; P%: percentage of object size in image (P% = Object size/Image
size × 100%). When testing effectiveness of our proposed model, we use trainval data which are training and validation data together for
training and test data for testing.
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4.1.2. Implementation Details

Using training augmentation, we randomly sampled the shorter edge of the input
image from at least 640 and at most 800 pixels, and limited the longer side of the input
image less than or equal to 1333 pixels [70]. If the limit of the longer side is surpassed, the
image is downscaled so that the longer edge does not exceed 1333 pixels. All experiments
were initialized with ImageNet [71] pre-trained weights. We froze parameters of stage 1
for our RD-Net backbone and the first two stages for other backbones of comparison
methods. Batch normalization was fixed for all experiments during training. The model
was optimized by stochastic gradient descent (SGD) with a weight decay of 0.0001 and
momentum of 0.9 [70]. We trained 90,000 iterations with a batch size of 2 on a single
GTX1080ti GPU, with a learning rate beginning at 0.005 and decreased by a factor of 0.1
after 60,000 and 80,000 iterations.

4.1.3. Evaluation Metrics

The evaluation protocol followed the MS COCO benchmark [55], adopting Average
Precision (AP) as the primary metric. For a specific class and threshold IoU, the Precision-
Recall Curve (PRC) was utilized to calculate APclass,iou, which is the average of precision
values based on different recalls. Note that PRC was performed with 101 interpolations.
Taking TP, FP, and FN as the number of true positives, false positives and false negatives,
the precision and recall are formulated as:

Precision =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
, (12)

where predicted results whose IoU over ground reference is greater than the IoU threshold
are considered as true positives. When APclass,iou was computed, the average precision for
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one class over different IoU thresholds (ranging from 0.5 to 0.95 with a step size of 0.05)
can be calculated as follows:

APclass =
1

10 ∑
iou∈thresholds

APclass,iou, thresholds ∈ [0.5 : 0.05 : 0.95], (13)

where APclass denotes AP for one class. The Average Precision (AP) was obtained by
averaging APclass over different classes:

AP =
1

# o f classes ∑
class

APclass, (14)

The evaluation metric AP of the MS COCO benchmark is defined to be the average of
multiple IoU values. This metric can avoid bias introduced by a fixed IoU threshold; such
a bias indicates that different predictions of IoU would have equal weight.

In the following experimental results, AP is the primary metric, and it was averaged
over all categories and multiple thresholds. AP50 and AP75 represent AP when thresholds
are set at 0.5 and 0.75, respectively, and APclass presents AP for one class.

4.2. Ablation Study

We performed an ablation study to verify the contribution of the proposed RD-Net,
ADSS Module, and GIoU loss over the UED dataset. The baseline method was evaluated
on the Faster R-CNN with the ResNet-50 backbone, and we proceeded to incorporate the
three components gradually. The quantitative comparison results are shown in Table 2.

Table 2. Ablation study of the proposed method on the UED dataset.

Backbone Method RD-Net ADSS
Module

GIoU
Loss

AP
(%)

AP50
(%)

AP75
(%)

APmanhole
(%)

APlcz
(%)

APnumplate
(%)

ms/
Image 1

Resnet-50

Baseline 80.51 96.58 94.42 79.21 82.22 80.10 274.20
Baseline + ADSS

√
80.28 96.09 95.05 77.82 81.96 81.04 271.07

Baseline + GIoU_loss
√

78.35 96.58 94.45 77.06 79.55 78.45 274.12
Baseline + ADSS + GIoU_loss

√ √
79.62 97.01 95.14 78.61 80.55 79.71 270.90

RD-Net

Baseline + RD-Net
√

81.28 96.88 94.91 79.73 82.67 81.42 342.47
Baseline + RD-Net + ADSS

√ √
81.31 97.04 94.89 80.38 82.44 81.10 323.53

Baseline + RD-Net + GIoU_loss
√ √

81.38 97.27 95.23 81.19 82.05 80.90 339.81
Baseline + RD-Net + ADSS +

GIoU_loss
√ √ √

81.71 97.40 95.78 81.55 82.94 80.64 322.89

1 ms/image: average inference time per image (ms/image). Bold indicates the best performance.

