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Abstract: An urban heat island (UHI) is a serious phenomenon associated with built environments
and presents threats to human health. It is projected that UHI intensity will rise to record levels
in the following decades due to rapid urban expansion, as two-thirds of the world population is
expected to live in urban areas by 2050. Nevertheless, the last two decades have seen a considerable
increase in the number of studies on surface UHI (SUHI)—a form of UHI quantified based on
land surface temperature (LST) derived from satellite imagery—and its relationship with the land
use/cover (LULC) changes. This surge has been facilitated by the availability of freely accessible five-
decade archived remotely sensed data, the use of state-of-art analysis methods, and advancements in
computing capabilities. The authors of this systematic review aimed to summarize, compare, and
critically analyze multiple case studies—carried out from 2001 to 2020—in terms of various aspects:
study area characteristics, data sources, methods for LULC classification and SUHI quantification,
mechanisms of interaction coupled with linking techniques between SUHI intensity with LULC
spatial and temporal changes, and proposed alleviation actions. The review could support decision-
makers and pave the way for scholars to conduct future research, especially in vulnerable cities that
have not been well studied.

Keywords: urban heat island (UHI); land use land cover (LULC); land surface temperature (LST);
spatiotemporal changes; SUHI-contributing factors; satellite imagery; literature review

1. Introduction

Since the start of the industrial revolution in Great Britain circa the 1780s [1], substan-
tial urban expansion and population growth have been observed in industrialized countries.
To put things in perspective, there were fewer than 50 cities with over 100,000 residents in
1800, there were approximately 900 cities in 1950 [2], and there were thousands of cities
in 2019 [3]. In fact, by the end of the last century, almost 370 cities had over one million
inhabitants worldwide, which increased to 584 in 2018, and it is estimated to reach 706 cities
by the end of 2030 [4]. Though these accelerated trends have contributed to economic
growth and social development in many parts of the world, they have also led to several
environmental issues at different scales. Urban heat islands (UHIs) are perhaps the most
evident and most documented manifestation of these radical anthropogenic activities.

UHI, also known as an “urban heat sink” or an “oasis effect” [5], refers to the phe-
nomenon that occurs in urban areas (UAs) that involves an excessive increase in interrelated
air, subsurface, and surface temperatures compared to those observed in underdeveloped
surroundings [6]. The common term “heat island”—reportedly coined by British climatolo-
gist Gordon Manley in 1958 [7]—was given its name because the resulting spatial shape of
the isotherms creates one or more island-like features [8]. The UHI phenomenon was first
documented by Luke Howard over 200 years ago in his study of London’s climate, where
he found fluctuations in temperatures measured in the city and its rural surroundings
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during daytimes and nighttimes—the city had 3.7 ◦F warmer nights and 0.34 ◦F colder
days than the countryside [9]. Statistically, UHIs have been documented in over 1400 cities
across the globe in all continents without exception [10].

Urbanization has been highlighted in numerous studies as the leading culprit behind
UHIs. Economic growth usually drives new UAs to accommodate new industrial and
commercial hubs and ultimately build connecting transportation networks and new res-
idences, especially for a floating population hoping for stable life away from numerous
hardships and the lack of opportunities associated with rural areas. Perhaps, urbanization
leads to social stability and economic prosperity; on the other hand, land cover conversion
to urban uses has detrimental effects on the balance of the natural environment. Natural
surfaces, including vegetation and water bodies, contribute to the balance of energy heat
fluxes because they are excellent solar radiation absorbers. Vegetation uses a significant
amount of the absorbed radiation through evapotranspiration to release water vapor that
subsequently helps to cool the air in their proximity [11].

Additionally, vegetation reduces surface temperatures by offering a shading layer that
shields land surfaces from direct sun radiation [12]. Water bodies provide cooling effects,
much as vegetation does, as they provide a source for moisture capable of lowering nearby
ambient temperatures. By contrast, impervious surfaces (ISs) such as concrete (buildings)
and asphalt (streets) halt the interchange of heat between different environmental compo-
nents because of their low reflectivity and capacity to absorb solar radiation [13], leading to
heat imbalance and, consequently, local climate change. Ultimately, the alteration of previ-
ous surfaces to ISs introduces perturbations into the balance of the local climate, resulting
in UHIs. Moreover, the heat emitted by traffic, industries, factories, and air conditioners
contributes to increasing the local temperature [14]. Additionally, the amount of airflow is
reduced as narrow streets and tall buildings trap heat, thereby intensifying the heat island
effect [14].

