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Abstract: Land surface temperature (LST) is one of the crucial parameters in the physical processes
of the Earth. Acquiring LST images with high spatial and temporal resolutions is currently difficult
because of the technical restriction of satellite thermal infrared sensors. Downscaling LST from
coarse to fine spatial resolution is an effective means to alleviate this problem. A spatial random
forest downscaling LST method (SRFD) was proposed in this study. Abundant predictor variables—
including land surface reflection data, remote sensing spectral indexes, terrain factors, and land cover
type data—were considered and applied for feature selection in SRFD. Moreover, the shortcoming
of only focusing on information from point-to-point in previous statistics-based downscaling meth-
ods was supplemented by adding the spatial feature of LST. SRFD was applied to three different
heterogeneous regions and compared with the results from three classical or excellent methods,
including thermal image sharpening algorithm, multifactor geographically weighted regression,
and random forest downscaling method. Results show that SRFD outperforms other methods in
vision and statistics due to the benefits from the supplement of the LST spatial feature. Specifically,
compared with RFD, the second-best method, the downscaling results of SRFD are 10% to 24% lower
in root-mean-square error, 5% to 20% higher in the coefficient of determination, 11% to 25% lower
in mean absolute error, and 4% to 17% higher in structural similarity index measure. Hence, we
conclude that SRFD will be a promising LST downscaling method.

Keywords: downscaling; spatial feature; land surface temperature; random forest regression;
Landsat 8; feature selection

1. Introduction

Land surface temperature (LST) is one of the crucial parameters in the physical process
of surface energy and water balance from local to global scales, and accurate LST is most
important for studies, such as climate change, soil moisture condition, and environmental
monitoring [1–4].

With the development of satellite thermal infrared sensors, obtaining thermal infrared
(TIR) images to retrieve LST images in the regional and global scales with various spatial
and temporal resolutions has already been achieved [3]. However, the existing satellite
thermal infrared sensors could not provide high spatiotemporal TIR images because of
the trade-off between scanning swatch and pixel size [5]. For instance, the moderate
resolution imaging spectroradiometer (MODIS) of the National Aeronautics and Space
Administration (NASA) onboard the Terra/Aqua satellites could provide TIR images with
a spatial resolution of 1 km and a high temporal resolution of daily [6,7]. Meanwhile,
the advanced spaceborne thermal emission and reflection radiometer onboard the Terra
satellite could provide TIR images with a high spatial resolution of 90 m but with a
temporal resolution of 16 days [8,9]. In addition, the visible and infrared radiometer and
medium resolution spectral imager of the Chinese National Meteorological Satellite Center
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onboard Fengyun-3 (A/B/C/D) could provide different spatial (1 km, 250 m) and temporal
resolutions (daily, 5.5 days) [10–14].

The above trade-offs can be alleviated by LST downscaling [9,15]. The LST down-
scaling methods mainly fall into two categories, including fusion-based methods and
kernel-driven methods [16]. The fusion-based methods usually predict LST images with
a high spatiotemporal resolution by integrating the temporal information from coarse-
resolution images and the spatial information from fine-resolution images [15]. The most
widely used fusion-based method is the spatial and temporal adaptive reflectance fusion
model (STARFM) [17] and its enhanced version (ESTARFM) [18,19]. The STARFM was
initially developed to produce surface reflection at the Landsat spatial resolution of 30 m,
daily, by integrating daily information from MODIS. The STARFM was directly applied to
generate daily fine-resolution LST images in most previous studies [20,21]. However, they
did not perform satisfactorily over heterogeneous areas because of the difference between
surface reflection and LST. Subsequently, Weng et al. [22] further improved precedents
by considering urban thermal information and landscape heterogeneity to obtain the LST
images with a high spatiotemporal resolution. In addition, most fusion-based methods
can be divided into four groups in Wu’s review [18]: (1) weighted function-based meth-
ods [17,19,22]; (2) unmixing-based methods [23–25]; (3) hybrid methods [26–28]; and (4)
learning-based methods [29,30].

In contrast to the fusion-based methods, kernel-driven methods, which are an ef-
fective means to enhance the spatial resolution of LST images by associating them with
fine-resolution auxiliary data, such as shorter wavebands and terrain data [9,16]. The
kernel-driven methods are largely divided into the following two categories: physical and
statistical methods [31]. The physics-based methods establish a physically meaningful func-
tion by combining thermal radiance (or LST) and ancillary data (land cover type and shorter
waveband data) to achieve downscaling, such as pixel block intensity modulation [32] and
emissivity modulation method [33]. The statistics-based methods establish a statistical
relationship between LST and predictor variable data (shorter wavebands, terrain data, and
biophysical parameters), then apply the relationship to relatively fine-resolution predictor
variable data to obtain the LST images with a higher spatial resolution. The statistics-based
methods have been commonly accepted because of their satisfactory accuracy and sim-
ple procedure [34–40]. In addition, this study will make improvements to the previous
statistics-based methods.

The classical statistics-based downscaling LST methods include disaggregation pro-
cedure for radiometric surface temperature (DisTrad) [35], which regards normalized
difference vegetation index (NDVI) as a scale predictor variable, and thermal image sharp-
ening (TsHARP) [34], which replaces NDVI with fractional vegetation cover. However,
the performance of the above downscaling LST methods is only ideal in study areas with
adequate vegetation cover, which is unsuitable to urban and arid regions because of the
limitation of a single predictor variable [38,41]. Therefore, some other important predictor
variables that could represent land surface conditions were gradually considered to estab-
lish the statistical relationship to express LST. For example, Dominguez et al. [36] added
surface albedo data to TsHARP to develop the high-resolution urban thermal sharpener to
downscale LST in urban areas. Wang et al. [39] used normalized difference built-up index,
normalized difference water index, and other remote sensing spectral indexes as predictor
variables to establish a regression model to downscale LST in urban areas.