We show in Table 2 that our proposed model (Baseline + RD-Net + ADSS + GIou_loss)
outperforms methods with all other combinations of the components. When applying
RD-Net, ADSS module, and GIoU loss together, AP, AP50, and AP75 achieve 81.71%,
97.40%, and 75.78% with an improvement of 1.20%, 0.81%, and 1.37% compared with
the Baseline, respectively. To be more specific, most of the improvements are from AP
for higher IoU thresholds such as 0.75. This indicates that the proposed method can
predict higher quality object boxes compared with the Baseline, which is significant for
subsequent urban application tasks, such as precision positioning and 3D city modeling.
Figure 6 demonstrates the comparison of detection results between our proposed method
and the baseline. We can see that the Baseline misses some hidden or unobvious objects
and incorrectly detects some objects, whereas our method can more accurately detect the
cropped and occluded objects, suggesting that our method can detect more concealed small
objects and avoid false positive detection more effectively than the baseline.
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4.2.1. Effect of RD-Net

We first investigated the effectiveness of RD-Net by replacing the ResNet-50 backbone
of the Baseline. The results in Table 2 show that AP for the Baseline + RD-Net raises to
81.28% from 80.51%, with an improvement of 0.77% compared with the Baseline. For the
Baseline with the ResNet-50 backbone, integrating the ADSS module (Baseline + ADSS) or
GIoU loss (Baseline + GIoU_loss) decreases AP, whereas for the model with the RD-Net
backbone (Baseline + RD-Net), AP is increased when exploiting the ADSS module (Baseline
+ RD-Net + ADSS) or GIoU loss (Baseline + RD-Net + GIoU_loss). The findings indicate that
including RD-Net can not only boost the performance of small urban element detection,
but also change the effectiveness of the ADSS module and GIoU loss. Our RD-Net has
smaller receptive fields than the ResNet-50 backbone after removing the downsampling
operation of the third stage, which reserves important information of small objects that may
be lost with larger receptive fields. It is helpful to promote the capability of RPN and head
to identify small objects with input feature maps of high spatial resolution from RD-Net.

4.2.2. Effect of ADSS Module

As shown in Table 2, the Baseline + RD-Net + ADSS and Baseline + RD-Net + ADSS +
GIoU_loss increases AP from 81.28% and 81.38% to 81.31% and 81.71%, compared with
the Baseline + RD-Net and Baseline + RD-Net + GIoU_loss, respectively. Different from
our expectation, the Baseline + ADSS has lower AP than the Baselines. Our conjecture is
that some small anchors whose centers are closest to the object centers have very small or
zero IoU values with the ground reference and are ignored during training in the Baseline
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+ ADSS model. However, in the Baseline + RD-Net + ADSS, with feature maps of higher
spatial resolution from RD-Net, small anchors that are important for small object detection
may be included for training.

4.2.3. Effect of GIoU Loss

As shown in Table 2, the Baseline + RD-Net + GIoU_loss achieves an improvement of 0.1%
compared with the Baseline + RD-Net. Among these, AP for manhole covers increases 1.46%
from 79.73% to 81.19%. In addition, AP for the Baseline + RD-Net + ADSS + GIoU_loss (81.71%)
is also higher than that for the Baseline + RD-Net + ADSS (81.31%), with an improvement
of 0.40%. By incorporating GIoU loss on the models with the RD-Net backbone, we can
boost the small urban element detection results. Figure 7 demonstrates RPN localization loss,
classification and detection head localization loss, and total loss for the models of Table 2
that adopt RD-Net backbone. It shows that the localization loss and total loss for the models
with GIoU loss (Baseline + RD-Net + GIou_loss and Baseline + RD-Net + ADSS + GIou_loss)
decrease more quickly and the values are lower than the models with the original Smooth L1
loss (Baseline + RD-Net and Baseline + RD-Net + ADSS).
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4.2.4. Computational Time

The average inference time per image under our experimental environment is listed
in the last column of Table 2. The time cost of the proposed method (Baseline + RD-Net +
ADSS + GIoU_loss) is greater compared with that of the Baseline. The average inference
time for the Baseline is 274.20 ms/image, whereas it is 322.89 ms/image for our proposed
method (Baseline + RD-Net + ADSS + GIoU_loss). The increased computational cost
is mainly due to the downsampling operation removal to obtain high spatial resolution
feature representations. The most efficient model is Baseline + ADSS + GIoU_loss, for
which the inference time is 270.90 ms/image. When the ADSS module or GIoU loss is
integrated in the model, the inference time decreases compared with corresponding model
without ADSS module or GIoU loss, suggesting that incorporating ADSS module or GIoU
loss can save computational cost and increase inference speed. In the future, we will
consider adjusting the backbone network to reduce computational complexity and ensure
high-resolution output feature maps at the same time.

