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Abstract: Accurate semantic segmentation of 3D point clouds is a long-standing problem in remote
sensing and computer vision. Due to the unstructured nature of point clouds, designing deep
neural architectures for point cloud semantic segmentation is often not straightforward. In this
work, we circumvent this problem by devising a technique to exploit structured neural architectures
for unstructured data. In particular, we employ the popular convolutional neural network (CNN)
architectures to perform semantic segmentation of LiDAR data. We propose a projection-based
scheme that performs an angle-wise slicing of large 3D point clouds and transforms those slices
into 2D grids. Accounting for intensity and reflectivity of the LiDAR input, the 2D grid allows us
to construct a pseudo image for the point cloud slice. We enhance this image with low-level image
processing techniques of normalization, histogram equalization, and decorrelation stretch to suit
our ultimate object of semantic segmentation. A large number of images thus generated are used to
induce an encoder-decoder CNN model that learns to compute a segmented 2D projection of the
scene, which we finally back project to the 3D point cloud. In addition to a novel method, this article
also makes a second major contribution of introducing the enhanced version of our large-scale public
PC-Urban outdoor dataset which is captured in a civic setup with an Ouster LiDAR sensor. The
updated dataset (PC-Urban_V2) provides nearly 8 billion points including over 100 million points
labeled for 25 classes of interest. We provide a thorough evaluation of our technique on PC-Urban_V2
and three other public datasets.

Keywords: 3D point cloud; point cloud dataset; large-scale dataset; convolutional neural network;
semantic segmentation; LiDAR

1. Introduction

Semantic segmentation plays an important role in scene understanding. Traditionally,
images have been used for this task. However, images fail to accurately encode the
geometry of real-world scenes. In contrast, a LiDAR sensor captures precise coordinate
information of multiple points in the scene, thereby preserving the 3D geometry. It readily
provides depth information which is inherently more suitable for the task of semantic
segmentation [1]. Consequently, 3D point clouds obtained from LiDAR are finding many
applications in emerging technologies like remote sensing, site surveying, self-driving
cars, and 3D urban environment modeling [2]. However, due to the unstructured and
sparse nature of point clouds, their accurate semantic segmentation still remains an open
research problem.

Most techniques for semantic segmentation of 3D point clouds focus on directly
processing unstructured point clouds to train deep learning models [3–5]. PointNet [3] is
the pioneering work in that regard. This technique shifted the focus of point cloud research
to designing specialized 3D network architectures for unstructured data. Subsequently,
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many methods have been proposed to process 3D point clouds, such as PointNet++ [6],
PointConv [7], FlowNet3D [8], and A-CNN [9]. However, these techniques do not fully
exploit the local features of 3D point clouds. Additionally, our literature review shows that
these methods underperform on real-world 3D point clouds as compared to synthetic data
because of their sensitivity to noise. Direct point cloud processing with neural models also
constrains the input size to impractical limits. For instance, the average sizes of input point
clouds mentioned in [10–12] are 2 K–3 K, <1 K, and 4.8 K points, respectively. These input
sizes are too small to be meaningful for practical applications. An additional problem with
directly processing point clouds is that the resulting neural architectures must inadvertently
rely on multi-layer perceptrons, which have a large memory footprint.

Compared to processing unstructured data with deep learning models, the processing of
structured data has seen much more significant advances. In that regard, 2D convolutional
neural networks (CNNs) lead the way. Hence, there have been attempts to leverage 2D CNNs
for unstructured point clouds as well. Most of these attempts implement projection-based
methods that either transform a point cloud into multi-view images [13–18] or convert a
point cloud into spherical representation for processing [19,20]. Multiveiw transformation
methods are sometimes sensitive to the selection of viewpoints, whereas the intermedi-
ary description of spherical transformation often suffers from discretization errors and
occlusion problems.

In this work, we favor the projection-based approach and mitigate the issue of view-
point selection. The first major contribution of this article is a novel projection-based
method for semantic segmentation of 3D point clouds that capitalizes on the recent ad-
vancements of 2D CNNs (see Figure 1). In the proposed method, a point cloud is divided
along the azimuth into multiple overlapping 3D slices of 120◦ angle each. These slices are
transformed into 2D multichannel pseudo images. Other LiDAR sensor outputs, such as
intensity and reflectivity, are also considered in the image formation. We use an overlap
region between two consecutive slices to account for occlusions and allow for sufficient
context around every object in the scene. A comprehensive sweep of 360◦ makes our
method viewpoint invariant. When constructing our pseudo images, we also apply multi-
ple low-level image processing techniques to render our data more suitable to the semantic
segmentation task. These techniques include channel normalization, histogram equaliza-
tion and decorrelation stretch, as shown in Figure 1. We use the images thus generated
to train a U-Net like neural model. We employ a ResNet34 backbone for the architecture.
The role of this model is to provide a 2D segmented map of the input samples that we can
back project to the 3D space. After processing multiple pseudo images for a point cloud
with 2D-CNN, we fuse their 3D projections to form a segmented point cloud.

In addition to a novel method for point-cloud semantic segmentation, this article
also makes a second key contribution by extending our PC-Urban outdoor dataset [21].
The extension comes in the form of providing significantly more raw frames, as well as
annotated frames. The proposed PC-Urban_V2 dataset is collected with an Ouster LiDAR
sensor installed on an SUV which drives through the downtown of Perth city, Australia.
As compared to 4 billion raw points and 20 million annotated points in [21], the updated
dataset (PC-Urban_V2) contains over 8 billion raw points for more than 100 K sensor frames.
The dataset has now more than∼33 K labeled instances for 25 classes comprising more than
100 million labeled data points. We use PC-Annotate tool [21] for labeling the additional
points. The updated large-scale dataset will also be made public. To set up baseline
results for our extended dataset with deep learning methods, we report the performance of
Octree-based CNN [5], PointConv [7], PointNet++ [6], and PointNet [3] on our dataset.
The results establish the presence of difficult practical scenarios in the proposed dataset.
We also provide extensive experiments for our novel segmentation method by testing it
on other outdoor datasets, such as semantic KITTI [22], Semantic3D [23], and Audi [24],
as well as our dataset PC-Urban_V2. Overall, our proposed method outperforms recent
methods in accuracy.
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Figure 1. Schematics of the proposed method: We perform angle-wise slicing (with overlaps) of XYZ, intensity and
reflectivity channels of the 360◦ LiDAR output. The slices are projected onto 2D planes where normalization and histogram
equalization is applied to each channel. The channels are combined into a pseudo image. A large number of samples thus
created are used to learn a U-net like 2D CNN that outputs a segmented 2D image, which we backproject to the 3D space.
Point clouds resulting from the images are then fused to construct the final segmented point cloud.

