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Abstract: Facing the realistic demands of the application environment of robots, the application of
simultaneous localisation and mapping (SLAM) has gradually moved from static environments to
complex dynamic environments, while traditional SLAM methods usually result in pose estimation
deviations caused by errors in data association due to the interference of dynamic elements in the
environment. This problem is effectively solved in the present study by proposing a SLAM approach
based on light detection and ranging (LiDAR) under semantic constraints in dynamic environments.
Four main modules are used for the projection of point cloud data, semantic segmentation, dynamic
element screening, and semantic map construction. A LiDAR point cloud semantic segmentation
network SANet based on a spatial attention mechanism is proposed, which significantly improves
the real-time performance and accuracy of point cloud semantic segmentation. A dynamic element
selection algorithm is designed and used with prior knowledge to significantly reduce the pose
estimation deviations caused by SLAM dynamic elements. The results of experiments conducted on
the public datasets SemanticKITTI, KITTI, and SemanticPOSS show that the accuracy and robustness
of the proposed approach are significantly improved.

Keywords: dynamic environments; semantic segmentation; semantic constraints; screening of
environmental elements; semantic map

1. Introduction

With the development of technologies such as artificial intelligence (AI), 5G, and the
Internet of Things (IoT), the coexistence and symbiosis between people and intelligent
robots have quietly emerged. In monotonous, repetitive, dangerous, and unknown environ-
ments, intelligent robots have advantages over humans. The prerequisite for an intelligent
robot to efficiently perform a given task is an accurate “understanding” of environments
and expected impacts. Such understanding involves addressing a series of theoretical and
technical issues for intelligent machines, such as environmental perception, environmental
modelling, spatial reasoning, and calculations. This understanding is the key generic
technology of the new generation of AI [1] and a new problem in surveying and mapping
in the AI era [2]. Simultaneous localisation and mapping (SLAM) is a key technology for en-
vironmental detection and perception of intelligent robots, but despite significant progress
over the past decade, most current mainstream SLAM algorithms operate stably only in
static environments. The real world is dynamically changing, including both short-term
changes, such as moving cars and pedestrians, and long-term changes, such as those in
the environment caused by the change of seasons or the change from day to night. This
dynamically changing environment poses new challenges to different modules of SLAM,
e.g., pose estimation, feature extraction and tracking, and map construction. Currently,
the principle of solving SLAM problems in a dynamic environment is to identify, track
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and process dynamic elements. Early studies focused on feature detection methods, but
these methods are difficult to handle with slow- or fast-moving objects. With the rapid
development of fully convolutional neural networks (FCNs), semantic information has
been gradually included in the study of SLAM. Semantic segmentation results can reveal
potential moving objects in the environment, which can help SLAM filter out moving
objects in the feature tracking and mapping module to obtain more accurate pose estima-
tion results. Some achievements have been made in the development of these methods;
however, further optimisation is still needed.

According to the sensors used, SLAM can be either visual SLAM or light detection and
ranging (LiDAR)-based SLAM. There are many types of visual sensors with low prices, and
the research on image feature extraction and recognition and semantic segmentation has
promoted the rapid development of visual SLAM, especially in the fields of semantic SLAM
and SLAM in dynamic environments. LiDAR is currently used in many fields, including
robotics, mobile mapping, autopilot, and three-dimensional (3D) reconstruction. In the
research on LiDAR-based SLAM, a system framework based on an occupancy grid map
has been established. However, compared with visual SLAM, the research on LiDAR-based
SLAM mostly focusses on the direct processing of raw point cloud data collected in real
time, while research on integrated object recognition, semantic segmentation and map
construction still needs to be deepened.

A LiDAR-based SLAM under semantic constraints in dynamic environments is pro-
posed in this study. Within the proposed approach, a spatial attention network (SANet) is
used to achieve semantic segmentation of point clouds, and prior knowledge is used as
guidance to establish environmental element classification criteria in order to pre-process
the semantic segmentation results. Then, the dynamic elements in the environment are
determined based on the environmental context information. Finally, pose estimation
and semantic map construction are realised. The main contributions of this study are
given below.

(1) A semantic segmentation method SANet is proposed for LiDAR point clouds based
on a spatial attention mechanism and effectively improves the real-time performance and
accuracy of semantic segmentation.

(2) A dynamic object screening strategy is proposed that can accurately filter moving
objects in the environment and provide a reference for efficient and robust pose estimation.

(3) The performance of the proposed approach in a dynamic environment is evaluated
for the KITTI and SemanticPOSS datasets. The experiments demonstrate that the proposed
approach effectively improves the accuracy of pose estimation and has good performance.

The Section 1 is introduction. The rest of this paper is organised as follows. Section 2
presents a review of related work. Section 3 provides the details of our method. The
experimental results for the SemanticKITTI, KITTI, and SemanticPOSS public datasets are
presented in Section 4. Finally, a brief conclusion and discussion are presented in Section 5.

2. Related Work
2.1. Point Cloud Semantic Segmentation

The main data form used by LiDAR is point cloud data. How to extract valuable fea-
ture information from a large amount of point cloud data is always the focus of researchers.
Point cloud semantic segmentation refers to the semantic information annotation on disor-
dered and irregular point cloud data. In early studies, point cloud semantic annotation
usually uses methods such as support vector machines (SVMs), conditional random field
(CRF) and random forest (RF). For these methods, the semantic annotation categories are
limited, and the accuracy is low, so they are not the mainstream methods at present. With a
strong learning ability at the feature level, deep learning has gradually become the main-
stream method for point cloud semantic segmentation. Different from the one-dimensional
(1D) and two-dimensional (2D) data recognition fields (such as speech recognition and im-
age recognition) that have been dominated by deep learning, the disorder and irregularity
of point cloud data have limited the use of deep learning for these problems.
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To solve the problem of semantic segmentation of 3D point cloud data, three types
of deep learning methods have been roughly formed, i.e., point-based methods, image-
based methods, and voxel-based methods [3]. The point-based methods use points as the
input data of the CNNs, where the difficulty lies in how to extract the feature informa-
tion of the points. A common solution is to extract local feature information through the
neighbour point set for convolution operations. PointNet++ is one of the representative
methods, which uses the multiscale domain information of points to extract local feature
information for semantic segmentation. Subsequently, a variety of local feature extrac-
tion methods based on defining multiple neighbourhoods have emerged [4]. PointCNN
is another representative method in which the spatial distance is used to determine the
neighbourhood point set to extract local feature information for convolution operations [5].
The image-based methods originate from the excellent performance of deep learning in
image recognition and semantic image segmentation. This type of method reduces the
dimensionality of the 3D point cloud data by forming a 2D image in a specific manner
and then projects the segmentation results back to the 3D data after semantic image seg-
mentation. Common dimensionality reduction methods include multi-view segmentation
and spherical projection. Multi-view segmentation collects images from various angles
of the point cloud data and restores the 3D data in a multi-view form [6]. Representa-
tive spherical projection methods are SqueezeSeg [7–9] and RangeNet++ [10], with an
accuracy (mean intersection-over-union (mIoU)) of approximately 53%. The voxel-based
methods rasterise the point cloud and perform the convolution operation in the form of
voxels, to reduce the impact due to the irregularity of point cloud data. The representative
works, 3DCNN-DQN-RNN [11] and VolMap [12], are subject to the choice of voxel size. At
present, the voxel-based method is effective for data with similar sizes; however, the objec-
tive phenomenon of “near big, far small” is a difficult problem for voxel-based methods
to overcome.