4.3. Backbone Network Analysis

We explored how the downsampling operation of a network can affect small object
detection by conducting experiments with the Baseline and applying different redesigned
backbone networks on the UED dataset. We first compared the Baseline with the Resnet-50
and Resnet-101 backbone. The results show that the Baseline with the ResNet-50 backbone
yields higher accuracies than the Baseline with the ResNet-101 backbone (Table 3), which is
contrary to the general conclusion that deep networks usually work better than shallow
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ones [72]. The reason for this may be that ResNet-101 has more blocks than ResNet-50 in
stage 4 whose stride is 16 with a high receptive field, and the information for small objects
is lost in the deeper network. In addition, deep networks of ReNet-101 tend to overfit as
the volume of the UED dataset is not big enough. Thus, we redesigned and compared
different backbones from ResNet-50 instead of ResNet-101.

Table 3. Architectures of different backbones and detection results on the UED dataset.

ResNet-101 ResNet-50 ResNet-50-S3
(DR-Net) ResNet-50-S4 ResNet-50-S5

# of Block Stride # of Block Stride # of Block Stride # of Block Stride # of Block Stride

Stage 1 0 2 0 2 0 2 0 2 0 2
Stage 2 3 4 3 4 3 4 3 4 3 4
Stage 3 4 8 4 8 4 4 4 8 4 8
Stage 4 23 16 6 16 6 8 6 8 6 16
Stage 5 3 32 3 32 3 16 3 16 3 16

AP (%) 80.49 80.51 81.28 80.66 79.97

Bold indicates the best performance.

We removed the downsampling operation of ResNet-50 for stage 3, stage 4, and
stage 5, respectively, to generate backbone ResNet-50-S3 (i.e., RD-Net), ResNet-50-S4, and
ResNet-50-S5, to examine the efficiency of downsampling reduction at different stages.
The comparison results are shown in Table 3. ResNet-50-S3 and ResNet-50-S4 have higher
AP than ResNet-50, whereas AP for ResNet-50-S5 is lower than AP for ResNet-50, which
suggests that removing downsampling operations in different stages has distinct effects on
small urban element detection performance. When removing the downsampling operation
of stage 3, AP is 81.28%, which is 0.62% higher than the modification of stage 4 (80.66%).
These results demonstrate that removing the downsampling operation in the earlier stage
(stage 3) has more positive impacts on small object detection than doing so in the later
stage (stages 4 and 5). We expect that removing downsampling in the first or second
stage will lead to better results; however, the computational cost is considerably higher.
Downsampling can reduce data dimensions to save computation time but leads to losing
some significant information and affects model capability, mainly for small objects.

4.4. Parameter Analysis

Integrating the ADSS module in the two-stage object detection model involves an ad-
ditional hyperparameter k. In addition, anchor sizes and aspect ratios may affect detection
performance, especially for small objects [73,74]. In this subsection, we compare different
network settings for the ADSS module on the UED dataset.

4.4.1. Hyperparameter k

The top k candidate positive anchors are selected based on the distance between the
anchor and ground reference bounding box center in the ADSS module. We conducted
experiments with different k in [3, 6, 9, 12, 15 × 1, 15 × 3, 15 × 5, 15 × 7, 15 × 9] to study
how hyperparameter k influences detection results. As shown in Table 4, the best detection
result is achieved when k = 15, and either higher or lower k values reduce AP. Each grid
of the feature map generates 15 anchors with fixed anchor sizes [82, 162, 322, 642, 1282]
and aspect ratios [0.5, 1, 2]. When k = 15, anchors engendered by the same cell whose
center is closest to the ground reference bounding box are chosen as candidate positive
samples. Smaller anchors generated by the same cell are selected when k < 15, whereas
all anchors generated by n cells that are closest to the ground reference are selected when
k = 15n, where n is an integer. Anchors of one grid are sufficiently valid for the positive
candidates, whereas a too large k will result in many inferior candidates and a too small k
will not include enough candidates.
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Table 4. Analysis of different values of k on the UED dataset.

k AP (%) AP50 (%) AP75 (%)

3 80.28 96.77 94.53
6 79.30 96.28 93.69
9 81.17 97.39 95.47
12 81.32 97.43 95.03

15 × 1 81.71 97.40 95.78
15 × 3 81.22 97.35 94.55
15 × 5 81.17 97.09 94.71
15 × 7 81.06 97.44 94.93
15 × 9 81.03 96.86 95.62

Anchor sizes: [82, 162, 322, 642, 1282]; aspect ratios: [0.5, 1, 2]. Bold indicates the best performance.