2. Related Work

Here, we present a brief review of the existing popular deep learning methods for
point cloud semantic segmentation. We broadly divide the related literature in projection-
based and point-based methods. The projection methods generally leverage transforming
a point cloud into a regular representation with projection. Point-wise methods consume
irregular raw 3D point clouds directly without transformation. We note that another
potential category of related methods is discretization-based methods, which transform a
point cloud into dense or sparse representation and feed them to 3D CNN for semantic
segmentation [25–32]. These methods are generally computationally expensive. For their
remote relevance to our scheme, we do not discuss methods in this category any further.
Our main focus is on projection and point based methods in the text below.

2.1. Projection-Based Methods

These methods usually project a 3D point cloud onto 2D grids. Based on the underly-
ing techniques, we can sub-categorize these methods into multi-view projection, spherical
projection, and hybrid methods. The projection based methods take advantage of 2D
CNNs which perform better for image semantic. segmentation. Most recent approaches
include [33–35] which show excellent performance for 2D semantic segmentation.

Multi-view projection: Roveri et al. [14] transform a 3D point cloud into 2D depth
images and then classify the depth images with well-known pre-trained 2D classification
models, such as ResNet50 or VGG16. Similarly, PointPillars [13] is also a 2D CNN-based
method which employs a 2D convolutional network for processing projections of point
clouds. Instead of using voxels, this method uses vertical pillars. The network has three
main components; pillar feature net, 2D CNN backbone, and detection head using single
shot detector (SSD) [36]. The technique has low computational cost, however, the accuracy
is low. In [15], a 3D point cloud is projected onto 2D planes by exploiting multiple virtual
camera views. Then, pixel-wise scores are predicted on synthetic images using a multi-
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stream fully convolutional network. Finally, the label of each point is predicted by selecting
the maximum votes for that point over various views. Likewise, in [16] several RGB
and depth images of a point cloud are first generated using multiple camera positions.
Then, 2D segmentation networks are deployed for pixel-wise prediction on these 2D
snapshots. The predicted scores from RGB and depth images are further processed using
residual correction for final prediction [18]. Based on the hypothesis that locally Euclidean
surfaces have been used for point clouds sampling, another method [37] utilizes tangent
convolutions for dense point cloud semantic segmentation. In this approach, first local
surface geometry of each point is projected onto a virtual tangent plane. Then, tangent
convolutions are applied directly on the surface geometry. This method performs well on
large-scale point clouds with millions of points.

Another related technique is known as PIXOR [38] where a 2D bird’s eye view
(BEV: top-to-bottom view) is exploited instead of using depth information of the scene.
The method is mainly related to object detection. As it assumes that objects are on the
ground, front view information is very crucial for detection. A CNN is used to detect
objects, particularly in the case of autonomous cars where timely detection is a vital factor.
This approach only works for the BEV and fails under other views. The large memory
footprint issue in previous methods has been addressed to some extent in PointConv [7].
Both normal PointConv and memory efficient PointConv variants have been proposed for
point cloud semantic segmentation by utilizing a multiplication of matrix and 2D CNN.
In the case of normal 3D convolutional approaches, around 8GB memory per layer is often
required, which makes the network impractical to deploy. PointConv claims to reduce the
memory usage to less than 0.15 GB for each layer. Overall, the performance of multi-view
segmentation methods relies rather heavily on viewpoint selection, which also results in
aggravated issues in the cases of occlusions.

Spherical projection: This approach is one of the solutions for point cloud processing
with deep 2D CNNs. In this projection, a point cloud is transformed onto a sphere based
on azimuth and zenith angles to acquire a denser 2D grid representation. An end-to-end
spherical representation based method is proposed in [20] that utilizes SqueezeNet [39]
and conditional random field (CRF) for semantic segmentation of a point cloud. Squeeze-
SegV2 [40] is an enhanced version of the previous method to improve segmentation
accuracy to resolve the domain shift issue by exploiting an unsupervised domain adapta-
tion pipeline. RangeNet++ [19] is proposed for semantic segmentation of 3D point clouds
at real-time. In this approach, labels of 2D range images are first shifted to 3D point clouds,
an efficient GPU-enabled KNN-based post-processing step is further used to mitigate
the problem of discretization error and blurry outputs. Spherical projection is useful for
labeling LiDAR point clouds because it retains more information than a single viewpoint.
Still, this intermediary description may suffer from several problems such as occlusions
and errors induced by discretization.

Hybrid methods: To better extract useful features from point clouds, some methods
also use multi-modal features. We refer to these as hybrid methods. A hybrid method is
presented in [41] which utilizes a joint 3D-multi-view network using both RGB features
and geometric features. Similarly, a cohesive point-based framework is proposed in [42] to
extract 2D textural appearance, 3D structures, and global context features from 3D point
clouds. Multi-view PointNet (MVPNet) [43] also combines appearance features from 2D
multi-view images and spatial geometric features in the canonical point cloud space for
processing 3D point clouds.

2.2. Point-Based Methods

As opposed to projections of 3D points, these methods directly deal with unstructured
point clouds. Based on the network architecture considered for the feature learning of a 3D
point, these methods can be further divided into pointwise MLP methods, convolution-
based, graph-based, and RNN-based methods.
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Pointwise MLP methods: These methods utilize and share multi-layer perceptrons
(MLPs) to extract features for each point individually and then compute a global feature
using a balanced aggregation function. The first 3D point cloud semantic segmentation
method is PointNet [3]. It uses mini-T-nets for the transformation of input data and features,
point-based MLPs, and a max pool layer for global feature extraction. However, PointNet
does not extract local features which are significant for CNNs. PointNet has been extended
to PointNet++ [6] which additionally extracts local features from input data by recursively
applying the PointNet. Still, it ignores local features inside each region. PointNetVLAD [1]
uses PointNet for extracting local features of 3D points while VLAD aggregates local
features to create a global feature vector. To consider local features of 3D point clouds,
a shape context-based method (ShapeContextNet) [44] is proposed. It is an end-to-end
method for point cloud semantic segmentation inspired from shape context [45]. Further
examples of recent point-wise techniques for classification and semantic segmentation
include [46–48].

The PPFNET [49] is mainly directed to address the issue of local geometry in PointNet
and PointNet++. In this technique, a point cloud is divided into fragments where each
fragment consists of more than three local patches. The rest of the network consists of
parallel PointNets (one for each local patch) and a max-pooling layer to obtain global
features. However, the main issue of PPFNET is its huge memory requirement. SO-Net [50]
computes spatial distribution of a 3D point cloud by extracting hierarchical features of
data. In this network, a point cloud is divided into mini point clouds. Node features are
calculated through multi-layers fully connected neural network and max-pooling layers.
Finally, a global feature vector is obtained by applying fully connected neural networks to
all node features. 3DPointCapsNet [4] has taken inspiration from 2D capsule networks [51].
The network has two parts: 3D capsule-encoder which inputs a point cloud and generates
primary point capsules after passing the input through MLP and max pool layers. While at
the decoder, latent capsules are fed to various MLP replicas to get local patches. In [52],
a PointSIFT module is proposed to achieve scale awareness and orientation encoding by
using eight spatial orientations. In PointWeb [53], mutual interactions between various
points is achieved by using fully linked web in a local region. Other MLP based methods
include Shellconv [54], RandLA-Net [55–59].