In the short and long term, UHIs have severe implications for many areas of life on
earth, including socioeconomic and environmental issues. Air pollution may increase
because of UHIs, daytime temperatures become warmer, and nighttime cooling becomes
less effective [15]. These alterations lead to discomfort and an increase in human premature
mortality rates due to excessive heat. In fact, extreme heat is a primary contributor to
the rise in weather-related human mortality [16–18]. Between 1991 and 2018, 37% of the
world’s heat-related fatalities may have been linked to human-caused global warming [19].
Additionally, because of UHIs, urban rain islands can form, resulting in greater precip-
itation during the flood season in flood-prone places and leading to waterlogging at a
regional scale [20]. In Jinan City, for instance, it has been proven that the URI effect is
spatially correlated with that of the UHI, resulting in an increased frequency and severity
of short-duration precipitation episodes [21]. During the rainy season, areas with intensive
construction receive more rain. With so much rain concentrated in urbanized areas, which
are characterized by low surface infiltration capacities, the city has become more and more
vulnerable to floods.

The UHI phenomenon is also an obstacle to achieving sustainable development. In
2015, the United Nations provided the 17 Sustainable Development Goals (SDGs), four
of which are directly or indirectly related to UHIs. UHIs comprise one of the significant
reasons for apparent temperature increases, which have the potential to be particularly
serious for heat-associated deaths (SDG 3 (Good Health and Well-Being)), and people who
are living in high-temperature areas also have increased electricity bills (SDG 7 (Affordable
and Clean Energy)). Additionally, high-rise and -density buildings lead to UHIs and can
affect the quality of eco-environments in living areas (SDG 11 (Sustainable Cities and
Communities)). UHIs can also influence urban microclimates, and in the long run, their
effects could indicate global warming (SDG 13 (Climate Action)). According to the United
Nations, 60% of the world’s people (around 5 billion) will live in UAs by 2050. The increase
in urban populations will be the cause of urban agglomeration, and then UHIs will become
more obvious. Therefore, the proper awareness and analysis of the relationship between
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UHIs and land use land cover (LULC) changes, as well as how to relieve the UHI effect by
urban planning, are crucial for achieving the SDGs.

Broadly, UHIs can be categorized into two types: surface UHIs (SUHIs) and atmo-
spheric UHIs (AUHIs). Several aspects differentiate the two UHI forms, as summarized
by Sharma and Joshi [22]: (i) day/night prominence: during daytimes and nighttimes,
SUHIs are prominent, while AUHIs are mainly noticeable at night [23]; (ii) seasonal vari-
ations: during wintertime, AUHIs are more intense than SUHIs and vice versa in the
summertime [24,25]; (iii) UHI intensity (UHIi): SUHI intensity generally tends to be much
higher than AUHI intensity [26]; (iv) data sources: while AUHI measurements are mostly
retrieved from ground-based meteorological stations network and field surveys, SUHI
measurements are quantified using airborne or satellites thermal data [27,28]; and (v) ideal
observation time: nighttimes under a clear sky and calm conditions are the best times for
investigating AUHIs, but thermal data taken during the daytimes are more suitable for
investigating SUHIs [29].

Furthermore, Oke distinguished two types of AUHIs [30]: the urban canopy layer
(UCL) and the urban boundary layer (UBL). A UCL is formed by microscale activities
occurring in urban streets—often referred to as “canyons”—that connect buildings situated
under the roofline [31]. By contrast, a UBL is a localized mesoscale phenomenon that is
influenced by the nature of the urban topography above the roofline [31]. Fixed and mobile
instruments can be used to observe UBLs and UCLs. While the most common devices used
to monitor UCLs are fixed screens and automobiles, UBLs can be observed using fixed tower
sodars or aircrafts and tetroons [32]. However, these instruments and techniques are time-
and budget-consuming, especially when focusing on city-, metropolitan-, or mega-city-scale
and regional studies. Moreover, the availability of historical or up-to-date measurements is
another obstacle that hinders investigating historical trends of AUHIs. Conversely, using
satellite-derived data, spatiotemporal studies of SUHI distribution may be conducted in a
cost-effective and time-saving manner [33] at local and regional scales.