2.2. Semantic SLAM

Semantic information is considered to be important information for robots to move
from perceptual intelligence to cognitive intelligence. Semantic SLAM is an important
way to integrate semantic information into environmental representation. In a review,
Cadena et al. [13] summarised the research on semantic SLAM into two parts, i.e., semantic
information to improve the accuracy of pose estimation and closed-loop detection, and the
classification and mapping of environmental elements using SLAM to help robots deeply
understand the environment. In recent studies on semantics-assisted SLAM, continuous
pose estimation [14], scene object recognition [15,16], and global localisation [17] has been
achieved based on Red, Green, Blue-Depth (RGB-D) sensors and semantic segmentation
networks, and scene reconstruction has been achieved based on monocular camera and
LiDAR [18]. Research on semantic-assisted SLAM focuses on environmental representation.
Environmental elements are represented according to semantic concepts, and semantic
maps, which classify and grade the elements, fall into two main categories, i.e., object-based
semantic maps (Figure 1) and region-based semantic maps (Figure 2). An object-based
semantic map accurately marks the objects in the scene on the map using technical methods,
such as scene recognition and image segmentation. Early studies mainly used machine
learning methods. Limketkai et al. [19] used a relational Markov network to perform
semantic annotation on objects with obvious line features in the scene (such as walls, doors,
and windows). In 2008, Andreas proposed the concept of a semantic map to analyse and
mark the floor, ceiling, and wall using the characteristics of the indoor building structures
based on the constructed 3D point cloud of the scene [20]. Since 2012, through CRF,
Sengupta et al. [21–23] gradually realised the construction of a semantic map in outdoor
environments in different expression forms, such as the Mesh form and the octree form,
using visual sensors. With the development and popularisation of deep learning, the use
of fully convolutional networks (FCNs) for semantic segmentation proposed in 2014 [24]
became the basis of many studies. Based on FCNs, the accuracy of semantic segmentation
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has been further improved in many studies by increasing the number of convolution
layers or adjusting the network structure, e.g., DeepLab [25], ICNet [26], and SegNet [27].
Although the accuracy of semantic segmentation has been improved, the methods that
only use FCNs to achieve semantic segmentation still contain unclear descriptions of object
contours and inaccurate edge information.
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A region-based semantic map performs semantic annotation on each region in the
scene, similar to the configuration of the “place name”. The initial research is based on the
understanding of “door”, and different regions are usually separated by doors. Based on
this understanding, Vasudevan et al. [28,29] applied a probabilistic approach to identify
and annotate doors and specific objects and used simple spatial relations to strengthen
the reasoning and annotation of specific regions. Rituerto et al. [30] further realised
semantic annotation for doors, stairs and elevators. Liu et al. [31] used the semi-supervised
clustering approach of the Markov process model to annotate the indoor environment
and tried to use different clustering methods for semantic annotation [32–34]. In 2011,
Pronobis et al. [35] proposed the multi-modal place classification system. A low-level
classifier was used to identify the shape and size of the room and the objects, and then
the room type was determined by reasoning through Markov chain. Pronobis et al. [36]
continued and perfected the work in Ref. [35], and established a semantic annotation
module for indoor environments. The development of deep learning has improved the
speed and accuracy of different classification tasks. Goeddel et al. [37] applied CNNs
to achieve semantic annotation of different regions on occupancy grids. Hiller et al. [38]
inferred and annotated the occupancy grids based on a topological map.
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2.3. SLAM for Dynamic Environments

Most SLAM algorithms perform extremely well under the assumption of static en-
vironments; however, a continuously changing dynamic environment poses a challenge
to classic SLAM algorithms. To enable the use of SLAM in dynamic environments, two
mainstream research concepts have been put forward, i.e., filtering out dynamic objects
in the environment and using multi-time maps to reflect the dynamic changes in the en-
vironment. Filtering out moving objects in the environment can minimise the error of
data association to improve the accuracy of pose estimation. In this field, there are many
studies on dynamic judgement based on prior information combined with visual features,
including the combination of deep learning and the classic SLAM algorithms [39]. From the
perspective of deep learning methods, semantic segmentation and object detection are the
dominant methods. Regarding implementation and basic research, more studies have been
performed in indoor environments than in outdoor environments, with RGB-D sensors
used as the dominant sensor. Based on the semantic segmentation of RGB images and the
combination of depth images, RGB-D sensors can achieve more accurate detection and
tracking of dynamic objects in SLAM. DynaSLAM combines Mask RCNN and ORB-SLAM2
to achieve visual SLAM in dynamic environments; however, this method eliminates all
moving objects (such as cars parked on the roadside), which may lead to errors in data
association [40]. Dynamic-SLAM proposed a missed detection compensation algorithm
and selective tracking algorithm to improve the accuracy of pose estimation [41]. In large-
scale outdoor environments, it is common to use LiDAR alone or in combination with
RGB cameras. For example, SuMa++ uses semantic segmentation results as constraints
to improve the iterative closest point (ICP) algorithm to achieve LiDAR-based SLAM in
dynamic environments [42]; the semantic information of the image is used to assist pose
correction to achieve point cloud registration [43], and a feature map is constructed by
extracting simple semantic features from point clouds [44].

3. Method

Inspired by SuMa++ and DynaSLAM, in this study, surfel-based mapping is used. The
semantic segmentation results are used as the basis, and high-efficiency SLAM in dynamic
environments is achieved through an environmental element selection algorithm. The
semantic constraints used in SLAM in dynamic environments are detailed in this section.