Convolution-based methods: These techniques propose effective convolution oper-
ators for point clouds semantic segmentation. An Octree-based CNN [5] with spherical
kernels is used for semantic segmentation of 3D point clouds. In this method, a 3D spherical
region is divided into multiple volumetric bins. A matrix of learning features is extracted
by learning weights to convolution. These kernels are applied between layers of the net-
work. The location of each layer in the network is determined by the guided octree to
perform convolution in that layer. The issue of extracting local features of a point cloud has
been addressed to some extent in annularly convolutional neural networks (A-CNN) [9].
In A-CNN, farthest point sampling [60] is applied to a whole point cloud to sub-sample and
extract centroids randomly. Then, local regions are created in a point cloud in the form of a
ring shape surrounded by the query points so that no overlap occurs between the points.
Finally, a standard CNN and max pooling are applied to concatenate features for each ring.
In [61], a point-wise convolution operator has been proposed, where the nearest points are
placed into kernel cells and then convolved with kernel weights. In [62], a dilated point
convolution operation is proposed to accumulate dilated neighboring features, instead of
the K nearest neighbors.

Graph-based methods: To determine the shapes and geometric forms in 3D point
clouds, numerous graph network methods are proposed. A super point graph (SPG) based
technique is proposed for large-scale point cloud segmentation [63]. The SPGs are derived
by partitioning point clouds into homogeneous geometrical elements. These SPGs provide
more contextual relationships between object parts which are exploited by a graph convolu-
tional network for contextual segmentation. To refine an output of this method for semantic
segmentation gated graph neural networks [64] and edge-conditioned convolutions [11] are
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exploited. A graph-based auto-encoder and auto-decoder are designed in FoldingNet [65]
for unsupervised learning of 3D point clouds. Another graph-based method is devised by
using kernel correlation and graph pooling [66]. In this method, K-nearest neighbor graph
is constructed to utilize neighborhood information for kernel similarity and to conduct
max-pooling for each node. In [67], a supervised framework is proposed to over-segment a
point cloud into pure superpoints. PyramNet [68] exploits the graph embedding module
(GEM) and pyramid attention network (PAN) to capture the local geometry in 3D point
clouds. Other graph-based methods include graph attention convolution [69], and a point
global context reasoning [70].

RNN-based methods: Recurrent neural networks (RNNs) are used to capture inherent
context features from 3D point clouds for semantic segmentation. An example of RNN-
based method for segmentation of point cloud is recurrent slice network (RSNet) [71] where
unordered and unstructured point clouds are transformed into an ordered sequence of
vectors which are then fed to an RNN model for prediction. In [72], the approach first
transforms 3D points into multi-scale grid blocks to gain input-level context. Then, the grid
level features are extracted by exploiting PointNet. These features are serially given into
consolidation units (CU) or recurrent consolidation units (RCU) to attain output-level
context. A lightweight local dependency modeling module is proposed in [71], which
utilizes a slice pooling layer to transform unordered point feature sets into a well-ordered
sequence of feature vectors. A pointwise pyramid pooling module is proposed in [73] to
obtain the coarse-to-fine local features and then an RNN is applied for end-to-end learning.
In another work, a dynamic aggregation network [73] is proposed, which considers both
global scene complexity and local geometric features. Another example in this direction is
3DCNN-DQN-RNN [74] that is claimed to perform efficient semantic parsing of large-scale
point clouds. For more details on the reviewed literature, we refer interested readers to [75].

3. Proposed Method

We propose a projection-based method for semantic segmentation of 3D point clouds,
see Figure 1. Recent advances in 2D CNNs allow semantic segmentation of images with
high accuracy and low computational cost. Hence, our method exploits 2D CNNs for
semantic segmentation of 3D point clouds. The proposed approach is specifically targeted
at real-world outdoor conditions. It first splits a point cloud angle-wise into multiple
3D slices. Then, each slice is projected onto a 2D grid, constructing a pseudo image.
We leverage a surface interpolation technique to project 3D point clouds onto uniform
grids. In our method, we consider projection of multiple LiDAR input channels, including
intensity, reflectivity, and normal values. We apply image enhancement techniques to refine
the transformed pseudo images before feeding them to the 2D CNN. After processing
the projections of point cloud slices, we eventually fuse the outputs of 2D CNN for the
semantic segmentation of the complete 360◦ point cloud. We explain the proposed method
in a step-by-step manner below.

3.1. Constructing Pseudo Images from Point Clouds

In our technique, the complete point cloud is transformed into multiple 2D pseudo
images using an angle-wise scan of the 360◦ point cloud. These images are subsequently
enhanced to create suitable training data for our 2D CNN model. In this subsection, we
explain the conversion of point cloud to 2D images.

3.1.1. Slice Extraction

In this step, we extract slices of 120◦ from the full point cloud. First X, Y, Z values of
the points are converted from Cartesian coordinates to Spherical coordinates; comprising
Azimuth angle, Elevation angle, and radius (r)-as shown in Figure 2.
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Figure 2. Transformation between Cartesian and Spherical coordinates.

This mapping can be reversed, which is later required in our method to obtain a back
projection from 2D image to 3D point cloud. Along the Azimuth angle, points that lie
inside the 120◦ slice are extracted to construct a single pseudo image. We have chosen this
value empirically based on our experiments. A larger value can make the image too large
to be processed efficiently by the model, whereas smaller values shrink the image size,
thereby reducing the spatial information therein. To bound the slice, we fix a threshold for
the radius based on a histogram of 3D point cloud frame. Any value above the threshold
indicated by the histogram is ignored. We do this because the density of a point cloud
reduces drastically when the distance from the sensor is too large. At larger distances,
i.e., large radii, very few points are encountered, which can be ignored for practicality.
In our experiments, we empirically set the threshold to 70 m. A rotation along Y-axis is
applied to the point cloud at a particular angle to extract a new slice. To rotate a point cloud,
we apply a rotation matrix. The value for rotation angle depends upon how many slices
we want to generate. For instance, when the rotation angle is 5◦, it will result in 360/5 = 72
slices of the point cloud. We also split the corresponding intensity and reflectivity maps
that correspond to the points in the slices. Below, we provide the expressions for mapping
a point in the Cartesian coordinates to Spherical coordinates (first three), and then reverse
mapping of Spherical coordinate points to the Cartesian coordinates (last three). Our
technique uses these transformations to alter between the coordinate systems. Here, Ψ,
θ and r are Azimuth angle, Elevation angle, and radius of the points in the Spherical
coordinate system.