The use of remotely sensed data to study urban climate started in the 1970s as a result
of successful observational satellite programs such as Television InfraRed Observational
Satellite (TIROS), Nimbus, Environmental Science Services Administration Satellite (ESSA),
and Landsat, resulting in the launch of several satellites—notably TIROS-1 (1960), Nim-
bus series (1964–1978), ESSA-1 (1966), and Landsat series (since 1972). Reportedly, Rao
may have been the first to show that satellite imagery can be used to investigate urban
climate [34]. Through his study, he investigated surface temperature trends in cities across
the Mid-Atlantic coast of the US using the infrared radiometer (IR) data of TIROS-I. Sub-
sequently, other studies using similar approaches followed. For instance, Matson et al.
used NOAA-5 satellite data to identify nocturnal UHIs in the Midwest and Northwestern
US [35], and Price investigated UHIs in New York City and the New England region [36].
Taking advantage of the significant advancements in computing software and hardware in
the last two decades, researchers have been able to concisely investigate SUHIs and their
driving factors vis-à-vis LULC in different regions of the world, relying on sophisticated
developed techniques to retrieve land surface temperatures (LSTs) and extract LULC infor-
mation from freely accessible historical satellite data covering almost half a century of data.
Particularly, Landsat series data have been extensively used to evaluate the connection
between LULC and LST.

Several review studies have been published in recent years that summarize our knowl-
edge on SUHIs from multiple perspectives, including LST retrieval methods from thermal
sensors [37], exploring factors amplifying its intensity [38], and mitigation strategies [39].
Deilami et al., for instance, focused on how spatial factors (e.g., LULC and urban form),
dynamics, and temporal variations (e.g., yearly and seasonal) impact SUHIs. The authors
reviewed studies published between 1965 and 2017 [38]. In a broad yet comprehensive
review, Zhou et al. explored several aspects based on the literature published from 1972
to 2018 [10]. The authors investigated the popular thermal sensors and methods used to
retrieve SUHIs from them in addition to the main drivers of SUHI variations. While most
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review studies have focused on a worldwide geographic scope, others have focused on a
concise geographic scale limited to a region or even a country. Kotharkar et al., for instance,
concentrated their review on South Asian cities because the region hosts approximately 15%
of the world’s population [40]. The authors reviewed published papers between 1973 and
2017, with a primary focus on investigating empirical measurements of UHIs, observation,
modeling, their impact, and proposed mitigation strategies.

In this review paper, however, we focus on how spatial and temporal changes of
different factors, in particular those related to LULC, have impacted SUHIs in cities across
the globe from the turn of the 21st century till the present. In addition to the characteristics
of the reviewed literature in terms of annual trends, sources, and geographical coverage,
a detailed key points analysis that concerns five critical topics was conducted: (1) the
primary data sources and methods employed for extracting LULC and retrieving LST infor-
mation, (2) the methods used for evaluating LULC and SUHIs, (3) the most common factors
deemed critical in affecting SUHI magnitude across time and space, (4) an overview of the
proposed mitigation strategies, and finally (5), the main limitations and future directions.

With that in mind, the overall structure of this review takes the form of five sections,
excluding this introductory section. Section 2 is concerned with the followed review
methodology, specifically the selection criteria of the reviewed literature and the main
considered databases. Section 3 presents a general synopsis of the findings of the review,
focusing on the synthesis of the literature and geographical coverage of the reviewed
studies. In Section 4, a detailed analysis of the obtained results focusing on seven key ele-
ments is presented: (i) the main satellite data sources, (ii) the methods of LULC extraction,
(iii) the methods of SUHI quantification, (iv) the assessment methods of the relationship
between LULC and SUHIs, (v) the main factors affecting UHIs, (vi) the proposed mitigation
strategies, and lastly (vii), the future challenges and areas for further research. Section 5
summarizes the findings.