The LST is jointly affected by numerous predictor variables, and the numerical re-
lationship between them is complicated because of the coupling effects [42]. Capturing
the complicated relationship using the traditional linear and nonlinear models—such as
ordinary least squares (OLS) linear regression and logarithm models—is difficult with the
increase in the number of predictor variables. However, machine learning algorithms—
such as random forest (RF), artificial neural networks (ANN), and support vector ma-
chine (SVM)—could be competent for representing multivariable nonlinearity [40,43–47].
Hutengs et al. [40] first applied RF to achieve downscaling LST, and their downscaling
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results are better than those of TsHARP in statistical accuracy and vision enhancement.
Li et al. [48] downscaled LST using various machine learning methods, including ANN,
SVM, and RF, and then performed estimation between them. Their results indicated that
the downscaling of RF is better than others.

To improve the accuracy of downscaled LST, the focus of statistics-based LST down-
scaling methods has mainly undergone two stages, including adequate predictor variables
and excellent regression models [34,38,40,49]. However, most excellent models still have
some room for improvement. On the one hand, the importance of feature selection in-
creases with the number of predictor variables because of multicollinearity. Although some
machine learning models are less sensitive to multicollinearity than traditional regression
models. Nevertheless, the model will be complicated, lack stability, and demonstrate a
long training time because of the redundant variables. Ebrahimy et al. [47] focused on the
aforementioned problem and used the SVM recursive feature elimination to select the most
important predictor variables. Next, the selected predictor variables were inputted to the
machine learning model—including RF, SVM, and extreme learning machine—to fit the
downscaling LST model. Compared with the model using unselected predictor variables,
the model utilizing selected predictor variables has improved stability and high overall
effectiveness of the LST downscaling procedure [47]. On the other hand, the most optimal
machine learning method had been screened by extensive comparison and evaluation by
researchers. Nevertheless, the numerical relationship described by the machine learning
model still remains point-to-point [50], which neglects the geographical correlation of LST.
Li et al. [50] and Wei et al. [51] estimated the PM2.5 with high accuracy successfully by
incorporating the geospatial information to the deep belief network (DBN) and random
forest model, respectively. The LST is similar to the environmental parameters such as
PM2.5, which vary in space and show the geographical correlation relationship [15]. Specif-
ically, the adjacent pixels of every pixel can provide information related to it in the LST
image, and that information is related to the spatial pattern and varies in space. Hence,
that information is called the spatial feature of LST, and incorporating the spatial feature
into the machine learning model to improve the performance of downscaling is crucial.

Consequently, this study aims to develop an LST downscaling method based on RF
considering the spatial feature of LST, which is called the spatial random forest downscal-
ing method (SRFD). Notably, the model features were objectively selected from original
abundant predictor variables. The SRFD was applied to three different heterogeneous
regions and compared with the results from three classical or excellent methods—including
TsHARP [34], multi-factor geographically weighted regression (MFGWR) [38], and random
forest downscaling method (RFD) [40]—to evaluate its performance.

2. Data and Methods
2.1. Study Area

To objectively evaluate the performance and applicability of the SRFD, three areas
were chosen as study areas. The land cover types are multiple in each study area and the
climates, land cover types, and terrain among study areas are diverse. As shown in Figure 1,
the study area is located in Wuhan, Shanghai, and Chengde, China. Wuhan is located in
the south of China. The elevation of Wuhan ranges from 19.2 m to 873.7 m, with most
ranges found below 50 m. Wuhan also has a humid subtropical climate and has abundant
rainfall and heat all year round. The total annual precipitation is approximately 1320 mm,
and the annual mean temperature is 17.13 ◦C. The dominant land cover types of the study
area of Wuhan are impervious surfaces (41%), croplands (31%), and water comprising
lakes and rivers (18%). Shanghai is located in the eastern part of China. Shanghai is part of
the alluvial plain of the Yangtze River Delta region, with an average elevation of around
2.19 m and a maximum elevation of 103.7 m. Shanghai has a humid subtropical climate
and has sufficient sunshine and rainfall all year round. The total annual precipitation
is approximately 1178 mm, and the annual mean temperature is 15.8 ◦C. The dominant
land cover types of the study area of Shanghai include impervious surfaces (68%) and
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croplands (28%). Chengde is located in Northeast China, and its elevation is mostly
at 1200 to 2000 m. Chengde has a four-season, monsoon-influenced humid continental
climate. The total annual precipitation of Chengde is approximately 504 mm, and the
annual mean temperature is 8.93 ◦C. The dominant land cover types of the study area of
Chengde study are forests (54%), grasslands (24%), and croplands (19%).

Remote Sens. 2021, 13, 3645 4 of 25 
 

 

2.19 m and a maximum elevation of 103.7 m. Shanghai has a humid subtropical climate 

and has sufficient sunshine and rainfall all year round. The total annual precipitation is 

approximately 1178 mm, and the annual mean temperature is 15.8 °C. The dominant land 

cover types of the study area of Shanghai include impervious surfaces (68%) and 

croplands (28%). Chengde is located in Northeast China, and its elevation is mostly at 

1200 to 2000 m. Chengde has a four-season, monsoon-influenced humid continental cli-

mate. The total annual precipitation of Chengde is approximately 504 mm, and the annual 

mean temperature is 8.93 °C. The dominant land cover types of the study area of Chengde 

study are forests (54%), grasslands (24%), and croplands (19%). 

  

Figure 1. Study area location and land cover types. Land cover type maps are obtained from the Finer Resolution Obser-

vation and Monitoring of Global Land Cover. 

 

Figure 1. Study area location and land cover types. Land cover type maps are obtained from the Finer Resolution
Observation and Monitoring of Global Land Cover.