Ψ = arctan(
X
Y
), (1)

θ = arctan(

√
X2 + Y2

Z
), (2)

r =
√

X2 + Y2 + Z2, (3)

X = r · cos(Ψ) sin(θ), (4)

Y = r · sin(Ψ) cos(θ), (5)

Z = r · cos(θ). (6)

3.1.2. 3D to 2D Projection

Given the sparse nature of the point cloud, projection from 3D to 2D is not straight
forward. We exploit interpolation to project a 3D slice onto a 2D grid while paying due
attention to the LiDAR sensor specifications. The number of channels of a LiDAR sensor
determines the vertical resolution of our grid. For instance, in the case of the proposed
PC-Urban_V2 dataset, the Ouster LiDAR sensor has 64 vertical channels. The number of
vertical channels for any sensor can be readily computed by looking at the samples acquired
by that sensor. The horizontal resolution of our Ouster LiDAR is 1024 or 2048 points
covering the full 360◦ view. We divide our grid into 128 vertical units and 352 horizontal
units to form a 128× 352 image. Here, the number of vertical units are chosen to be twice
the vertical channels to ensure an acceptable grid resolution. The horizontal resolution is
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also adjusted with that of the LiDAR and rounded to be 2.75× the vertical resolution. Note
that the 128× 352 image size is custom chosen to suit our Ouster LiDAR and segmentation
algorithm, and is not meant to match the input size of an existing CNN architecture. Hence,
we must eventually design a custom CNN architecture for semantic segmentation (details
in Section 3.3).

In our 2D grid, the radius values of the slice are assigned to the 2D grid based on
nearest neighbor interpolation. The radius values correspond to the depth values of the
point cloud. We also generate 2D grids of the corresponding intensity and reflectivity
similar to the depth images. We use KNN search algorithm to cater for the cases where one-
to-one correspondence is not possible. Interestingly, we found that depth images, intensity
images, and the reflectivity images formed by our method often preserve complementary
details of the scene. For instance, we show the three types of images for six different
representative slices in Figure 3. It is noteworthy that despite transformation from 3D to 2D
space, the images preserve visually discernible patterns. This makes the images suitable to
be combined into a single comprehensive 3-channel pseudo image for processing by 2D
CNNs. This is exactly what is done.

Figure 3. Illustration of the three channels of the pseudo image constructed from 3D point cloud to 2D grid projection.
(Left) Depth channel, (Middle) Intensity channel, (Right) Reflectivity channel. A point cloud slice covering 120◦ view and
all 64 vertical channels of the LiDAR is projected onto a 128× 352 grid. Pseudo colors are used for better visualization.

3.2. Image Enhancement

The next major step in preparing our pseudo images is to perform enhancement of the
individual image channels constructed so far. We employ enhancement techniques such as
normalization, histogram equalization and decorrelation stretch to make the images more
suitable for our problem of semantic segmentation.

3.2.1. Normalization

Normalization is important to bound channel values in a meaningful range. To do so,
we first estimate a threshold value for each channel based on 1000 random samples from
our training data. The role of the threshold is to retain 99.9% of data by removing values
that are higher than a threshold. This effectively removes outliers from the data. We have
noticed that some unusual high values are often present in the intensity and reflectivity
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channels which are eliminated by this process. After removing the outliers, we normalize
each channel by its absolute maximum value.

3.2.2. Histogram Equalization

We noted in our experiments that channels resulting from the above processing have
low contrast. Thus, we employ histogram equalization to all the channels to enhance their
contrast in the transformed images. We empirically found histogram equalization to benefit
our ultimate objective of semantic segmentation.

3.2.3. Decorrelation Stretch

In our approach, decorrelation stretch is applied to further enhance the 2D images.
The core objective of this operation is to highlight image constituents by exaggerating the
color differences. We found this process to be beneficial for our multichannel LiDAR sensor
images for the ultimate objective of semantic segmentation. Decorrelation stretch is a linear
pixel-wise operation that accounts for actual and desired (target) image statistics. It was
originally designed for multichannel images, such as RGB and multispectral tensors. In our
approach, a decorrelation stretch with covariance is applied to images which uses the eigen
decomposition of the band-to-band covariance matrix. This requires performing various
operations sequentially, which include removing the mean value from a band, normalizing
the band, rotating it in the eigenspace, applying the stretch in the eigenspace, rotating it
back, rescaling and restoring the mean. Mathematically, the decorrelation stretch operation
can be represented as follows:

b = T ∗ (a− µ) + µtarget, (7)

Cov = V ∗ λ ∗V−1, (8)

S(k, k) = 1/
√

λ(k, k), (9)

Σtarget(k, k) =
√

Cov(k, k), where k = 1,..., n bands (10)

T = Σtarget ∗V ∗ S ∗V−1 (11)

b = µtarget + Σtarget ∗V ∗ S ∗V−1 ∗ (a− µ) (12)

In the above equations, a is a vector of values of a given pixel in each band of the
input image A, b is the corresponding pixel in the output image B. The vector µ contains
the mean of each band in the image, µtarget contains the desired output mean in each band.
V is the orthogonal matrix of eigen vectors, λ denotes the diagonal matrix of eigenvalues.
The band-to-band sample covariance of the image is denoted by Cov, Σtarget is the diagonal
matrix comprising the sample standard deviation of each band and S is a diagonal matrix
consisting of the stretch factor values. T is a linear transformation matrix which depends
on Σtarget, V and S. By substituting Equation (11) into Equation (7), we get the final
decorrelation stretching in Equation (12).

3.3. 2D CNN Network

We extend the U-Net [76] framework and design a custom architecture to perform
semantic segmentation of the converted 2D images. The proposed architecture consists of
encoder and decoder parts as shown in Figure 1. Instead of using the original encoder of
U-Net, we use ResNet34 architecture as the encoder in this work given the higher gener-
alization ability of ResNet. The input image size to our network is 128× 352× 3, given
as width×height×channels. The encoder part contains 2D CNN layers with a kernel size
of 3 × 3, except for the first layer which has a kernel size of 7 × 7. Batch normalization,
ReLU activation, and zero padding are applied before and after convolution operations at
the encoder side. Stride sizes of 1 and 2 are used in the convolution either to maintain the
same input size or to make the input size half in the subsequent layers. At the decoder
side, up-sampling, and concatenation are applied before and after convolutions to make
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the output size double and increase the number of channels at the output, respectively.
Moreover, batch normalization and ReLU activations are also employed after the convolu-
tion operations. The kernel size at the decoder is 1 × 1 with a stride 1. A softmax layer is
used for the eventual pixel-wise prediction. There are 24.4 million trainable parameters in
our network. We summarize the full architectural details of our network in Table 1.