3.1. Overview of the Proposed Approach

Based on SuMa++, the proposed approach applies a new dynamic object processing
strategy to achieve more efficient and accurate pose estimation. The framework is shown
in Figure 3. The module for the projection of point cloud data realises the projection of
the point cloud data and the generation of the depth map and the normal vector map. A
spherical projection [45] is used on the 3D LiDAR data P to obtain the projected image I
(also called the range image), depth map D, and normal vector map N. The image-based
semantic segmentation method is used in the semantic segmentation process, and I is
used as the input of SANet to obtain the semantic segmentation result S. The dynamic
element screening module realises the accurate coarse-to-fine classification of dynamic
and static objects according to the context information, and obtains the semantic marking
graph G, which is the basis for pose estimation and semantic map construction. By
adding semantic constraints to the frame-to-map ICP algorithm, the map construction
module obtains accurate pose estimation results and generates a surfel map with better
semantic consistency.
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Figure 3. Overview of our proposed method. Input scans are projected through spherical projection and segmented
by proposed SANet, then elements that fall in the assumed dynamic content by semantic pre-processing and screening
algorithms are discarded for pose estimation. The static environment elements are fed into the SLAM algorithm for tracking
and semantic mapping after dynamic feature points are discarded.

3.2. Semantic Segmentation

Semantic segmentation is the basic work for dynamic feature selection. Considering
the current research progress on semantic segmentation of 3D point clouds and the real-
istic demand of LiDAR-based SLAM, image-based point cloud semantic segmentation is
adopted. This method projects each 3D point in the space as one pixel on the plane for
semantic segmentation. There are two reasons for choosing this method. (1) The results
of image-based semantic segmentation are significantly better than those of point-based
semantic segmentation in terms of performance, efficiency, and dataset training. (2) In
pose estimation, due to the reduction in data dimensions, the efficiency of the traversal
method based on adjacent pixels of the image is better than that of the nearest neighbour
searching and matching on 3D point clouds. By performing a spherical projection on point
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cloud P in each frame, the projected image I is obtained, as shown in Figure 4. Each point
Pi = (x, y, z) on the point cloud corresponds to the pixel Ii = (u, v) on the projected
image I as follows:

( u

v

)
=


1
2 ·w·

[
1− arctan( y

x )
π

]
h·
[
1− arcsin z

r + fdown
fup+ fdown

]
 (1)

where r = ‖Pi‖2 =
√

x2 + y2 + z2; fup and fdown, respectively, refer to the upper and lower
limits of the vertical field of view of the LiDAR; w is the width of the projected image,
whose value is inversely proportional to the horizontal resolution of the LiDAR; h is the
height of the projected image, which is the number of LiDAR threads. This projection
function guarantees that the adjacent points of any point Pi on the 3D point cloud are still
neighbouring pixels of pixel Ii after projection, and the efficiency of the nearest neighbour
searching is significantly improved.
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Figure 4. Spherical projection of LiDAR point cloud. (a) A raw scan from KITTI Dataset, (b) the
corresponding projection image, colours in the visualization correspond to the remission, i.e., the
brighter the colour, the higher the remission; (c) the corresponding depth image, colours in the
visualization correspond to the range value, i.e., the darker the red, the closer the range; (d) the
corresponding normal image, colours in the visualization correspond to the normal value, i.e., lilac
are normal pointing upward (like the blue arrow in subgraph (a)).

Based on the projected image I, the normal vector of each pixel Ii = (u, v) is calculated
by the vector cross product, and the normal vector map N is obtained as follows:

Ni(u, v) = (I(u + 1, v)− I(u− 1, v))× (I(u, v + 1)− I(u, v− 1)) (2)

It should be noted that, due to the spherical projection characteristics and the methods
for acquiring the width and height of obtained projected image, the left and right bound-
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aries of the projected image I are connected in the original point cloud data, i.e., the object
may be divided into two parts and appears on the left and right sides of the projected
image I at the same time, while the upper and lower boundaries of the projected image I
are determined by the vertical field of view of the LiDAR such that there is no connection
between the upper and lower boundaries. Considering the above characteristics, the fol-
lowing processing scheme is adopted when calculating the normal vector in the boundary
area of the projected image:{

I(u + 1, v) = I(u + 1− w, v), i f (u + 1) > w
I(u− 1, v) = I(u− 1 + w, v), i f (u− 1) < 0

(3)

{
I(u, v + 1) = I(u, h), i f (v + 1) > h
I(u, v− 1) = I(u, 0), i f (v− 1) < 0

(4)

For each point Pi on the 3D point cloud, we store its x, y, z coordinates, its range r, its
remission (so-called intensity value) i in the corresponding Ii(u, v) to create a [w× h× 5]
tensor as input. We design a semantic segmentation network SANet for a LiDAR point
cloud based on a spatial attention mechanism. To improve the semantic segmentation
of the projected image, the feature distribution of the projected image is analysed using
SqueezeSegv3 [9]. The projected image is sampled at equal intervals, and nine points
are selected to analyse the coordinate distribution of the image. Comparison with the
colour distribution of natural images in the COCO2017 and CIFAR10 datasets shows that
the feature distribution of natural images is independent of the spatial position, whereas
that of the projected image has strong spatial priori information. SqueezeSegv3 designs
a spatial adaptive convolution module based on the spatial prior characteristics of the
projected image to improve the adaptive performance of the convolution filter for local
feature extraction.

Based on the spatial priori result of SqueezeSegv3, the projected image and its semantic
segmentation method are further analysed, considering the characteristics of context
relevance and spatial distribution regularity of the projected image. Context relevance is
mainly reflected in the relationship between vehicles and roads (or parking areas). Vehicles
are associated with roads (parking areas) in images; that is, the maximum probability
for pixels around vehicles belongs to the semantic category of roads or parking areas.
The spatial distribution regularity show that the environmental elements have specific
spatial distribution characteristics. When the vehicle-borne LiDAR collects data, the pixel
probability is centred around the vehicle’s position. The projected image based on the
point cloud data obtained by this collection method directly shows that the probability of
road pixels is distributed along the central axis and bottom line of the projected image,
corresponding to an inverted T-shaped distribution. In addition, the characteristics of the
urban environment determine the distribution of vegetation and buildings on both sides of
the road, which are likely to be located on the left and right sides of the upper part of the
projected image.

The spatial priori, context relevance, and spatial distribution regularity of a projected
image are referred to as “strong spatial correlation” in this paper. We use this “strong
spatial correlation” to propose a “spatial attention” module, which is used to design and
implement the semantic segmentation network SANet of the LiDAR point cloud. The
network structure is shown in Figure 5.
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Figure 5. Architecture of the proposed SANet.

SANet is composed of a spatial attention module and a codec module. The spatial
attention module is composed of an attention module and a context module. The features
extracted by the spatial attention module are used as the input of codec to realise semantic
segmentation of the point cloud. The attention module is designed to use a larger receptive
field to obtain spatial distribution information and learns important features while exclud-
ing irrelevant features. The context module uses different receptive fields to aggregate
context information and fuse different receptive fields, which enables more detailed context
information to be captured. The spatial attention module aggregates spatial distribution
information and context information to obtain better spatial features. The codec is based
on ResNet [46] and consists of four encoders and three decoders. Each block employs a
leaky-ReLU activation function, which is followed by batch normalization to make internal
covariate shift reduction. The average pooling method is used to create a lighter model
that meets the real-time requirements. The final feature map is finally passed to a soft-max
classifier to compute pixelwise classification scores.