2.2. Data and Data Preprocessing

Landsat 8 of NASA was launched on 11 February 2013, and its satellite payload
comprises two science instruments, including the operational land imager and the thermal
infrared sensor, which could provide seasonal coverage of the global landmass with a
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spatial resolution of 30 m (visible, near-infrared, shortwave-infrared), 100 m (TIR), and
15 m (panchromatic) [52]. The L1TP products were used in this study to provide TIR
data for the retrieval of the LST, and the L2SP products [53] were used to provide land
surface reflectance data to calculate multiple remote sensing spectral indexes. The basic
information of the Landsat 8 data used is shown in Table 1.

Table 1. Information of the selected Landsat 8 images.

Region Image ID Scene Number Acquisition
Date

Acquisition
Time (UTC)

Wuhan
W1

123/39
23 July 2016 02:56:17

W2 3 August 2020 02:56:15
W3 15 September 2018 02:55:55

Shanghai
S1

118/38
23 May 2018 02:23:55

S2 29 July 2019 02:25:02
S3 3 August 2015 02:24:37

Chengde
C1

122/31
13 March 2017 02:46:41

C2 1 June 2017 02:46:32
C3 15 August 2015 02:46:39

Although Landsat 8 has two TIR channels, including bands 10 (10.60–11.19 µm) and
11 (11.50–12.51 µm), band 11 has the most serious radiometric calibration error due to stray
light effect [54,55]. Hence, only band 10 was used in this study to retrieve the original LST
with a spatial resolution of 100 m using the radiative transfer equation [56] as follows:

Ts = B−1
[

LTOA,10 − Lup,10 − (1− ε10)τ10Ldown,10

ε10τ10

]
(1)

where Ts is the LST; B−1 represents the inverse plank function; LTOA,10 is the radiance
measured at the top of the atmosphere in band 10; Lup,10 and Ldown,10 are the thermal path
atmospheric upwelling and downwelling radiance of band 10, respectively; ε10 is the land
surface emissivity of band 10; τ10 is the total atmospheric transmittance along the target
to sensor path in band 10. Lup,10, Ldown,10, and τ10 were obtained from the atmospheric
correction parameter calculator of NASA [57,58]. The ε10 was calculated by the NDVI
threshold method in terms of Equations (2) to (4):

ελ =


εsλ, NDVI < NDVIs
εvλPv + εsλ(1− Pv) + Cλ, NDVIs ≤ NDVI ≤ NDVIv,
εvλPv + Cλ, NDVI < NDVIv

(2)

where ελ is the land surface emissivity; εvλ and εsλ are the emissivity of vegetation and soil,
respectively; Cλ represents the surface roughness, which can be calculated by Equation (3);
Pv is the fractional vegetation cover, which can be calculated by Equation (4).

Cλ = (1− εsλ)εvλF′(1− Pv) (3)

Pv =

(
NDVI − NDVIs

NDVIv − NDVIs

)2
(4)

where F′ represents a geometrical factor; NDVIv and NDVIs represent the NDVI of vege-
tation and soil, respectively. References [59,60] provide additional information and specific
parameters of the NDVI threshold method.

Shuttle Radar Topography Mission (SRTM), a kind of digital elevation model (DEM),
is the first near-global dataset of land elevations with an accuracy of 16 m [61]. The three arc-
second SRTM data with a spatial resolution of approximately 30 m were used in this study
to provide DEM and calculate the terrain factors, including slope and aspect. In addition,
original SRTM data were reprojected to the same Universal Transverse Mercator (UTM)
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projection as Landsat 8 data, and rigorous geographic registration and raster alignment
were performed.

Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC),
the first global land cover map with a spatial resolution of 30 m, was produced using
Landsat Thematic Mapper and Enhanced Thematic Mapper Plus data [62]. The producer
of FROM-GLC aimed to develop a multiple-stage method to map global land covers to
the results to address the demands of land process modeling effectively and facilitate
easy integration with existing land cover classification schemes [62]. Land cover data
were used in this study to express a further stratification of the relationships between LST
and predictor variables across different land cover types [40]. The FROM-GLC data were
also reprojected to the same UTM projection as Landsat 8 data, and rigorous geographic
registration and raster alignment were performed.

Using images acquired from different sensors will introduce sensor system errors
caused by the difference in acquisition time, orbit gesture, and spectral response functions.
Therefore, the aggregated LST images with a spatial resolution of 500 m were used as
the coarse LST image to reduce the extra uncertainties for establishing the model and
evaluating the proposed method [38,63]. Simultaneously, the land surface reflectance,
terrain, remote sensing spectral indexes, and land cover data were aggregated to the spatial
resolutions of 100 and 500 m as the predictor variable dataset with coarse and fine spatial
resolutions, respectively.

2.3. Random Forest Regression

Random forest regression (RFR), an excellent ensemble machine learning model,
provides reliable estimation using a substantial number of decorrelated and random
decision trees [64,65]. The RFR is generally employed to solve the retrieval problem of
land surface and atmosphere parameters and downscaling due to the strong generalization
capability and the insensitivity of multicollinearity [51,66,67]. The bootstrap method is used
during the training stage of the model to sample the original dataset randomly. For instance,
k rounds and m times of sampling, which randomly select n features {X1, X2 . . . Xn} in
every round, are taken. A k new dataset with m samples and n features is obtained after
sampling, and k decision trees {h1, h2 . . . hk} are trained based on every dataset. Finally,
the final output is calculated by taking the average from the prediction of all decision trees,
which can be represented as

Y =
1
k

k

∑
i=1

hi(Xn) (5)

where Y is the final output of RFR, k is the number of decision trees, hi represents the ith
decision tree, Xn represents random features, and hi(Xn) represents the estimation of the
ith decision tree.

The RFR was used in this study as the basic method for downscaling LST. In addition,
the nested five-fold cross-validation procedure [68] during the model training stage was
performed to avoid model overfitting and optimize hyperparameters of the model.