Table 1. The proposed encoder-decoder network architecture for semantic segmentation. ‘Y’ and ‘N’ indicate if the option is
enabled or not.

Sub-Network Layer Index Layer Type Input Shape Output Outshape Kernel Stride Padding Relu B.N # Param

0 Conv2D (128, 352, 3) (64, 176, 64) 7 × 7 2 Y Y Y 9408
11 Conv2D (64, 176, 64) (32, 88, 64) 3 × 3 1 Y Y Y 36,864
34 Conv2D (34, 90, 64) (32, 88, 64) 3 × 3 1 Y Y Y 36,864
39 Conv2D (34, 90, 64) (16, 44, 128) 3 × 3 2 Y Y Y 73,728

Encoder 67 Conv2D (18, 46, 128) (18, 46, 128) 3 × 3 1 Y Y Y 147,456
76 Conv2D (18, 46, 128) (8, 22, 256) 3 × 3 2 Y Y Y 294,912
87 Conv2D (10, 24, 256) (8, 22, 256) 3 × 3 1 Y Y Y 589,824
133 Conv2D (10, 24, 256) (4, 11, 512) 3 × 3 2 Y Y Y 1,179,648
156 Conv2D (6, 13, 512) (4, 11, 512) 3 × 3 1 Y Y Y 2,359,296

160 Upsamp (4, 11, 512) (8, 22, 512) - - N N N 0
161 Concat (8, 22, 512) (8, 22, 768) - - N N N 0
162 Conv2D (8, 22, 768) (8, 22, 256) 1 × 1 1 Y Y Y 1,769,472
168 Upsamp (8, 22, 256) (16, 44, 256) - - N N N 0
169 Concat (16, 44, 256) (16, 44, 384) - - N N N 0
170 Conv2D (16, 44, 384) (16, 44, 128) 1 × 1 1 Y Y Y 442,368

Decoder 176 Upsamp (16, 44, 128) (32, 88, 128) - - N N N 0
177 Concat (32, 88, 128) (32, 88, 192) - - N N N 0
178 Conv2D (32, 88, 192) (32, 88, 64) 1 × 1 1 Y Y Y 110,592
184 Upsamp (32, 88, 64) (64, 176, 64) - - N N N 0
185 Concat (64, 176, 64) (64, 176, 128) - - N N N 0
186 Conv2D (64, 176, 128) (64, 176, 32) 1 × 1 1 Y Y Y 36,864
192 Upsamp (64, 176, 32) (128, 352, 32) - - N N N 0
193 Conv2D (128, 352, 32) (128, 352, 16) 1 × 1 1 Y Y Y 4608
200 Conv2D (128, 352, 16) (128, 352, 30) 1 × 1 1 Y Y Y 4350

3.4. Back Projection to 3D

In our approach, the prediction labels of output of the 2D CNN are in the form of a 2D grid.
Each predicted value is matched to the corresponding pixel in the input multichannel image.
These prediction values need to be projected back to the corresponding 3D point cloud value for
the eventual semantic segmentation. We utilize the 2D depth channel values for this purpose
by exploiting KNN search algorithm. The process to match X, Y, Z values of a point cloud with
the predicted values is a multi-step procedure in our approach. First a complete row of a 2D
depth channel is searched in the spherical coordinates of a point cloud. This returns the indices
of the matched points in the point cloud. Thereafter, it is easy to extract the corresponding X, Y,
Z values in the rectangular coordinate system as both rectangular and spherical coordinates
share the same indexing system. In the next step, the corresponding values of a points in the
rectangular domain are extracted based on the matched indices (obtained from previous step).
Finally, the extracted X, Y, Z values of a point cloud are mapped to the labels in that row.
Likewise, the predicted labels of all the rows are matched to the corresponding 3D point cloud
values. In this way, a complete 2D grid image with corresponding labels are projected back to a
sub-point cloud with predicted labels.

3.5. Fusion of 3D Sub-Point Clouds for Final Segmentation

We divide a whole point cloud into multiple sub-point clouds based on rotation angles
in our approach. The CNN discussed above only processes a single sub-point cloud at a
time. Hence, we need to fuse back all the predicted sub point clouds to obtain the complete
360◦ segmented point cloud. At this stage, all the sub-point clouds are concatenated back
based on their slice number. For instance, if four slices cover a whole point cloud with an
angle of 120◦, all four slices are concatenated, disregarding the 40◦ overlap between the
consecutive slices. This results in redundant points along with their predictions and labels.
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The redundancy is resolved by randomly removing repeated points. Thus, we obtain the
final complete 360◦ point cloud along with its point-wise segmentation labels.

4. Proposed Dataset

The second major contribution of this article is the extension of our PC-Urban dataset [21].
In this paper, we significantly extend our dataset in terms of both unlabeled raw point
clouds and annotated frames. Similar to our previous work [21], we employ the PC-
Annotate tool for labeling. The data are collected in Perth, Western Australia by driv-
ing a LiDAR mounted SUV through the city. The radius of data collection region is
15 km. The collection is performed during different day and night times under varying
weather conditions. Ours is a large-scale outdoor dataset that provides labels for 25 classes.
It contains over 8 billion points. To put the scale of our data into perspective, Table 2
provides a summary of the popular related datasets. In the proposed PC-Urban_V2, we
provide both labeled and unlabeled frames. The latter are provided to outsource annotation,
as we previously provided a free public annotation tool that can be used to label raw point
cloud frames [21]. Below we discuss both unlabeled and labeled frames of our dataset.

Table 2. Popular contemporary 3D point cloud outdoor datasets for semantic segmentation task.

Dataset Classes Points Sensor Annotation

nuScenes [77] 23 - LiDAR bounding box
A2D2 [24] 38 - LiDAR pixel mapping
SemanticKITTI [22] 28 4500 M LiDAR (Velodyne HDL-64E) point-wise
PC-Urban [21] 25 4000 M LiDAR(Ouster OS-64) point-wise
DublinCity [78] 13 1400 M LiDAR coarse labeling
Toronto-3D MLS [79] 8 78 M LiDAR (32-line) point-wise
Paris-Lille-3D [80] 50 143 M LiDAR (Velodyne HDL-32E) point-wise
Semantic3D.Net [23] 8 4000 M LiDAR (Terrestrial) point-wise
TUM City Campus [81] 9 1700 M LiDAR (Velodyne HDL-64E) point-wise
KITTI [82] 8 - LiDAR (Velodyne) bounding box
RueMonge2014 [83] 7 0.4 M Structure from Motion (SfM) Mesh labeling
iQmulus [84] 50 300 M LiDAR (Q120i) point-wise
Paris-rue-Madame [85] 17 20 M LiDAR (Velodyne HDL-32) point-wise
PC-Urban_V2 (Proposed) 25 8000 M LiDAR (Ouster OS-64) point-wise

4.1. Unlabeled Frames

The output of LiDAR sensor is available in PCAP file format. We use Ouster Studio
software to extract the raw frames. A total of 100 K raw frames containing 8 billion points
were extracted from the LiDAR sensor, almost twice as much as the previous version of
PC-Urban [21]. Each raw frame comprises point-wise X, Y, Z, intensity, reflectivity, ring,
noise, and range values. The number of points for each frame range from 65,536 to 129,000
depending on the scene and selected horizontal resolution of the LiDAR. The same LiDAR
sensor setup is used for both versions of PC-Urban except that the horizontal resolution is
increased from 1024 to 2048 in the updated version. Due to its large size, the unlabeled
set of PC-Urban_V2 is especially suitable for training self-supervised models. The size of
unlabeled frames is more than 100 K, containing over 8 billion points.