We use semantic segmentation in SANet to comparatively analyse the predefined
environmental element classification methods on the SemanticKITTI and SemanticPOSS
datasets based on a guiding ideology of map element classification and grading. The envi-
ronmental elements are classified into six categories in this study (“buildings”, “ground”,
“nature”, “vehicles”, “roadside objects”, and “human and animal”) and 14 subcategories
(“buildings”, “parking”, “road”, “sidewalk”, “other-ground”, “vegetation”, “terrain”,
“car”, “other-vehicle”, “independent objects”, “traffic-sign”, “pedestrian”, “rider”, and
“animal”). Based on this classification method, the weight of each category is established
as a priori knowledge for the screening of environmental elements. Although reducing
the number of categories does not improve the speed and accuracy of semantic segmenta-
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tion, fewer semantic annotation colours can effectively improve the calculation of average
displacement in the dynamic element screening, which is discussed in Section 3.3.

3.3. Dealing with Potential Dynamics

Currently, the semantic segmentation result, where the object category is used as
the output, is important information that helps the robot understand the environment at
the semantic level. Hence, in this study, it is used as an important basis for the robot to
determine the dynamic and static elements in the environment. From the perspective of
human spatial cognition, when people come to an unfamiliar area, they pay attention to the
environmental characteristics that do not change much over time, such as representative
buildings and road signs, which are generally called the static information, and ignore
the dynamic information, such as pedestrians and vehicles. This selective attention helps
people quickly become familiar with unfamiliar areas and achieve positioning and naviga-
tion planning in those environments. Based on the current technological development, we
hope to give a robot the ability to identify stable static elements in a complex and dynamic
environment under the constraint of semantic information and accordingly, to build a
reliable environment map. According to the characteristics of human spatial cognition in
the real environment, the dynamic quantitative indexes for the environmental elements
of 6 major categories and 14 subcategories are established, with corresponding values
ranging from 0 to 1, from dynamic to static elements, shown in Figure 6. To distinguish the
dynamic and static elements more accurately in the environment and to provide features
with better robustness for the SLAM pose estimation, the environmental elements are
determined based on the upper and lower thresholds. Obviously, the elements below
the static threshold and above the dynamic threshold can be easily determined, and the
environmental elements between the static threshold and the dynamic threshold are called
semi-dynamic elements, which must be addressed.
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Semi-dynamic environmental elements usually have the following characteristics:
They have dynamic properties but are static in the environment for a certain period. In
an urban environment, for example, a vehicle parked on the roadside for a short time or a
long time satisfies the above characteristics. For environmental elements with dynamic
attributes in the environment, if they are roughly classified as moving objects, the accuracy
and robustness of pose estimation could be affected, resulting in a large deviation in the
solution due to the sharp decrease in the number of features and the weakening of the
corresponding relation between adjacent frames. To determine the static elements more
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accurately in the environment (regardless of whether their attributes are dynamic or static),
an environmental element screening algorithm is designed and applied.

The transformation relation of points Pp, Pq with the same name between adjacent
frames is expressed as Pp = TpqPq, Tpq ∈ R4×4, where Tpq includes the rotation matrix
Rpq ∈ SO(3) and the translation vector tpq ∈ R3. Correspondingly, the transformation rela-
tion of projection pixels It−1, It between adjacent frames can be expressed as It = TIt−1 It It−1.
W represents the global coordinate system, and the overall pose transformation TWIt is as
follows:

TWIt = TWI0 TI0 I1 TI1 I2 · · · TIt−2 It−1 TIt−1 It (5)

To accurately use static environment elements for pose estimation, a semantic marking
graph G(u, v) = {0, 1} is introduced. This marking graph is a 2D matrix, with a size of
w× h, which is the same as that of the projected image I, the semantic segmentation map S,
and the normal vector map N. The initial value of the semantic marking graph is assigned
based on quantitative indexes. For pixels of static elements, the value of the semantic
marking graph is 1; for pixels of dynamic elements, it is 0; and for pixels of undetermined
elements, it is 0.3 as follows:

G(u, v) =


0

0.3
1

dynamic pixels
undetermined
static pixels

(6)

Based on the semantic marking graph, the state (dynamic or static) of each unde-
termined element is determined based on the contextual information of the scene. The
contextual information of the scene contains the information between adjacent frames and
the cross-validation information contained in the current frame. The information in the
current frame reflects the process of cross-validation. For example, for a frame with the road
and vehicle, the determination of the static road and the dynamic vehicle can be obtained;
or for a frame with the parking area and vehicle, the determination of the static parking
area and the static vehicle can be obtained. For the determination of dynamic elements
in the information between adjacent frames, an algorithm for screening environmental
elements is designed and applied. First, the average pixel displacement ad of the static
elements between adjacent frames is calculated.

ad =
1

wh

h

∑
j=0

w

∑
i=0

(
TIt−2 It−1(St−1 � Gt−1)− (St � Gt)

)
(7)

The symbol � is the dot product operator, i.e., the corresponding elements of two
matrices are multiplied. w and h are the width and height of the semantic segmentation
image, respectively. St−1, St, Gt−1, Gt are the semantic segmentation images and semantic
marking graphs between adjacent scans, respectively. We assume that the pose is not
significantly changed between adjacent frames, and under the condition that no accurate
pose estimation is obtained, the pose transformation parameter TIt−2 It−1 of the previous
frame is used as the initial value to calculate the pixel average displacement. Then, a
threshold according to the average displacement is set to determine the state of each
undetermined element and update the semantic marking graph as follows:

∀si(u, v) ∈ St,
∣∣TIt−2 It−1 St−1(u, v)− St(u, v)

∣∣ ≤ ρ · ad (8)

where ρ is the threshold weight and classifies pixels meeting this constraint as static
elements, and the corresponding semantic marking graph is updated (Gi(u, v) = 1) to
obtain the semantic marking graph Gt at time t. The screening of environmental elements
based on context information is shown in Figure 7. Algorithm 1 shows the environmental
element screening algorithm.
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Algorithm 1. Screening of static environment elements

Input: pose transformation matrix TIt−2 It−1 , semantic segmentation result
St−1, St and semantic marking graph Gt−1, Gt

Output: updated semantic marking Graph Gt
Intermediate variable: average displacement ad and decision weight ρ

Begins
for i in w, do

for j in h, do
calculate ad;

end
end
for u in w, do

for v in h, do
if
∣∣TIt−2 It−1 St−1(u, v)− St(u, v)