4.4.2. Anchor Sizes

Some experiments were conducted with anchor aspect ratios of [0.5, 1, 2] and k = 15,
to explore appropriate anchor sizes that can benefit detection performance. From results of
Table 5, we can observe that the predicted results can be improved with smaller anchor
sizes. However, when the anchor sizes are reduced to [42, 82, 162, 322, 642], AP declines
compared with anchor sizes of [82, 162, 322, 642, 1282]. Anchor sizes that are too large are
unfavorable for small object detection, whereas anchor sizes that are too small will not
contribute to positive samples due to the lack of overlap with the ground reference or small
IoU values.

Table 5. Analysis of different anchor sizes on the UED dataset.

Anchor Sizes AP (%) AP50 (%) AP75 (%)

[322, 642, 1282, 2562, 5122] 80.55 97.02 94.94
[162, 322, 642, 1282, 2562] 81.32 96.78 95.52
[82, 162, 322, 642, 1282] 81.71 97.40 95.78

[42, 82, 162, 322, 642] 80.73 97.09 94.74
k: 15; aspect ratios: [0.5, 1, 2]. Bold indicates the best performance.

4.4.3. Anchor Aspect Ratios

As shown in Table 6, experiments with various aspect ratios were performed. We set
anchor sizes as [82, 162, 322, 642, 1282] and k, according to the aspect ratios from previous
results (Table 6), and AP is the best when k equals the number of anchors engendered by
one grid. The results demonstrate that the aspect ratios of [0.5, 1, 2] with k = 15 achieve the
best accuracies, which suggests that including more anchors of different shapes into the
positive candidates does not boost the performance.

Table 6. Analysis of different anchor aspect ratios on the UED dataset.

Aspect Ratio k AP (%) AP50 (%) AP75 (%)

[0.5, 1, 2] 15 81.71 97.40 95.78
[0.5, 1, 1.5, 2] 20 81.20 97.35 94.57
[0.5,0.75,1, 2] 20 80.69 96.74 94.47

[0.5,0.75,1, 1.5, 2] 25 81.48 97.10 95.74

Anchor sizes: [82, 162, 322, 642, 1282]. Bold indicates the best performance.

4.5. Comparisons with State-of-the-Art Methods

We compared our proposed model with several state-of-the-art methods: ResNext [21],
Feature Pyramid Networks (FPN) [12], Deformable Convolutional Networks (DCN) [43],
Trident Networks Fast Approximation (TridentNet-Fast) [48], Cascade R-CNN [45], Mask
R-CNN [44], Cascade Mask R-CNN [44,45], and RetinaNet [46]. It is worth noting that for
the Mask R-CNN and Cascade Mask R-CNN methods, we used the bounding box mask as
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the ground reference of segmentation for the mask branch. The performance results are
shown in Table 7. Our proposed method achieves an AP of 81.71%, which outperforms
the other detectors. In addition, AP75 of our model is also enhanced to a high level, which
means that we can predict high-quality bounding boxes.

Table 7. Performance comparison between the proposed method and state-of-the-art methods on the UED dataset.

Method Backbone AP
(%)

AP50
(%)

AP75
(%)

APmanhole
(%)

APlcz
(%)

APnumplate
(%)

ResNeXt ResNext-50-32x4d 73.58 94.31 90.22 67.78 78.44 74.53
FPN ResNet-50 80.53 96.51 95.43 78.10 82.60 80.88
DCN ResNet-50-Deformable 80.42 96.76 94.81 78.99 82.64 79.62

TridentNet-Fast ResNet-50 80.62 96.23 94.46 79.17 81.97 80.71
Cascade R-CNN ResNet-50 80.51 96.10 94.51 78.40 81.87 81.27

Mask R-CNN ResNet-50 80.48 95.52 94.43 79.05 82.11 80.28
Cascade Mask R-CNN ResNet-50 81.23 97.20 95.62 80.65 81.45 81.60

RetinaNet ResNet-50 79.91 96.97 94.88 79.13 80.30 80.31
Ours RD-Net 81.71 97.40 95.78 81.55 82.94 80.64

Bold indicates the best performance.