4.2. Labeled Frames

In addition to unlabeled point clouds, the dataset also provides labels for raw frames.
In the dataset released with this article, there are 2000 labeled raw frames, comprising
around 100 million points. These points belong to 33 K instances of objects that belong
to 25 classes. In Figure 4, we show the distribution of points in the labeled raw frames
for different classes of object (left), and distribution of labeled instances in the raw frames
(right). Dominant classes of building, road and trees comprise 39%, 20%, and 25% points,
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respectively, of the total points in the dataset. Since the data are captured in an urban region
where large number of trees, buildings, cars, light-poles, and traffic signals are encountered,
more instances of these classes are present. The background class (not shown) carries
a single instance per frame, comprising approximately 20 million points in our dataset.
Labeling of 25 general outdoor classes is provided, which contain car, building, bridge,
tree, road, letterbox, traffic signal, light-pole, rubbish bin, cycles, motorcycle, truck, bus,
bushes, road sign board, advertising board, road divider, road lane, pedestrians, side-path,
wall, bus stop, water, zebra-crossing, and background.

Figure 4. (Left) Distribution of points per class for the raw frames of PC-Urban_V2. The distribution is provided for
100 million labeled points. For clarity, the chart excludes background points ∼20 million. The number of points in millions
are indicated with each class label. (Right) Distribution of the number of instances per class in the labeled raw frames.

5. Experiments

To evaluate the proposed approach, experiments are performed on multiple bench-
mark outdoor datasets: semantic KITTI [22], PC-Urban_V2, Semantic3D [23], and Audi [24].
Moreover, to establish the baseline on the proposed PC-Urban_V2 dataset, we test the
performance of four popular deep learning methods for point cloud segmentation on our
data. These methods include PointNet [3], Octree-based CNN [5], PointNet++ [6], and
PointConv [7]. We select these methods based on their popularity in the literature and avail-
ability of author provided code for a fair evaluation. We also test our proposed approach on
the proposed PC-Urban_V2 dataset. Semantic segmentation performance of our proposed
method is compared with state-of-the-art methods. Our evaluation was performed on a
machine with 2.80 GHz × 20 CPU, 128 GB RAM, and a 2080Ti GPU. Transforming a 3D
point cloud into 2D pseudo images and then back projecting it, is a function of number
of slices. The more slices we generate from a point cloud, the more computational cost is
incurred by the process. Thus, we prefer generating more slices during the training phase
for data augmentation. On the other hand, test augmentation is avoided for efficiency
purpose. We organized the remaining section with respect to the datasets used.

5.1. PC-Urban_V2 Dataset

To benchmark techniques on the proposed extended PC-Urban dataset, we experiment
with PointNet [3], Octree-based CNN [5], PointNet++ [6] and PointConv [7], and our
proposed method.

Experiment Setup: A total of 2000 annotated frames of PC-Urban_V2 dataset are used
for all the considered methods. From the annotated data, we use 1500 frames (i.e., ∼75%)
for training and 500 frames (i.e., ∼25%) for testing. For a fair comparison, all the techniques
are trained for 200 epochs. We exploit the original available Tensorflow implementations
for the used approaches. However, Keras is also used for our proposed method.
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Setting for the proposed technique and data: The transformation from 3D to 2D explained
in Section 3 is applied to the proposed dataset for our method. To generate more training
data, we apply a rotation angle of 5◦ and generate a total of 72 2D grid images from a
single point cloud. Thus, a total of 108,000 training images are created from 1500 training
point cloud frames. Recall that at inference time we only apply 80◦ rotations to generate
only 4 2D grid images for fast processing and hence only 2000 images are created from the
500 test point cloud frames. All 2D grid images are preprocessed as mentioned in Section 3.
Setting for other methods: We use the settings recommended by the original authors for
the remaining techniques according to their requirements. For Octree-based CNN [5],
Tensorflow TFrecord is used for data preparation. For PointNet [3], PointNet++ [6], and
PointConv [7], our PC-Annotate tool is utilized for data preparation. For all methods,
from the 1500 training point cloud frames, random 2.4 million (2,386,000 to be precise)
samples were extracted for training. Similarly, from the 500 test point cloud frames, 750,000
samples were extracted for testing. The size of each sample is kept 4096 to suit the input
size of the methods we have used for comparison. Each point consists of X, Y, Z , and the
three normal vector values.

Results on PC-Urban_V2

Table 3 summarizes the performance of our experiments for point cloud semantic
segmentation on PC-Urban_V2. The table includes results of our proposed approach and
other popular techniques used for comparison. The performance is reported using the
standard evaluation metrics: mean Intersection over Union (mIoU) and overall accuracy
(OA). As can be seen, values for these metrics and per class accuracy for PointNet and
PointNet++ are fairly low as compared to other approaches on PC-Urban_V2 dataset. This
is mainly because PointNet and PointNet++ largely ignore local features in 3D point clouds.
On the other hand, PointConv [7] and Octree-based CNN [5] results are more promising.
However, the proposed approach outperforms all other methods by a significant margin.
Our results show reasonable preservation of spatial patterns in the data by exploiting
structured 2D CNNs. The performance of our approach on PC-Urban_V2 in terms of mIoU
is a significant 24% better than the best performing unstructured CNN based approach [5].
Additionally, per class accuracy for most of the representative classes shown in the table is
better than other methods.