∣∣ ≤ ρ · ad then
Gi(u, v) = 1

else Gi(u, v) = 0
end

end

3.4. Pose Estimation

Pose estimation is usually described as a nonlinear optimisation problem. Considering
the characteristics of the surfel map, the frame-to-map ICP under semantic constraints
is adopted. With the help of the semantic marking graph G, the static elements in the
environment can be accurately used for pose estimation. Figure 8 shows an example of the
frame-to-map ICP based on semantic constraints.
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The function for error minimisation is defined as follows:

Eicp = ∑
i

ωi
((

TIt−1 It(It−1 � Gt−1)− (It � Gt)
)
· nt
)2 (9)

TIt−1 It = exp(ξ)TIt−2 It−1 ≈ (1 + ξ)TIt−2 It−1 (10)
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where It−1, It, Gt−1, Gt are the projection images and semantic marking graphs between
adjacent scans, respectively. nt is the normal map at time t. For every iteration of the frame-
to-map ICP, the 6-DoF relative pose is incrementally updated using Levenberg–Marquardt
as follows [47]:

ξ =
(
J TWJ + λD

)−1
J TWr (11)

where Jacobian J ∈ Rn×6 and residual r ∈ Rn are functions of the normal map nt. The
diagonal matrix λD = λdiag

(
J TWJ

)
is used for regularisation of the Hessian matrix

with λ = 1e−6. The weight matrixW ∈ Rn×n is a diagonal matrix containing weights ωi
for each residual ri. Once the frame-to-map ICP reaches a stopping criterion (e.g., max.
number of iterations), the relative transformation matrix TIt−1 It ∈ SE(3) is computed from
ξ ∈ se(3) and used to output the desired map-aligned pose TWIt as Equation (5).

Within frame-to-map ICP, we set up the weight ωi for the ri considering the direction
of the advance of the LiDAR based on the semantic marking graph. The semantic marking
graph filters out dynamic elements in the environment during registration and pose
estimation without using all pixel information, and there is no need to set weights for the
iteration of dynamic and static elements. Therefore, with the help of a semantic marking
graph, the weight setting principle is correlated with the forward direction of the LiDAR
sensors, i.e., the weights of the pixels facing the forward direction are higher than those
of the pixels facing the lateral and backward directions. For the map construction and
determination of position and pose, the scanning data in the forward direction can provide
significantly higher gain than those in the lateral and backward directions. In other words,
the data in the forward direction are the newly acquired real data, while the data in the
lateral and backward directions are similar to the scanning data of the previous frame.
Therefore, the LiDAR point cloud data are divided into three equal parts according to the
angle. For convenience of calculations, the imaging interval of the projected image in the
forward direction is set at (0.33w, 0.67w). As shown in Figure 9, the weight matrixW for
pose estimation is obtained.
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4. Experiments

In this section, we evaluate our approach on the public datasets SemanticKITTI [48],
KITTI [49], and SemanticPOSS [50]. First, the SemanticKITTI dataset is used to verify the
performance of SANet. SANet is trained using a hardware platform with an 8 GeForce
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RTX™ 2080 Ti GPU for 150 epochs. Then, experiments are performed to verify the pro-
posed SLAM method for dynamic environments. The dynamic environment places high
requirements on the stability and accuracy of the SLAM algorithms. To verify the effec-
tiveness of the proposed approach, two different outdoor environment LiDAR datasets
are selected. The KITTI dataset is the evaluation benchmark for many SLAM algorithms.
Experiments on this dataset can test the performance of the proposed approach and fa-
cilitate a horizontal comparison with other algorithms. The SemanticPOSS and KITTI
datasets are quite different in terms of the collection equipment, collection locations, and
data content. The experiments based on the SemanticPOSS dataset confirm the robustness
and stability of the proposed approach in the longitudinal direction. To demonstrate the
results of our approach in dynamic environments, we compare it with other state-of-the-art
LiDAR SLAM systems or with visual SLAM systems. Our experiments are developed on a
PC with an Intel i7-9700k CPU, 16 GB RAM, and a single GeForce RTX™ 2080 Ti GPU.

4.1. Semantic Segmentation Experiments on the SemanticKITTI Dataset

To fully evaluate the performance of SANet against other semantic segmentation
algorithms using a unified benchmark, we select the SemanticKITTI dataset for training,
verification, and testing. The SemanticKITTI dataset provides 43,442 frames of point cloud
data (sequence 00–10 contains point cloud data annotation). The semantic segmenta-
tion challenge is launched on the official website of the dataset to evaluate the test data
using unified indicators. Based on the requirements of other algorithms and datasets,
19,130 frames of point cloud data of sequences 00–07 and 09–10 are used as the training
dataset, 4071 frames of sequence 08 are used as the verification dataset, and 20,351 frames
of sequence 11–21 are used as the test dataset. The dataset used for the semantic segmenta-
tion of single frame data has 19 categories and is evaluated on the official platform. The
evaluation index is the mIoU (mean intersection-over-union):

mIoU =
1
C

C

∑
i

TPi
TPi + FPi + FNi

(12)

C denotes the number of categories, and TPi, FPi, FNi denote the true positive, false
positive, and false negative values of category i, respectively. After training, semantic
segmentation is performed on the test dataset, and the results are uploaded to the semantic
segmentation challenge of the SemanticKITTI official website for evaluation. Table 1
presents a comparison of the quantitative evaluation results of SANet on the test dataset
against those of four other algorithms (RangeNet53++ and SqueezeSegV3 are abbreviated
as RangeNet and SquSegV3, respectively).

SANet improves the mIoU score by at least 3.3% on the basis of ensuring real-time
performance (which is slightly lower than that of SalsaNet [51] and SalsaNext [52]). SANet
achieved a 59.2% mIoU score on the SemanticKITTI test set, which fully proves the pro-
posed feature extraction method based on the spatial attention mechanism efficiently
aggregates the local features of different receptive fields and significantly improves the
accuracy of semantic segmentation after encoding and decoding.

4.2. KITTI Dataset

The KITTI dataset is collected by Velodyne HDL-64E and has been the mainstream
dataset for SLAM algorithm evaluation since its release. It contains 11 sets of data in typical
outdoor environments, e.g., urban, highway and rural environments, which can reflect
the characteristics of dynamic environments. In addition, most of the dynamic objects in
outdoor environments covered by the KITTI dataset are static, which can better test the
performance of the proposed algorithm for screening environmental elements.
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Table 1. Quantitative comparison of mIoU scores on SemanticKITTI test set (sequences 11–21) of each algorithm, SANet is the proposed method.