2.4. Feature Selection

According to the previous studies [38,40,49], the candidate predictor variables in this
study include the following: (1) land surface reflectance data, including Blue, Green, Red,
NIR, SWIR1, and SWIR2 bands; (2) remote sensing spectral indexes (Table 2); (3) terrain
factors, including DEM, slope, and aspect; (4) land cover type data.
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Table 2. Information of the remote sensing spectral indexes.

Full Name Formula Reference

Bare soil index (BI) BI = (Red+SWIR2)−(NIR+Blue)
(Red+SWIR2)+(NIR+Blue)

[69]

Modified soil adjusted vegetation index (MSAVI)
MSAVI =[

(2× NIR + 1)−
√
(2× NIR + 1)2 − 8× (NIR− Red)

]
/2

[70]

Normalized difference built-up index (NDBI) NDBI = SWIR1−NIR
SWIR1+NIR [71]

Normalized difference drought index (NDDI) NDDI = NDVI−NDWI
NDVI+NDWI [72]

Normalized difference vegetation index (NDVI) NDVI = NIR−Red
NIR+Red [73]

Normalized difference water index (NDWI) NDWI = Green−NIR
Green+NIR [74]

Modified normalized difference water index (MNDWI) MNDWI = Green−SWIR1
Green+SWIR1 [75]

Optimal soil adjusted vegetation index (OSAVI) OSAVI = NIR−Red
NIR+Red+0.16 [76]

Soil adjusted vegetation index (SAVI) SAVI = (NIR−Red)×(1+L)
NIR+Red+L , L = 0.5 [77]

Index-based built-up index (IBI) IBI = NDBI−(SAVI+MNDWI)/2
NDBI+(SAVI+MNDWI)/2

[78]

Index-based vegetation index (IVI) IVI = SAVI−(NDBI+MNDWI)/2
SAVI+(NDBI+MNDWI)/2

[38]

Urban index (UI) UI = SWIR2−NIR
SWIR2+NIR [79]

As mentioned above, the candidate predictor variables are up to 22. However, only
some predictor variables are significantly correlated with LST. The Pearson correlation
coefficient (hereafter P) between the candidate predictor variables and the LST of every
image was calculated to remove unnecessary predictor variables. The two can generally be
regarded as weakly correlated when the P is less than 0.2. Hence, the predictor variables,
in which P is less than 0.2, were first removed. In addition, RFR slightly suffers from the
influence of the multicollinearity among variables compared with the traditional regression
methods, such as the OLS and the geographically weighted regression (GWR) [80]. How-
ever, the redundant variables will substantially increase the complexity and computational
cost of the model [47]. Hence, the variance inflation factor (VIF) shown in Equation (6),
which can indicate the multicollinearity between one and the other variables, was used
as the indicator to further select predictor variables. The obtained VIFs of the predictor
variables after preliminary selection using the P were calculated. The predictor variable
with maximal VIF was then removed. This process was repeatedly performed until all the
VIFs of the predictor variables are less than 10 [81–83].

VIFi =
1

1− R2
i

(6)

where VIFi is the VIF of the ith variable; R2
i is the coefficient of determination of the

regression equation, wherein dependent variable is the ith variable and independent
variables are other variables.

2.5. Spatial Random Forest LST Downscaling Method

SRFD is an LST downscaling method based on RFR considering the spatial feature
of LST. The spatial feature of LST is composed of the LST information weighted by the
distance of adjacent pixels from a center pixel. That information is related to the spatial
pattern and varies in space. For a pixel, the information from nearer areas is more relevant
than further ones, and the spatial feature of the LST can be expressed as

SLST,j =
∑n

i=1
1

ds2
i

LSTi

∑n
i=1

1
ds2

i

(7)



Remote Sens. 2021, 13, 3645 8 of 25

where SLST,j represents the jth pixel’s spatial feature of the LST image, i represents the
adjacent pixels around the jth pixel, and ds is the spatial distance among pixels. The
square windows are used in the practical calculation to represent the adjacent area of the
objective pixel.

After supplementing the spatial feature of the LST, the statistical relationship between
the LST and predictor variables at a coarse spatial resolution can be expressed as

LSTc = f (ρi,c, Si,c, Ti,c, LCc, SLST,c) (8)

where f represents a nonlinear function, ρi are the land surface reflectance data, Si are the
remote sensing spectral index data, SLST is the spatial feature of LST, and the subscript c
represents the images with a coarse spatial resolution.

Owing to the complex origin of LST and the limited fitting capability of the model, a
residual LST between the original and estimated LST can be expressed as

∆LSTc = LSTo − LSTe (9)

where ∆LSTc is the residual LST with a coarse spatial resolution, LSTo is the original LST,
and LSTe is the LST estimated by the RFR model.

Assuming that a sole statistical relationship exists in different sensor scenes, the
predictor variables with a fine spatial resolution are applied into the trained RFR model,
and the residual correction is performed, the final downscaled LST can be expressed as

LSTf = f
(

ρi, f , Si,c, Ti, f , LC f , SLST, f

)
+ ∆LSTf (10)

where the subscript f represents the images with a fine spatial resolution, and the ∆LSTf is
interpolated from the ∆LSTc.

The overall workflow of SRF presented in Figure 2 could be divided into five steps as
shown below.

1. Obtaining the trained RFR model (ModelRFR) using the LST and predictor variable
dataset at a coarse spatial resolution, excluding the spatial feature of the LST (SLST,c).

2. Obtaining the downscaled LST image with a fine spatial resolution (LSTRFR, f ) by
applying the predictor variable dataset with a fine spatial resolution to the ModelRFR
and performing the residual correction.

3. Obtaining the spatial feature of LST with a fine spatial resolution (SLST, f ) by Equation (7)
based on LSTRFR, f .

4. Obtaining the trained spatial RFR (ModelSRFR) using the LST and predictor variable
dataset at a coarse spatial resolution, including the SLST,c.