2. Review Methodology

In this review, we concentrated on the literature focusing on connections between
LULC spatiotemporal changes and UHIs, specifically SUHIs extracted from satellite images.
For that reason and because satellite images have become more accessible, we concen-
trated on studies published in the last two decades—precisely between January 2001 and
November 2020. The management of remotely sensed data has become easy, thanks to the
advancement of GIS in terms of software and hardware (computer performance). Three
databases were explored, namely: Scopus, Web of Science, and Google Scholar. Further-
more, only peer-reviewed journal articles written in English were retained. Conference
papers, book chapters, reports, and other types were excluded.

Regarding the followed inclusion strategy, we employed a four-step approach (Figure 1)
to screen the existing literature. First, we identified published papers based on a broad
search query. Considering the varying terminology employed by researchers, we built
search queries by combining possible variants of key terms including: “UHI”, “urban
heat island”, “land use”, “LULC”, “spatiotemporal”, and “satellite image”. Second, we
conducted an initial assessment of the resulting papers based on their titles and abstracts.
We excluded unrelated papers, including health- and energy-focused and climatology-related
papers—notably those concerning simulation and numeric modeling. Third, a deeper
screening was conducted to further refine the resulting papers from the previous screening
based on the content of each paper, following the filtering out of duplicated papers collected
from the three considered indexing databases. Through this deep screening, we ensured
that the included manuscripts satisfied the following requirements:

• At least two-date satellite images were used to analyze changes of LULC and SUHIs.
• The authors explicitly assessed the relationship between the different LULC classes

and SUHIs.
• The study was city-focused; district-level and regional-level studies were excluded.
• For multicity studies, we considered each city as a case study.
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Figure 1. Methodological flowchart.

This process yielded a total of 110 eligible papers out of 1300 (duplicates included)
initially found, based on selection queries. Three other studies that fit our inclusion
criteria were added because they were not included in the query-based search results.
Relevant attributes for each retained manuscript—including author(s), title, source, year of
publication, and keywords—were collected. Additionally, we gathered the characteristics
of the target area(s), namely: country, climate region, type (i.e., landlocked or coastal), and
size (via population and/or spatial extent). Information related to spatiotemporal LULC
changes was also recorded. We focused on study period, data sources, considered seasons,
day/night, and LULC extraction method(s). A detailed list of all included studies with a
brief description of used methods, the characteristics of the study area(s), and results is
presented in the Supplementary Materials.

3. General Findings

This section presents a descriptive statistical analysis of the gathered literature.
Section 3.1 describes the statistical results regarding the yearly growth and publication
sources of the selected papers. Section 3.2 provides insights regarding the investigated
cities in terms of their geographical distribution concerning their physical characteristics
(e.g., climate and topography). Section 3.3 describes the general characteristics of the
reviewed publications in terms of the selected study areas and study periods.

3.1. Literature Synopsis: Trends and Source

Figure 2 shows the yearly counts of published papers investigating the relationship
between LULC changes and SUHIs. Two noteworthy findings emerge from these counts.
First, the usage of satellite images to investigate UHIs vis-à-vis spatiotemporal LULC
changes is still in its initial phase, which is reflected by the short period and a small
number of annually published studies (25 at most). It should be noted that the lower
number of studies was possibly due to the selection criteria we adopted, as we required
at least two dates to analyze LULC changes and, subsequently, SUHIs. The reader is
referred to a more inclusive review by Zhou et al. regarding a longer coverage time range
and looser inclusion criteria [10]. Second, a generally increasing tendency in the annual
numbers can be seen, especially since 2010, suggesting a rising interest in this research
topic. This could be attributed to the fact that medium-spatial-resolution Landsat data
have been made freely accessible since then. Furthermore, the significant optimization of
computing capabilities (e.g., big data storage and short execution/processing timing) in
the last two decades, together with the significant and constant improvement in GIS and
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remote sensing methods, has attracted a growing number of researchers to contribute to
this important topic.
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In terms of publication sources, the selected literature appeared in 61 journals. A
vast majority of studies were published in Sustainability (10.8%) and Urban Climate (9.6%).
Other top leading journals included the International Journal of Remote Sensing, Remote
Sensing, and Sustainable Cities and Society, with 7.2% each. About 6% of articles were
published in the International Journal of Applied Earth Observation and Geoinformation and
ISPRS Journal of Photogrammetry and Remote Sensing.