Method Car Bicycle Motorcycle Truck Other-
vehicle Person Bicyclist Motorcyclist Road Parking Sidewalk Other-

ground Building Fence Vegetation Trunk Terrain Pole Traffic-
sign mIoU(%)

RangeNet 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9 52.2
SquSegV3 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9 55.9
SalsaNet 83.3 25.4 23.9 23.9 17.3 32.5 30.4 8.3 89.7 51.6 70.4 19.9 80.2 45.9 71.5 38.1 61.2 26.9 39.4 44.2

SalsaNext 90.9 36.4 29.5 21.7 19.9 52.0 52.7 16.0 90.9 58.1 74.0 27.8 87.9 58.2 81.8 61.7 66.3 51.7 58.0 54.5
SANet 92.5 49.7 37.9 38.7 32.4 57.5 52.0 33.5 91.4 64.0 75.1 28.8 88.6 59.6 81.0 62.5 65.4 53.2 61.6 59.2
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For the evaluation of the SLAM algorithm, the quantitative evaluation index of abso-
lute pose error (APE) is applied, using Sim (3) Umeyama alignment in the calculation. We
then use the evo tool [53] to evaluate the estimated pose results, including the root mean
square error (RMSE), the mean error, the median error, and the standard deviation (Std.).
The SuMa++ algorithm based on LiDAR data and the DynaSLAM and DM-SLAM [54],
two visual SLAM algorithms with excellent performance in dynamic environments, are
selected for comparisons, since the proposed approach draws on the idea of image masking
from DynaSLAM. Table 2 is a comparison of the APE used for the translation component
of different algorithms and provides details of our approach. Figure 10 shows the results
of the error mapped onto the trajectory by our approach and the APE visualisation results
between SuMa++ and our approach. Figure 11 shows the semantic map of the sequence 00,
05, 08. In the comparison with the visual SLAM methods, the proposed approach made
significant progress on the six sequence data and is inferior to the visual SLAM methods
for the other five sequence data. In the comparison with SuMa++, the proposed approach
made significant progress in the six sequence data and little improvement in the four
sequence data; however, the performance decreases on the Sequence 02 data. Considering
that most of the dynamic objects in the KITTI data set are static in the environment, the
experimental results strongly demonstrate the effectiveness of the environmental element
selection algorithm, which improves the accuracy of pose estimation and enhances the
robustness of the SLAM system.

Table 2. Comparison of APE for translation part (Unit: m).

Sequences
SuMa++ DynaSLAM DM-SLAM Our Approach

RMSE RMSE RMSE RMSE Mean Median Std.

00 1.16 1.4 1.4 1.15 1.00 0.90 0.56

01 17.05 9.4 9.1 14.65 13.88 13.95 4.69

02 8.02 6.7 4.6 8.62 7.99 7.63 3.24

03 1.34 0.6 0.6 1.04 0.95 0.98 0.45

04 0.33 0.2 0.2 0.32 0.29 0.30 0.13

05 0.75 0.8 0.7 0.67 0.61 0.57 0.28

06 0.49 0.8 0.8 0.48 0.44 0.38 0.19

07 0.50 0.5 0.6 0.47 0.44 0.43 0.17

08 3.25 3.5 3.3 2.56 2.26 1.99 1.21

09 1.26 1.6 1.7 1.24 1.14 1.11 0.49

10 1.41 1.2 1.1 1.32 1.27 1.26 0.38
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4.3. SemanticPOSS Dataset

The SemanticPOSS dataset is composed of six groups of campus environmental data
collected by Hesai Pandora LiDAR. Table 3 shows the comparison results of the dynamic
elements between SemanticPOSS and other mainstream outdoor datasets [49]. Compared
with the KITTI dataset in which most dynamic objects are static in the environment, the
SemanticPOSS dataset, which is small in size, covers more dynamic elements and is more
in line with the characteristics of dynamic environments. In addition, the truth trajectory
of six groups of data in the SemanticPOSS dataset is relatively stable without a closed loop;
thus, the SemanticPOSS dataset can be used for testing the accuracy and robustness of the
SLAM algorithm in a highly dynamic environment.

Table 3. Comparison of datasets.

Frames Points Type
Average Instances per Frame

People Rider Car

Cityscapes 24,998 52,425 M images 6.16 0.68 9.51

KITTI 14,999 1799 M point clouds 0.63 0.22 4.38

SemanticPOSS 2988 216 M point clouds 8.29 2.57 15.02

Because SuMa++ can only be implemented in the KITTI dataset and cannot be im-
plemented in the SemanticPOSS dataset, only the proposed approach is quantitatively
evaluated. Experiments are conducted on the six groups of data in the SemanticPOSS
dataset. Table 4 shows that the proposed approach achieves relatively excellent results.
Figure 12 shows the visualisation results. Good pose estimation results are obtained in
the x and y directions, but there is deviation in the z direction, which is the main cause of
inaccurate pose estimation. The deviation in the z direction is caused by the dimension-
ality reduction during the projection of the acquired point cloud data into the projected
image. The dimensionality reduction of 3D data into a 2D image inevitably leads to loss
of information. Although the depth map and normal vector map are improved, there are
still errors.

Overall, experiments on the KITTI and the SemanticPOSS datasets demonstrate that
the proposed approach effectively eliminates the interference of dynamic elements in the
environment, improves the accuracy of pose estimation, enhances the performance of
SLAM, and obtains excellent results.
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Table 4. Absolute Pose Error (APE) for translation part (Unit: m).

Sequences
Our Approach

RMSE Mean Median Std.

00 0.09 0.08 0.08 0.03

01 0.16 0.15 0.13 0.07

02 0.13 0.10 0.06 0.08

03 0.10 0.10 0.09 0.04

04 0.13 0.11 0.10 0.06

05 0.17 0.16 0.15 0.07
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5. Conclusions

In this paper, a LiDAR-based SLAM framework is constructed under the constraint of
semantic information. The performance of the LiDAR-based SLAM is improved by using
the environmental element screening algorithm in dynamic environments. This framework
is divided into four modules, i.e., projection of point cloud data, semantic segmentation,
dynamic element screening, and semantic map construction. The proposed approach is
inspired by SuMa++ and DynaSLAM. There are three main contributions of this approach.
First, a semantic segmentation method SANet for LiDAR point clouds based on spatial
attention mechanism is proposed that effectively improves the real-time performance
and accuracy of semantic segmentation. Second, a dynamic element selection algorithm
that considers context information is proposed that simply and effectively improves the
robustness and accuracy of dynamic element determination. Third, a LiDAR-based SLAM
framework in a dynamic environment is constructed and used with semantic segmentation
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and prior knowledge to realise real-time localisation and semantic map construction in
dynamic environments.