Table 3. Semantic segmentation results comparison of popular techniques with our proposed method on the proposed
PC-Urban_V2 dataset. We report the mean intersection over union (mIoU) and overall accuracy (OA) in %, for comparison.
Class-wise segmentation performance (IoU in %) for 17 representative classes is reported. However, the mIoU and OA are
computed for all 25 classes. The first and second best results are highlighted in blue and green colors, respectively.
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Octree-based CNN [5] 42.6 78.4 40.5 32.1 40.1 39.1 31.9 30.5 77.6 34.5 69.0 76.2 43.9 31.6 27.8 39. 46.1 30.1 37.0
PointConv [7] 39.3 81.5 33.7 19.5 36.5 25.6 35.2 28.7 47.7 29.3 76.6 49.1 31.2 32.3 43.6 18.9 42.1 35.1 36.7
PointNet++ [6] 22.7 47.3 40.5 0.0 05.0 18.6 04.8 0.0 77.9 12.7 80.3 22.3 25.1 13.7 09.0 06.9 15.9 01.0 11.0
PointNet [6] 12.5 39.3 30.9 0.0 0.0 0.0 04.5 02.4 0.0 52.7 07.2 45.8 09.0 16.2 08.1 0.0 0.0 11.0 0.0
Ours 66.8 88.9 81.6 85.1 68.5 81.3 53.0 85.5 84.4 89.8 89.9 86.1 70.3 72.8 89.5 79.9 46.2 43.8 77.3

5.2. Semantic KITTI Dataset

We also benchmark our proposed method on one of the most popular datasets for
3D semantic segmentation, i.e., semantic KITTI outdoor dataset. This is a large dataset
captured with the Velodyne HDL-64E LiDAR and provides point-wise annotations for
28 classes suitable for a variety of tasks. The dataset is different from other laser datasets in
that it provides scan-wise annotations for a total of 22 annotated sequences. Annotations
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only for the first 10 sequences are publicly available and hence we use these for our training
and testing. The results of existing methods are reported from [86] that follow the same
protocol as evaluation of our method.

Experimental setup and data preparation: We use a total of 19,069 annotated frames of
semantic KITTI data. Out of these, we use approximately 14 K frames (i.e., 75%) for training
and 5 K frames (i.e., 25%) for testing. During training we use 5% of the training data for
validation. The size of each frame varies from 90 K to 130 K points. The transformation
from 3D to 2D explained in Section 3 is applied to these extracted frames. To augment
training data, we apply a rotation angle of 10◦ to generate 36 2D grid images from each 3D
point cloud frame. During testing and inference, we apply 80◦ rotations to generate only
4 2D grid images for fast processing. Pre-processing techniques mentioned in Section 3 are
applied to both training and test images. We train our proposed model for 150 epochs on
this dataset using the Keras and Tensorflow.

Results on Semantic KITTI Dataset

Table 4 compares the semantic segmentation results of our method with the popular
recent approaches on the semantic KITTI dataset. The semantic segmentation metric of mean
intersection over union (mIoU) is used again for comparison for all classes, as well as for
individual representative classes of the semantic KITTI dataset. Our approach outperforms
all the recent methods in terms of mIoU except RPVNet [87], S3Net [88], and Cylinder3D [89].
The performance of RPVNet [87], S3Net [88], and Cylinder3D [89] are slighter better than our
approach. Our method outperformed all other approaches in terms of class-wise accuracy on
six classes including bicycle, truck, other-vehicle, bicyclist, other-ground, and fence. Overall,
the results of our technique are highly competitive on this dataset.

Table 4. Semantic segmentation performance comparison of popular techniques with our method on Semantic KITTI
dataset. We report the mean intersection over union (mIoU) in %. Class-wise segmentation performance comparison of our
method with state-of-the-art methods for representative classes of Semantic KITTI dataset are also given. The results are in
%IoU. The first and second best results are highlighted in blue and green colors, respectively.
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RPVNet [87] 70.3 97.6 68.4 68.7 44.2 61.1 75.9 74.4 43.4 93.4 70.3 80.7 33.3 93.5 72.1 86.5 75.1 71.7 64.8 61.4
S3Net [88] 69.7 94.5 65.4 86.8 39.2 41.1 80.7 80.4 74.3 91.3 68.8 72.5 53.5 87.9 63.2 70.2 68.5 53.7 61.5 71.0
Cylinder3D [89] 67.8 97.1 67.6 64.0 50.8 58.6 73.9 67.9 36.0 91.4 65.1 75.5 32.3 91.0 66.5 85.4 71.8 68.5 62.6 65.6
SPVNAS [90] 66.4 97.3 51.5 50.8 59.8 58.8 65.7 65.2 43.7 90.2 67.6 75.2 16.9 91.3 65.9 86.1 73.4 71.0 64.2 66.9
JS3C-Net [91] 66.0 95.8 59.3 52.9 54.3 46.0 69.5 65.4 39.9 88.8 61.9 72.1 31.9 92.5 70.8 84.5 69.8 68.0 60.7 68.7
AMVNet [92] 65.3 96.2 59.9 54.2 48.8 45.7 71.0 65.7 11.0 90.1 71.0 75.8 32.4 92.4 69.1 85.6 71.7 69.6 62.7 67.2
TORNADONet [93] 63.1 94.2 55.7 48.1 40.0 38.2 63.6 60.1 34.9 89.7 66.3 74.5 28.7 91.3 65.6 85.6 67.0 71.5 58.0 65.9
FusionNet [94] 61.3 95.3 47.5 37.7 41.8 34.5 59.5 56.8 11.9 91.8 68.8 77.1 30.8 92.5 69.4 84.5 69.8 68.5 60.4 66.5
KPCONV [95] 58.8 96.0 30.2 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7 31.6 90.5 64.2 84.8 69.2 69.1 56.4 47.4
SqueezeSegV3 [96] 55.5 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9
RangeNet [19] 52.2 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9
PointASNL [97] 46.8 87.9 0.0 25.1 39.0 29.2 34.2 57.6 0.0 87.4 24.3 74.3 1.8 83.1 43.9 84.1 52.2 70.6 57.8 36.9
TangentConv [37] 40.9 86.8 1.3 12.7 11.6 10.2 17.1 20.2 0.5 82.9 15.2 61.7 9.0 82.8 44.2 75.5 42.5 55.5 30.2 22.2
PointNet++ [6] 20.1 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.0 72.0 18.7 41.8 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9
PointNet [3] 14.6 46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7 1.4 4 1.4 12.9 31.0 4.6 17.6 2.4 3.7
Ours 67.1 88.0 70.5 53.2 65.7 78.8 59.8 81.8 39.4 84.2 54.7 50.3 62.8 82.8 74.6 76.6 52.2 68.1 58.3 49.3

5.3. Semantic3D Dataset

We also report comparative results on the Semantic3D outdoor dataset which contains over 4
billion labeled points. The dataset covers a wide range of urban scenes including streets, churches,
railroad tracks, squares, villages, soccer fields, and castles. The performance of our approach
is compared with popular recent methods for eight classes namely, man-made terrain, natural
terrain, high vegetarian, low vegetarian, buildings, hardscape, scanning artifacts, and car.
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Experimental setup: The pre-defined training and test sets of Semantic3D dataset are used
for training and testing our method. The same train and test splits are used by all compared
methods. In our case, we use 10% of the training samples for validation during training
and train network for 200 epochs.