3.2. Geographical Coverage and Cities Characteristics

Figure 3 displays the geographical distribution of the investigated studies. It should
be noted that the number of studies does not correspond to the number of cities, as
several considered studies analyzed multiple cities at once, notably [41], where the authors
investigated the interlacement between LULC changes and the magnitude of UHIs in
10 Indian cities.

From a geographical standpoint, SUHI–LULC links investigated in 133 cities of
27 countries worldwide were reported. Figure 3 illustrates the spatial distribution of
the total numbers of the considered studies in every country. Investigations focusing on
Asian cities were predominant (83.2%). Few studies focused on cities in Africa (6.6%),
South America (3.6%), North America (2.9%), Europe (2.2%), and Oceania (1.5%).

In terms of climatological characteristics, the spatial distribution and percentage of
investigated cities based on their zones on the Köppen–Geiger climate system—according
to a recent update published in [42]—are illustrated in Figure 3 and Table 1. Most investi-
gated cities (42%) are characterized by a temperate climate. Specifically, those located in
humid subtropical (Cfa) and dry-winter humid subtropical (Cwa) were found to represent
23.4% and 12.4% of all investigated cities, respectively. Most of these cities are located in
Asia, such as Shanghai, Fuzhou, and Wuhan for Cfa and Guangzhou, Shenzhen, and Hanoi
for Cwa. These climates are generally characterized by mild-to-warm summers and cool-to-
cold winters [43]. Desert-climate cities were also found to be common target areas, as about
25% of all cities are located in such climate regions, most likely because UHIs thrive in such
climates due to limited vegetation cover and water resources. Researchers have mainly
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focused on cities with hot arid (BWh) and hot semiarid (BSh) climates, with each of them
representing 10% of the total considered cities. Another 23% of the examined cities belong
to the tropical climates, with a focus on cities enjoying Aw (tropical savanna) climate (14%).
Constant high temperatures typically characterize a tropical climate. Continental-climate
cities were found to be the least investigated, with a share of only 10%, and approximately
7% of these studies focused on the Dwa (hot summer continental) climate. This climate has
warm months that average between 10 and 20 ◦C, and its cold months are at or below 0 ◦C.
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Overall, cities with hot summers (BSh, BWh, and Dwa), and humid/dry winters (Cfa,
Cwa, and Aw) were found to be the most investigated cities. The focus on cities under these
specific climates is attributed to many reasons. First, increasing SUHI magnitudes directly
impacts climate change and urban expansion, especially since most cities under these
climate regimes are situated in developing countries. Second, in contrast to tropical and
continental cities, satellite data covering desert cities are not ruined by high percentages of
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clouds during most seasons of the year. This specific issue, which is discussed in detail in
Section 4.7.1, is the most challenging obstacle facing studies investigating SUHIs in general
and particularly those focusing on connections between SUHIs and LULC over wide areas
and long time.

Table 1. Share of studies regarding the climate regions classified based on Köppen climate classification.

Temperate Arid Tropical Continental

41.6% 24.8% 23.4% 10.2%

Cfa Cwa Csa Csb Cwb BSh BWh BSk BWk Aw Am Af Dwa Dfa

23.4% 12.4% 4.4% 0.72% 0.72% 10.2% 10.2% 3.6% 0.7% 13.9% 5.1% 4.4% 7.3% 0.7%

3.3. General Characteristics: Study Periods and Target Areas

The use of historical remotely sensed data going back to the 1970s has made it possible
to study decadal LULC spatiotemporal changes, as well as their impact on LST. Over half of
the studies used research durations of more than 10 years, as shown in Figure 4. Selecting
such lengthy periods helped provide distinct contrasts between past and current trends.
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To accommodate explosive population increases in developing countries while en-
suring faster economic growth, urbanization rates in such countries are generally faster
than those observed in developed countries. Previous studies have affirmed that urban
expansion is one of the leading drivers of SUHI development in UAs. These facts are
reflected in the number of target areas in developing countries presented in Figure 5,
illustrating the number of reviewed studies per country categorized according to their
development indexes [44]. In detail, compared to 7.3% in developed countries, 92.7%
of investigations were reported in developing nations. Chinese and Indian cities have
been the most investigated. Shanghai was ranked first, with nine publications [20,45–52],
followed by Delhi [22,53–56] and Beijing [48,57–60], with five publications each.
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4. Content Key Focuses