5. Obtaining the final downscaled LST image by applying the predictor variable dataset
with a fine spatial resolution to the ModelSRFR and performing the residual correction.

2.6. Validation Methods

The downscaling results in this study were compared to three statistical downscaling
methods, including a classical single factor method (TsHARP) [34], a multi-factor GWR
method (MFGWR) [38], and an excellent machine learning method (RFD) [40], to evaluate
the LST downscaling performance of the SRFD extensively. Notably, the TsHARP requires
a study region without any water area. Hence, the MNDWI was used to build a water
mask, in which the threshold was automatically obtained by the OTSU [84]. The MFGWR
is a method based on GWR, which builds a local regression equation for every factor.
If the factors include the classified data, such as land cover types, then the risk of local
multicollinearity will rise due to a local spatial clustering phenomenon. Hence, if the
predictor variable dataset after feature selection includes land cover types data, then the
land cover type data will be removed when applied to the MFGWR.
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In addition to qualitative visual evaluation of the downscaled LST images, three com-
mon statistical indicators—including the root-mean-square error (RMSE), the coefficient
of determination (R2), and the mean absolute error (MAE)—were used to quantitative
evaluate the downscaling results in this study. In addition, an image evaluation indicator—
namely, structural similarity index measure (SSIM)—was also used to evaluate downscaled
LST images in vision quantitatively. SSIM is a perception-based model; compared with
RMSE, SSIM can indicate the sensory similarity between images by considering the texture
of the images [85]. The SSIM can be calculated by

SSIM =
(2µDµR + c1)(2σDR + c2)(

µ2
D + µ2

R + c1
)(

σ2
D + σ2

R + c2
) , (11)

where µD and µR are the downscaled and referenced LST images, respectively; σDR is
the covariance between two images; σ2

D and σ2
R are the variance of the downscaled and
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referenced LST images, respectively; c1 and c2 are two variables to stabilize the division
with weak denominator, which can be respectively calculated by Equations (12) and (13) as

c1 = (k1L)2 (12)

c2 = (k2L)2 (13)

where k1 and k2 are 0.01 and 0.03, respectively, and L is the dynamic range of the pixel
values. The structure of the two images is similar when SSIM is close to 1.

3. Results and Analysis
3.1. Determination of the Window Size for Calculating Spatial Feature of the LST

In the SRFD, Equation (7) was used to express the spatial feature of a certain pixel in
one LST image, which comprises adjacent pixel information. A square window was used in
the practical calculation to represent the adjacent area of the target pixel. SRFD includes two
main steps: model training using coarse-resolution datasets and downscaling using fine-
resolution predictor variable datasets. Hence, the calculation of spatial features involves
two images of LST at a coarse or fine resolution. Sufficient experiments were performed
considering the window size in the spatial feature calculation of the two resolution LST
images to select the most reasonable window size.

3.1.1. Window Size of Coarse-Resolution LST Image

The SLST,c was applied in the training ModelSRFR stage. Therefore, the external cross-
validation RMSEs of the model were used to evaluate the accuracy of the model with
different window sizes. Figure 3 shows that the RMSEs of different images are the smallest
when the window size is three, while those of almost all images increase with the window
size. The first law of geography [86] can explain this phenomenon: the adjacent area of
the target pixel is extended as the window increases, and the spatial distance between
margin pixels in the adjacent area and the target pixel also rises. The information provided
by adjacent pixels is no longer highly correlated with the target pixel, which is even
interferential information. Therefore, the window size for calculating the spatial feature of
LST is three during the ModelSRFR training phase in this study.
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In addition, the ModelRFR was compared to ModelSRFR in terms of the external cross-
validation RMSEs. Figure 3 shows that all the external RMSEs of ModelSRFR are signifi-
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cantly lower than those of ModelRFR. Thus, the spatial feature established by adjacent pixel
information is beneficial to the construction of the nonlinear relationship between the LST
and predictor variables because of the geographical correlation of the LST.

3.1.2. Window Size of Fine-Resolution LST Image

The SLST, f in the SRDF is a predictor variable used to downscale the LST image.
Therefore, 15 window sizes from 3 to 31 with an interval of 2 were tested, and the RMSEs
and SSIMs of the downscaled LST images were simultaneously calculated. The RMSE and
SSIM respectively indicate the deviation and the sensory similarity between the referenced
and downscaled LST images. Therefore, a window size with low RMSE and high SSIM is
expected. However, Figure 4 shows that the RMSEs and SSIMs demonstrate a trade-off
relationship in most images, wherein SSIM decreases with the RMSE. Particularly, the
SSIMs tend to increase first and then decrease as the window size rises in the three images of
Wuhan (Figure 4a–c). The coarse-resolution images are aggregated from the fine-resolution
images. The same information provided by the adjacent area in the fine-resolution images
requires a wider window than the images with a coarse spatial resolution because Wuhan is
a highly heterogeneous area with lakes, impervious surface, and cropland. In addition, we
obtained the SLST,c images by aggregating SLST, f images calculated by different window
sizes. Then the RMSEs between aggregated SLST,c images and the true SLST,c images
were calculated. Figure 5 shows that RMSEs decrease as the window sizes increase and
level off when the window size is around 15. These phenomena can be explained as
follows, the window size of fine-resolution images needs to be greater than that of coarse-
resolution images to provide consistent information, and the information provided by
SLST, f is similar to SLST,c when the calculated window size is 15. Simultaneously, Figure 4
shows that almost all images have a minimum RMSE at a window size of around 15
but the SSIMs are continuously decreasing. The reason for the continuous decrease of
SSIMs is that as the window increases, the SLST, f images become smoother, eventually
causing downscaled images smoothing. Moreover, the computation memory and time cost
in calculating the SLST, f will increase significantly as the window size rises. Hence, the
window size for calculating the spatial feature of LST is 15 during downscaling LST phase
to consider the statistical accuracy and visual effect of SRFD downscaled images and save
the calculation cost.