By analyzing results of different algorithms, the accuracy of ResNeXt (73.58%) is rela-
tively low; specifically, the AP is lower than the Faster R-CNN baseline (80.51%). ResNeXt
with the ResNeXt-50-32x4d backbone has better detection results than Faster R-CNN with
the ResNet-50 backbone on the large-scale COCO dataset in previous research [21], whereas
we obtain opposite results on the UED dataset, and our proposed method has an improve-
ment of 8.13% compared to the ResNeXt method. Dealing with feature scale issues is a
significant challenge for small object detection; FPN leverages a multiscale pyramidal con-
volutional network to produce a series of feature maps where the shallow features with rich
spatial information are enhanced by the deep features with semantic information [12] to im-
prove object detection accuracy, especially for small objects. AP for FPN (80.53%) is higher
than the baseline Faster R-CNN (80.51%), but lower than our proposed method (81.71%),
suggesting that FPN is more accurate than Faster R-CNN but less practical compared with
our proposed method for small urban element detection. Trident Networks prove to be
able to detect small objects effectively, and Trident-Fast, building three parallel branches
with different receptive fields, is a fast approximation version of Trident Networks [48].
Our proposed method is more effective in detecting small objects than Trident-Fast, with
an improvement of 1.09%. The second-best result is Cascade Mask R-CNN with an AP
of 81.23% which is better than Cascade R-CNN or Mask R-CNN. We should indicate that
Cascade Mask R-CNN combines Cascade R-CNN and Mask R-CNN directly, adding a
mask branch following the Mask R-CNN architecture to each stage of Cascade R-CNN. We
expect to obtain better results by applying the mask branch to our proposed method with
high-quality annotation for instance segmentation. Performance of RetinaNet, which is a
one-stage object detector, is worse than most two-stage object detection methods, including
our proposed method. Compared with these advanced detection methods, we verified that
our proposed model outperforms state-of-the-art methods.

Some examples of results for different methods are presented in Figure 8. In the first
column of Figure 8, we can see that although all methods can detect the two obvious
manhole covers on the right side of the image, our proposed method can detect the smallest
and occluded manhole cover in the lower right of the image effectively and avoid false
positive detection. The second and third columns further demonstrate that our proposed
method can detect hidden and cropped small objects more accurately compared with
other methods, and the fourth and fifth columns show that our proposed method can
efficiently preclude false positives. In the last column of Figure 8, the other methods
predict less accurate bounding boxes or fail to detect the target milestone. Our proposed
method has better performance for small urban element detection compared with other
state-of-the-art methods.
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5. Discussion
5.1. Effect of Proposed Modules

As demonstrated in Table 2, each of the proposed modules helps to improve the
performance of small urban element detection, and RD-Net has a positive influence on the
effectiveness of the ADSS module and GIoU loss. To justify the generalization capability
of the designed modules and verify our speculation that feature outputs of high spatial
resolutions are beneficial to small object detection, we gradually incorporated ResNet-50-
S4, the ADSS module, and GIoU loss from the Baseline Faster R-CNN. The experimental
results are shown in Table 8. The AP values for models conducted with ResNet-50-S4 have
a similar pattern with that performed with RD-Net (Tables 2 and 8): AP increases when
the ADSS module and GIoU loss are integrated separately or together with ResNet-50-S4.
The Baseline + ResNet-50-S4 + ADSS + GIoU_loss achieves an AP improvement of 0.93%
compared with the Baseline (80.51%), increasing the AP to 81.44%. The results (Table 8)
align well with our previous ablation study (Table 2), indicating that our proposed modules
are effective for detecting small urban elements. It further suggests that the increase in the
AP may result from high spatial resolution feature representations when the ADSS module
and GIoU loss are combined with the reduced downsampling networks.
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5.2. Sensitivity Analysis to Illumination and Occlusion

In urban settings, 2D image object detection often suffers from changes in lighting
conditions and degrees of clutter. We analyzed how sensitive our proposed method is when
facing variations of illumination and occlusion. As illustrated in Figure 9, our proposed
method performs well when the light is sufficient (Figure 9a). Target objects can be detected
accurately although they are totally or partially occluded by shades (Figure 9b). Even when
the environment is dark, the proposed method can successfully detect small objects in most
cases (Figure 9b,c). However, when the objects in images are not easily visible to the human
eye, the proposed method tends to miss the objects (Figure 9c). To conclude, our proposed
method is not sensitive to lighting conditions, with the exception of very dark conditions.