This section focuses on the key elements used in the literature to study the interlace-
ments between LULC changes and SUHIs. Firstly, we identify and compare the main data
sources used in terms of offered advantages and limitations (Section 4.1). Secondly, we
detail the most common techniques of LULC extraction (Section 4.2) and SUHI calculation
(Section 4.3). Thirdly, qualitative and quantitative methods for analyzing the association of
LULC and UHI changes in cities are detailed (Section 4.4). Next, we provide an overview
of the factors affecting SUHIs (Section 4.5). Finally, the mitigation strategies recommended
in the considered literature (Section 4.6), followed by the limitations and future directions
(Section 4.7), are summarized.

4.1. Data Sources

Table 2 shows the most common satellite data sources used to extract LULC changes
and/or LST retrieval. Landsat series satellite data were found to have been dominant
among researchers (95.5%), followed by MODIS (10.9%) and ASTER (4.5%). Only one
study relied on HJ-1B data (0.9%). Other sources of imagery were found to include
high-resolution satellites mainly used for LULC classification validation purposes such as
IKONOS [61], SPOT [62,63], IRS LISS-III [64], and Sentinel 2A [65]. Additionally, Table 2
shows the percentage of studies based on the considered study periods. Landsat data are
often used for all study period ranges—specifically for periods between 10 and 20 years
(37%). MODIS data, on the other hand, are generally used in medium-study-period studies
(50%). Regarding high-resolution imagery, they were used extensively in studies focusing
on medium-period studies (43%). It should be noted that this imagery type is generally
used for validation of LULC classification rather than LULC changes analysis.

Landsat series satellite data were used in approximately 95.9% of the considered
literature for LULC extraction, LST retrieval, or (mostly) for both. More than half of
reviewed studies (77.6%) were found to have used Landsat series data to investigate
medium-to-very-long (more than 10 years) LULC changes between 1980 and 2020 (Table 2).
As a cooperation program between the National Aeronautics and Space Administration
(NASA) and the United States Geological Survey (USGS), the series has been operating
since 1972 and consists of eight satellites that can image the earth in moderate resolution.
They are considered to comprise the longest-running optical remote-sensing-based satellite
constellation for monitoring the earth. The Landsat Multispectral Scanner (MSS) was used
on Landsat 1–5. For Landsats 4 and 5, the Thematic Mapper (TM) sensor was also mounted.
Landsat 6 was an upgraded version of its predecessors, carrying MSS and the Enhanced
Thematic Mapper (ETM). However, it did not reach orbit. Landsat 7 was launched in
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1999 with the ETM plus (ETM+) on board. While the satellite is active, its resulting scenes
have missed approximately 22% of the data due to failure in the Scan Line Corrector since
May 2003. The primary sensors on Landsat 8 are the Operational Land Imager (OLI) and
the Thermal Infrared Sensor (TIRS). Though LULC information could be extracted from
early images, temperature information retrieval was made possible in July 1982 when the
TM sensor was introduced to Landsat 4 and others onward.

Table 2. Share of studies regarding the satellite data source used/study period considered categorized based on
imagery resolution.

Spatial Resolution Satellite/Sensor and Total Studies (%)
Use Per Study Period Length

Classification * Total (%)

High resolution All sources (13.6%) including IKONOS, SPOT, GeoEye,
and QuickBird

Short 28.6
Medium 42.9

Long 21.4
Very long 7.1

Medium resolution
Landsat Series

(95.5%)
ASTER (4.5%) HJ-1B (0.9%)

Short 22.4
Medium 31.8

Long 37.4
Very long 8.4

Low resolution MODIS (10.9%)

Short 25.0
Medium 50.0

Long 25.0
Very long 0.0

* Study period length is classified based on the following: Short = [>10]; Medium [≥10 and <20]; Long [≥20 and <30]; and Very long [≥30].