3.2. Downscaling Results
3.2.1. Visual Evaluation

Images W1, S1, and C1 are selected in this study to compare the visual downscaling
performance of different algorithms. Notably, the TsHARP does not apply to the water
region. However, the water body region of the TsHARP downscaling results is filled by the
water area of the referenced LST image for convenient comparison. Figure 6 shows that
the high LST area is the built-up areas, the medium LST area is the croplands or forests,
and the low LST area is the rivers or lakes. Compared with the coarse-resolution LST
image, all downscaling results demonstrate additional spatial details. Compared with the
referenced LST image, the TsHARP and SRFD downscaled LST images are most similar to
the referenced image in terms of spatial distribution, whereas the MFGWR downscaled LST
image is vague. Meanwhile, the RFD downscaled LST image distributes discontinuously
in the built-up areas and croplands and has an overall excessive amount of details in the
vision. The subset images reveal that all images have a significant underestimation in
the built-up areas at high LST because the masked extremes of the LST during image
aggregation led to the smoothed coarse-resolution dataset for modeling [40,87]. The
TsHARP downscaled LST image has some boxy artifacts in the built-up areas and the areas
around the water; that is, some areas still have grid characteristics of the coarse-resolution
image, which could be due to the dependence of the variation of TsHARP downscaled
LST image on the introduction of the coarse-scale residuals into fine-scale images [34].
A serious smoothing effect is observed in the MFGWR downscaled LST image because
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the regression and coefficient interpolation processes are based on the minimum mean
square error (MMSE), and the MMSE-based method easily causes underestimation and
overestimation of high and low values, respectively; thus, the ultimate predicted values
have a smoothing characteristic [37]. Most details are found in the RFD downscaled LST
image. Nevertheless, the transition of RFD downscaled LST is also insufficiently natural
in the highly heterogeneous areas where built-up areas and croplands are mixed, and
many noise-like image elements emerge, which are inconsistent with the natural surface
distribution. RFR can effectively capture multivariate nonlinear relationships. However,
the limitation of a point-to-point relationship between predictor variables and LST easily
causes unnatural spatial distribution. The spatial distribution of the SRFD downscaled
LST image is most similar to the referenced image, with a natural transition of LST from
built-up areas to croplands due to the supplement by the SLST . Thus, the downscaling
results are consistent with the natural ground surface.

As shown in Figures 7 and 8, the downscaling results of the different methods in
the Shanghai and Chengde regions demonstrate the same phenomenon as in Wuhan.
Notably, Figure 8f shows that some serious boxy artifacts are distributed over the TsHARP
downscaled LST image because the imaging time of the C1 is in spring when the vegetation
is exiguous. The drawback of the TsHARP lies in its unsuitability for areas with exiguous
vegetation. By contrast, other LST downscaling methods can accomplish the downscaling
task to varying degrees despite the exiguous vegetation because they consider multiple
predictor variables. Figure 8g,k show that the downscaled LST image of SRFD is remarkably
similar to that of MFGWR considering the overall trends in spatial distribution but has rich
spatial details. The MFGWR considers the spatial heterogeneous relationships between
predictor variables and LST and can produce locally optimal results. However, the spatial
distribution of the downscaled LST image demonstrates an excessive smoothing effect.
SRFD ignores the spatial heterogeneity of the relationship between predictor variables
and LST. However, the complement of spatial features of LST can also reflect the spatial
heterogeneity of LST, resulting in smooth LST transitions on different feature boundaries
on the downscaled image. Figure 8j shows that spatial patterns, such as salt-and-pepper
noise, are observed in the RFD downscaled LST image because the RFD ignores the SLST
comprising the adjacent LST information, as previously mentioned.

3.2.2. Quantitative Evaluation

The quantitative indicators for all downscaled LST images with different methods are
shown in Table 3. The overall RMSEs range from 1.43 K to 2.76 K for TsHARP, from 1.4 K
to 2.49 K for MFGWR, from 1.23 K to 2.07 K for RFD, and from 0.94 K to 1.61 K for SRFD.
By contrast, SRFD shows the best performance on all images, that is, the smallest RMSE
and MAE and the largest R2 and SSIM. RFD also demonstrates satisfactory performance
compared with TsHARP and MFGWR. Notably, the RMSE, R2, and MAE of MFGWR are
similar to RFD for some images, such as W1, S1, and S2. However, the SSIM of MFGWR is
the smallest for all images due to the excessive smoothing effect of the downscaled LST
images. The downscaling results of SRFD are 10% to 24% lower in RMSE, 5% to 20% higher
in R2, 11% to 25% lower in MAE, and 4% to 17% higher in SSIM compared with those of
RFD. This finding indicates that the downscaling results of SRFD, which consider the SLST ,
are enhanced considering statistical accuracy and visual information compared with RFD.