Table 8. Performance of the ADSS module and GIoU loss with the ResNet-50-S4 on the UED dataset.

Method S4 ADSS
Module GIoU Loss AP

(%)
APmanhole

(%)
APlcz
(%)

APnumplate
(%)

Baseline 80.51 79.21 82.22 80.10
Baseline + S4

√
80.66 78.30 83.44 80.24

Baseline + S4 + ADSS
√ √

80.83 80.37 82.13 79.98
Baseline + S4 + GIoU_loss

√ √
80.81 79.50 81.90 81.03

Baseline + S4 + ADSS +
GIoU_loss

√ √ √
81.44 79.87 82.74 81.71

S4 is abbreviation for ResNet-50-S4. Bold indicates the best performance.
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Figure 10 shows cases where objects are occluded to varying degrees. Although the
manhole covers are occluded by cars or dark shades or partially cropped, our proposed
method can precisely predict the locations (Figure 10a,b). There are only few cases with
occluded milestones and license plates in the UED dataset. The occluded milestones can
be detected correctly, but cropped license plates are prone to be neglected (Figure 10c). In
general, the proposed method is insensitive to occlusion for manhole covers and milestones,
whereas it tends to miss cropped license plates.
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5.3. Analysis of Failure Cases

As illustrated in Figures 9 and 10, our proposed method may encounter some fail-
ure cases under several typical scenarios, although it is able to more accurately detect
small urban elements under various adverse scenarios compared with the Baseline model
(Figure 6). We primarily explore the reason and propose potential solutions in this sub-
section. First, the first two samples in Figure 11 shows that the proposed method fails to
detect objects when the environment is very dark. This is mainly due to the lack of relevant
training samples in dark conditions. Second, cropped and occluded license plates are
prone to be missed in the detection results as presented in the last two samples in Figure 11.
However, manhole covers can be effectively detected in similar situations. The reason
might be that there are few training samples of occluded license plates, or the images are
annotated inaccurately. The detection of small urban elements in the dark and occluded
license plates are two main challenges for our proposed method. One potential solution
for the problem is to add data augmentation to help the model to generalize. We included
scaling augmentation when training the model, and flipping, rotating, and color jitter
augmentation may further contribute to generating training samples and improving the
model performance for the failure cases.
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6. Conclusions

Small urban element detection is more challenging compared with generic object
detection due to a typically low coverage rate of small objects within a complex background
in an image. In this paper, an accurate and robust CNN-based model is proposed to detect
small objects in urban settings. We analyzed the effect of downsampling at different stages
of networks and designed a RD-Net backbone network with a low downsampling rate
and small receptive field to preserve local information and improve small object detection
accuracy. Moreover, we introduced an ADSS module that defines positive and negative
training samples based on the statistical features of objects rather than IoU thresholds.
In contrast to the widely used distance-based bounding box regression loss, our method
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integrates GIoU loss, which bridges the gap between distance-based optimization loss
and area-based evaluation metrics. Experiments on the public UED dataset verify the
effectiveness of our proposed method to detect small objects in an urban environment and
illustrate that our method outperforms the baseline by a large margin. Our research can
be applied in small urban element maintenance and management, and save human and
non-human resources. It can also assist autonomous driving by extracting small objects
and providing details to build comprehensive 3D city models.

In the future, we plan to conduct the following research. First, we will further verify
the robustness and generalization ability of our proposed method for small urban element
detection by creating a new benchmark or extending the UED dataset with more categories
and complex scenes of urban environments. Second, we will add data augmentation
to produce additional training samples. Third, we will incorporate a backbone network
with dilated convolutional layers and feature fusion strategy to investigate the effects of
different receptive fields and multi-scale features for small object detection. Finally, the
loss function will be further modified to consider foreground–background imbalance issue.
These future directions will further increase the efficiency and widen the useability of small
object detection in urban applications.
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