Landsat data are popular among researchers for many reasons. First, the data have
been provided at no cost since January 2009, when the USGS made all Landsat data free to
the public (Landsat 7 data were made free in October 2008). Before that, a single scene’s
costs varied between $20 and $4000 [66]. This has been beneficial, especially for studies
focusing on developing nations characterized by fast urbanization trends and population
growth. Second, Landsat data are considered to comprise the genuine global archive that
has constantly been updated for almost half a century following a strategy of regular
imagery acquisition rather than the limited acquisition on images of interest or ready for
purchase [66]. Third, the characteristics of the latest satellites and their imagery, mainly
those related to spatial resolution, revisiting cycle, and swath dimensions (Table A1) (which
are described as moderate), are convenient for most LULC and SUHI studies focusing on
cities. Generally, one scene per city is needed. However, depending on the geographic
location of some cities with regard to the path and row of the satellite, mosaicking multiple
scenes may be required (see [67]). Fourth, the extensive use of Landsat imagery has been
an incentive to develop well-documented techniques for optimal use.

MODIS: The second commonly used satellite imagery for LULC/SUHI studies is that
of MODIS (10.9%). In general, MODIS data have been used in SUHI studies focusing on
medium study periods (between 10 and 20 years) (Table 2) and/or seasonal variations.
MODIS is an acronym that stands for Moderate Resolution Imaging Spectroradiometer.
It is a NASA Earth Observing System (EOS) sensor that flies on NASA’s Terra (1999) and
Aqua (2002) satellites. Terra’s orbit crosses the equator from north to south in the morning,
and Aqua crosses the equator from south to north in the afternoon, providing worldwide
coverage every 1–2 days. The EOS satellites have a scanning pattern of 55 degrees and
orbit at the height of 705 km, with a swath width of 2330 km.

ASTER: ASTER imagery has been used in 4.5% of studies, making it the third most
popular source. ASTER is another sensor mounted on the Aqua satellite launched into orbit
in 1999. Given its capabilities, ASTER is usually used for nighttime analysis [54]. Satellite
datasets of Terra ASTER level-1B contain radiometrically calibrated and geometrically
registered data for all ASTER channels [54].
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HJ-1B: Another imagery source used in the considered literature is HJ-1B, an optical
minisatellite (2008) that forms the HJ-1 (Huan Jing = Environment) constellation along
with another two small satellites—optical HJ-1A (2008) and radar HJ-1C (2012). The instru-
ments onboard HJ-1B include two charge-coupled device (CCD) cameras and an infrared
(IRS) camera whose spatial resolution range is between 30 and 300 m [68]. Although the
minisatellite constellation is primarily designed for environmental monitoring and disaster
risk assessment such as floods and forest fires [68,69], HJ-1B imagery was used to assess
the relationship of LULC and SUHIs in [70].

4.2. LULC Classification: Types, Methods, and Indices

In this subsection, we shed light on the procedure of extracting LULC information from
satellite data, focusing on (i) regularly adopted LULC classification schemes, (ii) LULC
extraction methods including supervised and unsupervised methods, and (iii) indices
used in tandem with LULC classification to identify the composition or configuration of
target areas.

4.2.1. LULC Types

In the considered literature, authors often opted for different LULC classifications
depending on several factors, including the geographical settings of the study area, the main
focus of the study, and the quality of remotely sensed data. While the terminology used to
depict each varies from one study to another, it was observed that the four classes most
often present in most cases were UA, vegetation, water, and bare land.

In most cases, LULC types are defined based on the authors’ or experts’ knowledge of
the geographic settings of the targeted area. In [71], for instance, the authors selected LULC
classes as a result of consultation with an expert familiar with the city of Erbil to better assess
the associations between LULC and LST. Another approach for determining LULC classes
is to rely on the classification scheme provided by governmental or scientific agencies.
For example, several studies focusing on Chinese cities used the land use classification
system by the China National Committee of Agricultural Divisions dated back to 1984 [72]
or by the Chinese Academy of Sciences (as in [73]). In comparative studies focusing on
cities with similar characteristics (e.g., climate and landscape configuration) that are not
necessarily located within the same country or region, authors have preferred to use a
unified classification system such as the USGS 24-category land use categories. Fan et al.,
for example, used USGS 24 to compare the impacts of the spatiotemporal variations of
LULC on UHIs in five desert cities located on three different continents (North America,
Africa, and Asia) [5]. Additionally, there have been instances where authors used ready
LULC classes based on inventories published by scientific agencies. An example of such an
occurrence could be found in the study on the Polish city of Poznań [74], where the authors
used the Europe-focused CORINE Land Cover inventory, with a total of 44 classes, updated
and maintained regularly within the Copernicus Programme [75]. The same classification
scheme was also followed in a comparative study of the effects of SUHIs in seven big
Turkish cities [76].