In addition, the R2 of the downscaling results of all methods for the three images in the
Shanghai study area, such as S1, is unsatisfactory. R2 is only 0.65 despite the best accuracy
of SRFD. Two reasons could explain this phenomenon. First is the lack of prediction
capability of the model for extreme values because the training samples of the model
are smoothed. Furthermore, the geometry and adjacency effects in the thermal radiative
transfer process result in the generally poor accuracy of the retrieved LST because Shanghai
is a megacity with many high-rise buildings [88,89].
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Figure 6. Visual comparison of different downscaling methods in image W1. (a) Landsat 8 LST (500-m). (b) Subset of
Landsat 8 LST (500-m). (c) Subset of Landsat 8 LST (100-m). (d) Landsat 8 LST (100-m). (e) TsHARP downscaled LST
(100-m). (f) Subset of TsHARP downscaled LST (100-m). (g) Subset of MFGWR downscaled LST (100-m). (h) MFGWR
downscaled LST (100-m). (i) RFD downscaled LST (100-m). (j) Subset of RFD downscaled LST (100-m). (k) Subset of SRFD
downscaled LST (100-m). (l) Subset of SRFD downscaled LST (100-m).
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Figure 7. Visual comparison of different downscaling methods in image S1. (a) Landsat 8 LST (500-m). (b) Subset of Landsat
8 LST (500-m). (c) Subset of Landsat 8 LST (100-m). (d) Landsat 8 LST (100-m). (e) TsHARP downscaled LST (100-m).
(f) Subset of TsHARP downscaled LST (100-m). (g) Subset of MFGWR downscaled LST (100-m). (h) MFGWR downscaled
LST (100-m). (i) RFD downscaled LST (100-m). (j) Subset of RFD downscaled LST (100-m). (k) Subset of SRFD downscaled
LST (100-m). (l) Subset of SRFD downscaled LST (100-m).
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Figure 8. Visual comparison of different downscaling methods in image C1. (a) Landsat 8 LST (500-m). (b) Subset of
Landsat 8 LST (500-m). (c) Subset of Landsat 8 LST (100-m). (d) Landsat 8 LST (100-m). (e) TsHARP downscaled LST
(100-m). (f) Subset of TsHARP downscaled LST (100-m). (g) Subset of MFGWR downscaled LST (100-m). (h) MFGWR
downscaled LST (100-m). (i) RFD downscaled LST (100-m). (j) Subset of RFD downscaled LST (100-m). (k) Subset of SRFD
downscaled LST (100-m). (l) Subset of SRFD downscaled LST (100-m).

Table 3. Quantitative indicators for all downscaled LST images with different methods.

Image ID Methods RMSE (K) R2 MAE (K) SSIM

W1

TsHARP 2.34 0.78 1.51 0.56
MFGWR 2.06 0.84 1.48 0.54

RFD 2.07 0.83 1.45 0.66
SRFD 1.61 0.9 1.11 0.75

W2

TsHARP 2.46 0.79 1.61 0.6
MFGWR 2.39 0.8 1.71 0.48

RFD 2.05 0.86 1.44 0.69
SRFD 1.68 0.9 1.18 0.76

W3

TsHARP 1.77 0.77 1.17 0.6
MFGWR 1.7 0.79 1.25 0.53

RFD 1.52 0.83 1.11 0.71
SRFD 1.24 0.89 0.88 0.77
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Table 3. Cont.

Image ID Methods RMSE (K) R2 MAE (K) SSIM

S1

TsHARP 1.58 0.51 1.17 0.44
MFGWR 1.45 0.59 1.09 0.37

RFD 1.48 0.56 1.11 0.52
SRFD 1.33 0.65 0.99 0.55

S2

TsHARP 1.68 0.66 1.25 0.61
MFGWR 1.6 0.7 1.23 0.51

RFD 1.7 0.65 1.3 0.63
SRFD 1.37 0.77 1.04 0.7

S3

TsHARP 1.63 0.64 1.22 0.62
MFGWR 1.69 0.63 1.29 0.41

RFD 1.65 0.63 1.23 0.64
SRFD 1.45 0.71 1.05 0.68

C1

TsHARP 2.76 0.48 2.05 0.48
MFGWR 2.49 0.58 1.94 0.35

RFD 1.66 0.81 1.27 0.8
SRFD 1.42 0.86 1.1 0.83

C2

TsHARP 1.77 0.8 1.32 0.68
MFGWR 1.82 0.79 1.41 0.49

RFD 1.6 0.84 1.2 0.73
SRFD 1.24 0.9 0.93 0.79

C3

TsHARP 1.43 0.6 1.05 0.6
MFGWR 1.4 0.64 1.04 0.36

RFD 1.23 0.71 0.93 0.7
SRFD 0.94 0.83 0.7 0.77

Best values are bolded.

4. Discussion
4.1. Error Characteristics of the SRFD

The error characteristics and main error sources of SRFD are further analyzed in this
section. Figure 9 intuitively shows that the errors of SRFD have the largest probability
density around zero on all images. In addition, the error probability density curve of
SRFD is slightly biased to the left of the error zero reference line, that is, an overall
underestimation of SRFD is observed. Figure 10 shows that the range of the quartile errors
of SRFD is centrally distributed around zero. Simultaneously, the median line of the error
box plot and the labeled upper and lower quartile values also indicate the underestimation
of SRFD. The TsHARP and RFD also have significant underestimation, while MFGWR has
no significant systematic bias. These findings illustrate that the smoothing characteristics
of the modeled dataset cause substantially larger underestimation than overestimation
effects on the downscaling results of the TsHARP, RFD, and SRFD methods.

4.2. Error Sources of the SRFD

The errors in the downscaling process mainly come from the assumption of constant
statistical relationship scales and errors in the predictor variables. No temporal and sensor
spectral differences are found between the native predictor images and the LST due to the
aggregation–disaggregation strategy used in this study. As the most important predictor in
SRFD, the SLST, f is calculated from the fine-resolution LST downscaling by an RFD that
does not consider SLST . The RFD errors in this process are introduced into the calculation
of SLST, f . The SLST, f is calculated based on referenced fine-resolution LST images and used
for downscaling and accuracy evaluation to examine the influence of this process on the
final accuracy of SRFD, and the downscaling results are abbreviated as SRFD-R.

Table 4 shows that the indicators of SRFD-R downscaling results are significantly
improved over that of SRFD, in which RMSEs are reduced by 9% to 18%, R2s are increased
by 2% to 18%, MAEs are reduced by 10% to 20%, and SSIMs are increased by 4% to 20%.
This finding illustrates that SLST, f is an important source of error in SRFD. Therefore, a
relatively accurate preliminary downscaling result is crucial for SRFD.
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Table 4. Differences in quantitative indicators between SRFD and SRFD-R downscaling results.