This framework is evaluated on three datasets, namely, SemanticKITTI, KITTI, and
SemanticPOSS. An experiment is performed on the SemanticKITTI dataset, and better
semantic segmentation results are achieved than by using other excellent semantic segmen-
tation networks. The experiment on the KITTI dataset achieves a horizontal comparison
with other excellent SLAM algorithms. The performance of the proposed framework is
better than that of SuMa++, a LiDAR-based SLAM, and is partially better than that of visual
SLAM methods, such as DM-SLAM and DynaSLAM. The experiment in highly dynamic
environments is conducted on the SemanticPOSS dataset, and accurate pose estimation
results are obtained. The experimental results show that the proposed approach has reliable
performance, accuracy, and robustness in dynamic environments.

In summary, we explored LiDAR-based SLAM in dynamic environments in this study,
and we will investigate point cloud semantic segmentation and LiDAR-based SLAM in
more complex dynamic environments in the future.

Author Contributions: Conceptualization, W.W. and X.Y.; formal analysis, W.W. and X.Y.; methodol-
ogy, W.W., X.Y., X.Z. and L.C.; software, W.W., X.Z., L.Z. and X.L.; supervision, L.C.; validation, L.Z.
and X.L.; writing—original draft, W.W., X.Z., and L.C.; writing—review and editing, X.Y., L.Z. and
X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Project
No.42130112 and No.42171456), the Youth Program of the National Natural Science Foundation of
China (Project No.41801317), the Central Plains Scholar Scientist Studio Project of Henan Province,
the National Key Research and Development Program of China (Project No.2017YFB0503500).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Our experimental data are all open-source data sets.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. The Group of Strategic Research on Artificial Intelligence 2.0 in China. In Strategic Research on Artificial Intelligence 2.0 in China;

Zhejiang University press: Zhejiang, China, 2018; pp. 1–10.
2. Jun, G.A.O. The 60 Anniversary and Prospect of Acta Geodaetica et Cartographica Sinica. Acta Geod. Et Cartogr. Sin. 2017,

46, 1219–1225.
3. Gao, B.; Pan, Y.; Li, C.; Geng, S.; Zhao, H. Are We Hungry for 3D LiDAR Data for Semantic Segmentation? A Survey of Datasets

and Methods. IEEE Trans. Intell. Transp. Syst. 2021, 1–19. [CrossRef]
4. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++ deep hierarchical feature learning on point sets in a metric space. In Proceedings

of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 3–9 December 2017;
pp. 5105–5114.

5. Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. Pointcnn: Convolution on x-transformed points. Advances in neural information
processing systems. Adv. Neural Inf. Process. Syst. 2018, 31, 820–830.

6. Lawin, F.J.; Danelljan, M.; Tosteberg, P.; Bhat, G.; Khan, F.S.; Felsberg, M. Deep projective 3D semantic segmentation. In
Proceedings of the International Conference on Computer Analysis of Images and Patterns, Ystad, Sweden, 22–24 August 2017;
Springer: Cham, The Netherlands, 2017; pp. 95–107.

7. Wu, B.; Wan, A.; Yue, X.; Keutzer, K. Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object
segmentation from 3d lidar point cloud. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 1887–1893.

8. Wu, B.; Zhou, X.; Zhao, S.; Yue, X.; Keutzer, K. Squeezesegv2: Improved model structure and unsupervised domain adaptation
for road-object segmentation from a lidar point cloud. In Proceedings of the IEEE 2019 International Conference on Robotics and
Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4376–4382.

9. Xu, C.; Wu, B.; Wang, Z.; Zhan, W.; Vajda, P.; Keutzer, K.; Tomizuka, M. Squeezesegv3: Spatially-adaptive convolution for efficient
point-cloud segmentation. In European Conference on Computer Vision; Springer: Cham, The Netherlands, 2020; pp. 1–19.

10. Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. Rangenet++: Fast and accurate lidar semantic segmentation. In Proceedings of
the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019;
pp. 4213–4220.

http://doi.org/10.1109/tits.2021.3076844


Remote Sens. 2021, 13, 3651 23 of 24

11. Liu, F.; Li, S.; Zhang, L.; Zhou, C.; Ye, R.; Wang, Y.; Lu, J. 3DCNN-DQN-RNN: A deep reinforcement learning framework for
semantic parsing of large-scale 3D point clouds. In Proceedings of the IEEE International Conference on Computer Vision, Venice,
Italy, 22–29 October 2017; pp. 5678–5687.

12. Radi, H.; Ali, W. VolMap: A Real-time Model for Semantic Segmentation of a LiDAR surrounding view. arXiv 2019,
arXiv:1906.11873.

13. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of
Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]

14. Yu, C.; Liu, Z.; Liu, X.-J.; Xie, F.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 1168–1174.

15. Zeng, Z.; Zhou, Y.; Jenkins, O.C.; Desingh, K. Semantic mapping with simultaneous object detection and localization. In
Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 911–918.

16. Sünderhauf, N.; Dayoub, F.; McMahon, S.; Talbot, B.; Schulz, R.; Corke, P.; Wyeth, G.; Upcroft, B.; Milford, M. Place categorization
and semantic mapping on a mobile robot. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation
(ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 5729–5736.

17. Mousavian, A.; Toshev, A.; Fišer, M.; Košecká, J.; Wahid, A. Visual representations for semantic target driven navigation. In
Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019;
pp. 8846–8852.

18. Ma, W.C.; Tartavull, I.; Bârsan, I.A.; Wang, S.; Bai, M.; Mattyus, G.; Homayounfar, N.; Lakshmikanth, S.K.; Pokrovsky, A.; Urtasun,
R. Exploiting Sparse Semantic HD Maps for Self-Driving Vehicle Localization. In Proceedings of the 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; pp. 5304–5311.

19. Limketkai, B.; Liao, L.; Fox, D. Relational object maps for mobile robots. In Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence (IJCAI), Edinburgh, Scotland, UK, 30 July–5 August 2005; pp. 1471–1476.

20. Nüchter, A.; Hertzberg, J. Towards semantic maps for mobile robots. Robot. Auton. Syst. 2008, 56, 915–926. [CrossRef]
21. Sengupta, S.; Sturgess, P.; Torr, P.H.S. Automatic dense visual semantic mapping from street-level imagery. In Proceedings of the

2012 IEEE/RSJ International Conference Intelligent Robots and Systems (IROS), Vilamoura-Algarve, Portugal, 7–12 October 2012;
pp. 857–862.

22. Valentin, J.P.; Sengupta, S.; Warrell, J.; Shahrokni, A.; Torr, P.H. Mesh based semantic modelling for indoor and outdoor scenes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013;
pp. 2067–2074.

23. Sengupta, S.; Sturgess, P. Semantic octree: Unifying recognition, reconstruction and representation via an octree constrained
higher order MRF. In Proceedings of the 2015 IEEE International Conference, Robotics and Automation (ICRA), Seattle, WA,
USA, 25–30 May 2015; pp. 1874–1879.

24. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

25. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [CrossRef] [PubMed]

26. Zhao, H.; Qi, X.; Shen, X.; Shi, J.; Jia, J. Icnet for real-time semantic segmentation on high-resolution images. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 405–420.

27. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

28. Vasudevan, S.; Gächter, S.; Nguyen, V.; Siegwart, R. Cognitive maps for mobile robots—An object based approach. Robot. Auton.
Syst. 2007, 55, 359–371. [CrossRef]

29. Vasudevan, S.; Siegwart, R. Bayesian space conceptualization and place classification for semantic maps in mobile robotics. Robot.
Auton. Syst. 2008, 56, 522–537. [CrossRef]

30. Rituerto, A.; Murillo, A.C.; Guerrero, J.J. Semantic labeling for indoor topological mapping using a wearable catadioptric system.
Robot. Auton. Syst. 2014, 62, 685–695. [CrossRef]

31. Liu, M.; Colas, F.; Pomerleau, F.; Siegwart, R. A Markov semi-supervised clustering approach and its application in topological
map extraction. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-
Algarve, Portugal, 7–12 October 2012; pp. 4743–4748.

32. Brunskill, E.; Kollar, T.; Roy, N. Topological mapping using spectral clustering and classification. In Proceedings of the 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007;
pp. 3491–3496.

33. Liu, M.; Colas, F.; Siegwart, R. Regional topological segmentation based on mutual information graphs. In Proceedings of the
2011 IEEE International Conference on Robotics and Automation. IEEE, Shanghai, China, 9–13 May 2011; pp. 3269–3274.

34. Liu, Z.; Chen, D.; von Wichert, G. Online semantic exploration of indoor maps. In Proceedings of the 2012 IEEE International
Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 4361–4366.

http://doi.org/10.1109/TRO.2016.2624754
http://doi.org/10.1016/j.robot.2008.08.001
http://doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://doi.org/10.1016/j.robot.2006.12.008
http://doi.org/10.1016/j.robot.2008.03.005
http://doi.org/10.1016/j.robot.2012.10.002


Remote Sens. 2021, 13, 3651 24 of 24

35. Pronobis, A.; Mozos, O.; Caputo, B.; Jensfelt, P. Multi-modal Semantic Place Classification. Int. J. Robot. Res. 2009, 29, 298–320.
[CrossRef]

36. Pronobis, A.; Jensfelt, P. Large-scale semantic mapping and reasoning with heterogeneous modalities. In Proceedings of the 2012
IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 3515–3522.

37. Goeddel, R.; Olson, E. Learning semantic place labels from occupancy grids using CNNs. In Proceedings of the 2016 IEEE/RSJ
international conference on intelligent robots and systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 3999–4004.

38. Hiller, M.; Qiu, C.; Particke, F.; Hofmann, C.; Thielecke, J. Learning Topometric Semantic Maps from Occupancy Grids. In
Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8
November 2019.

39. Saputra, M.R.U.; Markham, A.; Trigoni, N. Visual SLAM and structure from motion in dynamic environments: A survey. ACM
Comput. Surv. (CSUR) 2018, 51, 1–36. [CrossRef]

40. Bescos, B.; Facil, J.M.; Civera, J.; Neira, J. DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes. IEEE Robot. Autom.
Lett. 2018, 3, 4076–4083. [CrossRef]

41. Xiao, L.; Wang, J.; Qiu, X.; Rong, Z.; Zou, X. Dynamic-SLAM: Semantic monocular visual localization and mapping based on
deep learning in dynamic environment. Robot. Auton. Syst. 2019, 117, 1–16. [CrossRef]

42. Chen, X.; Milioto, A.; Palazzolo, E.; Giguere, P.; Behley, J.; Stachniss, C. Suma++: Efficient lidar-based semantic slam. In
Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8
November 2019; pp. 4530–4537.

43. Zaganidis, A.; Sun, L.; Duckett, T.; Cielniak, G. Integrating Deep Semantic Segmentation Into 3-D Point Cloud Registration. IEEE
Robot. Autom. Lett. 2018, 3, 2942–2949. [CrossRef]

44. Dubé, R.; Cramariuc, A.; Dugas, D.; Nieto, J.; Siegwart, R.; Cadena, C. SegMap: 3D Segment Mapping using Data-Driven
Descriptors. In Robotics: Science and Systems XIV; MIT Press: Cambridge, MA, USA, 2018.

45. Li, B.; Zhang, T.; Xia, T. Vehicle Detection from 3D Lidar Using Fully Convolutional Network. arXiv arXiv:1608.07916, 2016.
46. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
47. Hinzmann, T. Perception and Learning for Autonomous UAV Missions. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2020.
48. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. SemanticKITTI: A Dataset for Semantic Scene

Understanding of LiDAR Sequences. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV);
Institute of Electrical and Electronics Engineers (IEEE), Seoul, Korea, 27 October–3 October 2019; pp. 9296–9306.

49. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proceedings of
the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.
[CrossRef]

50. Pan, Y.; Gao, B.; Mei, J.; Geng, S.; Li, C.; Zhao, H. SemanticPOSS: A Point Cloud Dataset with Large Quantity of Dynamic
Instances. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November
2020; pp. 687–693.

51. Aksoy, E.E.; Baci, S.; Cavdar, S. Salsanet: Fast road and vehicle segmentation in lidar point clouds for autonomous driving.
In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020;
pp. 926–932.

52. Cortinhal, T.; Tzelepis, G.; Aksoy, E.E. SalsaNext: Fast, uncertainty-aware semantic segmentation of LiDAR point clouds. In
International Symposium on Visual Computing; Springer: Cham, The Netherlands, 2020; pp. 207–222.

53. Grupp, M. Evo: Python PackAge for the Evaluation of Odometry and Slam. Available online: https://github.com/MichaelGrupp/
evo (accessed on 5 May 2021).

54. Lu, X.; Wang, H.; Tang, S.; Huang, H.; Li, C. DM-SLAM: Monocular SLAM in dynamic environments. Appl. Sci. 2020, 10, 4252.
[CrossRef]

http://doi.org/10.1177/0278364909356483
http://doi.org/10.1145/3177853
http://doi.org/10.1109/LRA.2018.2860039
http://doi.org/10.1016/j.robot.2019.03.012
http://doi.org/10.1109/LRA.2018.2848308
http://doi.org/10.1109/cvpr.2012.6248074
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
http://doi.org/10.3390/app10124252

	Introduction 
	Related Work 
	Point Cloud Semantic Segmentation 
	Semantic SLAM 
	SLAM for Dynamic Environments 

	Method 
	Overview of the Proposed Approach 
	Semantic Segmentation 
	Dealing with Potential Dynamics 
	Pose Estimation 

	Experiments 
	Semantic Segmentation Experiments on the SemanticKITTI Dataset 
	KITTI Dataset 
	SemanticPOSS Dataset 

	Conclusions 
	References