Data preparation for our method: The same transformation method explained in
Section 3 is used to create 2D grid images for both training and testing. We use a much
smaller rotation angle (0.5◦) to extract 720 2D grid images from each point cloud frame.
This resulted in a total of 10,800 images from 15 annotated 3D point cloud frames for
training. For testing, the rotation angle is kept the same as the previous datasets, i.e., 80◦

rotation is applied to extract 4 2D grid images from each point cloud frame. Pre-processing
techniques mentioned in Section 3 are also applied on both training and test images.

Results on Semantic3D

Table 5 reports the semantic segmentation results of our proposed method and popular
recent approaches on the Semantic3D dataset. We report the overall accuracy (OA) and the
mIoU of all nine classes including the background class for comparison, as well as the class-
wise accuracy for eight classes (excluding the background class). Our approach outperformed
all techniques on the mIoU metric. Note that, the compared techniques include many high
performing techniques, such as WreathProdNet [98], ConvPoint [99], SPGraph [63], WOW [100],
and PointConv_CE [101]. Nevertheless, our method outperformed these methods on mIoU,
while also maintaining better individual class accuracy for multiple classes.

Table 5. Semantic segmentation performance comparison of popular techniques with our method on Semantic3D. We
report the mean intersection over union (mIoU) and overall accuracy (OA) in %. Class-wise segmentation performance of
methods is also provided as %IoU. H-Veg, L-Veg, MM-Terrain, N-Terrain, S-Art, respectively, stand for high vegetarian, low
vegetarian, man-made terrain, natural terrain, and scanning artifacts. The first and second best results are highlighted in
blue and green colors, respectively.

Methods mIoU OA MM-Terrain N-Terrain H-Veg L-Veg Buildings Hardscape S-Art Car
WreathProdNet [98] 77.1 94.6 95.2 87.1 75.3 67.1 96.1 51.3 51.0 93.4
Conv_pts [99] 76.5 93.4 92.1 80.6 76.0 71.9 95.6 47.3 61.1 87.7
SPGraph [63] 76.2 92.9 91.5 75.6 78.3 71.7 94.4 56.8 52.9 88.4
WOW [100] 72.0 90.6 86.4 70.3 69.5 68.0 96.9 43.4 52.3 89.5
PointConv_CE [101] 71.0 92.3 92.4 79.6 72.7 62.0 93.7 40.6 44.6 82.5
Att_conv [55] 70.7 93.6 96.3 89.6 68.3 60.7 92.8 41.5 27.2 89.8
PointGCR [70] 69.5 92.1 93.8 80.0 64.4 66.4 93.2 39.2 34.3 85.3
SnapNET [102] 67.4 91.0 89.6 79.5 74.8 56.1 90.9 36.5 34.3 77.2
Super_ss [103] 64.4 89.6 91.1 69.5 65.0 56.0 89.7 30.0 43.8 69.7
PointNet2_Demo [104] 63.1 [75] 85.7 81.9 78.1 64.3 51.7 75.9 36.4 43.7 72.6
Ours 77.2 91.9 70.0 75.3 77.8 70.5 67.9 82.9 95.0 75.0

5.4. Audi Dataset

We further test our approach on the very recently released Audi dataset [24] which
provides 41,277 frames for semantic segmentation of both 3D points and 2D RGB images.
This dataset was captured specifically for autonomous driving. Multiple 16 channel LiDAR
sensors and RGB cameras were mounted on the roof of a car for data collection. Positions of
sensors and their corresponding cameras are as follows: front center, front left, front right,
side left, side right, and rear center. Each frame contains an RBG image, 2D ground-truth
image and its corresponding point cloud. This dataset is mainly for 2D analysis and the
point cloud data are meant to assist the 2D methods.

Experiment setup and data preparation: Out of 41,277 LiDAR frames, approximately
31 K (i.e., 75%) frames are used for training our method, whereas 10 K (i.e., 25%) are used
for testing. During training, we use 5% of the training data for validation and train our
model for 200 epochs. For both the transformation method explained in Section 3 is used
for that purpose. Due to smaller number of channels of LiDAR in the data, the resolution
of each LiDAR frame is very low. Each 3D point cloud frame comprises points in the range
7 K to 13 K. Thus, a large rotation angle is selected to divide a point cloud into less number
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of slices for training data augmentation. We use a rotation angle of 180◦ to get two 2D grid
images from each point cloud frame. Unlike the previous datasets, the test data are also
processed similarly to get 2 images from each point cloud frame. In total 82.5 K 2D grid
images are generated out of 41.2 K frames for both training and testing with a proportion of
3:1, respectively. Image enhancement techniques mentioned in Section 3 are then applied
for both training and testing images.

Results on Audi Dataset

In Table 6, we report the semantic segmentation results of our approach on the Audi
dataset. We use mIoU, OA, and recall as performance metrics. Class-wise accuracy is
also reported for car, truck, pedestrian, bicycle, ego car, small vehicle, utility vehicle, and
animals. This establishes the first baseline results for the Audi dataset as no other method
has reported semantic segmentation results on this dataset using point clouds only. This
is mainly because the point cloud resolution and density is very low in this dataset. This
is also the reason we are unable to test other methods on this dataset for comparison.
Nevertheless, our proposed method is still applicable on this low resolution point cloud
dataset. We report the first baseline results for semantic segmentation on the Audi dataset,
which is a contribution in itself. Note that the performance of our method on Audi dataset
is quite low because of the very low resolution 3D point cloud frames, i.e., 16 channels as
opposed to 64 channels in PC-Urban_V2 and KITTI datasets. However, from a practical
standpoint, the Audi dataset is still realistic and our technique is able to provide a strong
baseline for the semantic segmentation task on this dataset.

Table 6. Semantic segmentation results of our method on Audi dataset. We report mean intersection over union (mIoU),
overall accuracy (OA), recall and class-wise segmentation performance of our method for different classes of Audi dataset.
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Ours Audi (A2D2) [24] 53.4 78.7 59.6 40.4 65.7 66.8 65.7 65.9 69.1 67.0 40.1

6. Conclusions

This article proposed a projection-based method for 3D point cloud semantic segmentation.
The proposed technique first transforms a 3D point cloud into 2D grid images and then exploits
a U-Net like 2D structured CNNs architecture for semantic segmentation. Our method has the
benefit that it allows taking advantage of advances in 2D CNNs, which have matured more
than their unstructured 3D counterparts. Our approach is trained and evaluated on recent
popular 3D point cloud datasets, including PC-Urban_V2, Semantic KITTI, Semantic3D, and
Audi. The second major contribution of this work is the extension of PC-Urban dataset in terms
of labeled and unlabeled data. We plan to extend the proposed PC-Urban_V2 dataset in the
future in terms of both labels and raw data. We also provided baseline results for point cloud
semantic segmentation on our dataset using recent popular deep learning techniques along
with comparison to the proposed method. These results establish that the proposed dataset
provides more challenging scenarios. At the same time, strong results provided by our method
establish the effectiveness of our approach.
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