Image ID
Differences in Quantitative Indicators

RMSE (K) R2 MAE (K) SSIM

W1 −0.26 0.03 −0.17 0.03
W2 −0.27 0.03 −0.17 0.03
W3 −0.15 0.02 −0.10 0.03
S1 −0.25 0.12 −0.19 0.11
S2 −0.25 0.08 −0.18 0.07
S3 −0.13 0.06 −0.10 0.04
C1 −0.15 0.03 −0.11 0.02
C2 −0.19 0.03 −0.14 0.04
C3 −0.13 0.05 −0.10 0.04

SRFD-R minus SRFD.
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In addition, the method of obtaining fine-resolution residuals is also a key error
source for downscaled LST images. Only three common image interpolation methods—
including nearest neighbor, bilinear, cubic spline interpolation—were attempted in this
study to evaluate the general performance of the proposed method and save the calculation
cost. All the downscaling results by different methods have satisfactory accuracy when
compensating residuals to fine-resolution images using bilinear interpolation. Actually, the
residuals also appear to be spatial non-stationary and autocorrelative [90,91]. Hence, the
geostatistical interpolation methods usually outperform common interpolation methods.
Duan et al. [37] compared simple spline tension interpolation with ordinary Kriging
interpolation and results show that the downscaling results using the ordinary Kriging
interpolation are slightly better than that of simple spline tension interpolation. Recently,
some studies about downscaling made improvements on the residual correction procedure
and got satisfying results, such as area-to-point Kriging [92,93]. The downscaling results
were compared to further analyze the performance of the SRFD, in which the ways for
residual correction were bilinear and area-to-point Kriging, respectively. Notably, the SLST, f
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was also calculated based on referenced fine-resolution LST images and the downscaling
results are abbreviated as SRFD-RK. Table 5 shows that the statistical indicators of SRFD-RK
downscaling results are slightly better than those of SRFD-R in most images. Nevertheless,
the overall accuracies of the two are similar. Moreover, the SSIMs of all SRFD-RK images
are lower than those of SRFD-R, maybe because of the smoothing effect from the Kriging
interpolation method. In other studies, such as estimating the PM1 and LST by using
statistical models and physical algorithms, attention was also paid to the residual correction.
To further improve the accuaracy of results, they built a separate model for residuals by the
geographically and temporally weighted regression model (GTWR) or machine learning
model [94,95]. Therefore, the approach of residual correction is still a promising direction
for improving downscaling accuracy in future studies.

Table 5. Differences in quantitative indicators between SRFD and SRFD-RK downscaling results.

Image ID
Differences in Quantitative Indicators

RMSE (K) R2 MAE (K) SSIM

W1 −0.009 0.001 −0.024 −0.004
W2 −0.025 0.004 −0.029 −0.004
W3 −0.006 0.005 −0.007 −0.001
S1 −0.002 0 −0.007 −0.013
S2 −0.019 0.003 −0.019 −0.005
S3 0.007 −0.004 0.005 −0.016
C1 0.009 −0.002 0.004 −0.003
C2 −0.006 0.003 −0.006 −0.013
C3 0 −0.002 −0.01 −0.002

SRFD-RK minus SRFD-R.

4.3. Difference of the Way to Obtain Fine-Resolution Spatial Feature Image

As mentioned, the SLST, f is calculated from the fine-resolution LST downscaling by
an RFD without considering the SLST . The common solution to obtain an unknown fine-
resolution parameter image is to interpolate in a manner similar to performing a residual
correction. Moreover, interpolation is far easier and faster than training an RFR model.
However, the interpolation will cause extreme smoothing of the SLST, f images, eventually
losing feature details to the downscaled images. (as shown in Figure 11, taking image W1
as an example). The downscaled image using interpolated SLST, f image is abbreviated
as SRFD-I.
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5. Conclusions

A spatial random forest LST downscaling method which considers numerous predictor
variables and performs feature selection—and more importantly, complements the spatial
feature of LST—is proposed in this study. The proposed method was applied to three
study areas with heterogeneous land covers based on the Landsat 8 images. Finally,
the downscaling results were compared to three classical or excellent methods, namely
TsHARP, MFGWR, and RFD.

The comparative analysis shows that the downscaling results of SRFD in three study
areas with heterogeneous land covers have the best performance in terms of statistical
accuracy and visual effects. Benefiting from the complement of the spatial feature of LST,
the downscaling results of SRFD have a natural spatial transition and eliminate the noise
phenomenon caused by RFD, which ignores the spatial information of LST. Compared
with the downscaling results of the second-best RFD, SRFD has reduced RMSEs by 10% to
24%, improved R2s by 5% to 20%, decreased MAEs by 11% to 25%, and enhanced SSIMs
by 4% to 17%. In addition, SRFD naturally responds to the spatial heterogeneity of LST
and far outperforms MFGWR in terms of spatial detail compared with MFGWR methods
that consider heterogeneous relationships between LST and predictor variables.

The main error source in the SRFD, which is the computation of the fine-resolution
spatial feature of LST, is also quantified. Compared with the downscaling results of SRFD,
the quantitative indicators of the downscaling results of SRFD-R decreased by 9% to 18%
for RMSEs, increased by 2% to 18% for R2s, decreased by 10% to 20% for MAEs, and
increased by 4% to 20% for SSIMs.

SRFD also provides a framework for enhancing the performance of downscaling meth-
ods through the supplement of the spatial feature of LST. SFRD can theoretically replace the
random forest model with any basic machine learning methods (such as ANN and SVM),
machine learning frameworks (such as stacking), or even deep learning methods (such as
DBN). Moreover, the idea of SFRD applies to downscaling other surfaces or atmospheric
parameters with spatially varying and geographical correlation at high resolution, such
as precipitation and soil moisture. In addition, we demonstrate the advantages of our
approach for acquiring fine-resolution spatial feature images. Complete and referenceable
experimental and analytical methods are also provided for the window size of spatial
feature calculation of parameters for images of different spatial resolutions.
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