A few studies were found to combine LULC types into few representative classes, as
in [77], where the authors combined multiple LULC types into what they called “functional
zones”. For instance, a functional zone labeled as “dense green space” was created as a
result of the combination of several types of forests (indigenous, plantations, and thicket),
water bodies, and wetlands. Besides the high multiplicity of LULC types and the small
spatial extent of certain types, the main rationale behind this approach, according to the
authors, was the similarity of the properties of the combined types. Huang and Wang
opted for a similar approach by defining “urban functional zones” (UFZs), which are
abstracted from typical LULC types to depict human activities [78]. On the other hand,
it was observed that authors generally tended to expand typical LULC types to more
representative classes to evaluate their impacts on SUHIs. For instance, vegetation classes
were classified into several types based on their density [79,80] or types [79]. In the same
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vein, urban development types were expanded to further understand the impact of different
types of urban expansion on the worsening of UHIs.

In addition to typical LULC classes such as IS, vegetation, water, and cropland, Tran
et al. classified urbanized areas into different categories to reflect their actual development
types [80]: (i) infill, which refers to newly developed constructions surrounded by older
built-up areas; (ii) extension, depicting new constructions intersecting with older built-
up areas; and (iii) leapfrog development, describing new built-up areas separated from
old UAs. The authors found that infill development exhibits the highest LST, followed
by extension and (lastly) by leapfrog development, which is attributed to the high-LST
LULC types surrounding infill and the good planning policies followed when constructing
leapfrog UAs, which require proximity to public spaces such as parks and water bodies. It
is evident that selecting convenient LULC classes for SUHI studies is a crucial step that
might provide new insight and improve the understanding of the influence of different
LULC types on SUHIs.

4.2.2. Extraction Methods

Pixel-, subpixel-, and object-based classifications have been used in revised studies
using parametric and nonparametric methods. Though parametric methods, including
the maximum likelihood classifier (MLC) and iterative self-organizing data analysis (ISO-
DATA), are the most used, nonparametric machine-learning algorithms were found to
have gained ground in recent SUHI-related publications. Such methods include sup-
port vector machine (SVM; [61,76,81–83]), random forest (RF; [81–85]), k-nearest neighbor
(kNN; [81–83]), and neural networks (NNs; [81–83]). Nonparametric techniques present
the advantage of being able to be used without a priori assumption on data distribution.
This advantage has enabled researchers to evaluate several algorithms to determine which
one has the highest accuracy scores. For instance, in [83], the authors compared four
different classification techniques: SVM, kNN, RF, and NN. SVM outperformed all in terms
of overall accuracy and kappa statistic. A similar approach and identical set of algorithms
were employed in [81,82].

Regarding accuracy, studies relying on supervised methods have typically used a
confusion matrix, also known as an error matrix, which encompasses statistics comparing
the count of real samples and the corresponding predicted ones. Overall accuracy is the
generally used metric to assess classification results, which correspond to the percentage
of correctly predicted samples of all classes. Two other metrics reflecting the accuracies
of different classes have also been calculated: the user’s accuracy and the producer’s
accuracy [31,41,80,86–99]. Another measure used in tandem with the aforementioned
accuracy metrics or alone is the kappa statistic [100], the values of which range between
0 and 1. The lowest values indicate slight to nonagreement between two datasets. In
detail, according to Monserud and Leemans, values below 0.4 indicate poor or very poor
agreement, values between 0.4 and 0.55 indicate fair agreement, values between 0.55 and
0.7 indicate good agreement, values between 0.7 and 0.85 indicate very good agreement,
and values above 0.85 indicate excellent agreement between images [101].

For most studies, the minimum required for the overall classification accuracy was
85%, following the recommendations of [102,103]. More recent studies have applied an even
stricter accuracy threshold of 90% for both overall accuracy and kappa statistic, as suggested
in [104]. These demanding requirements may be attributed to the decreasing spatial
resolution of recent remotely sensed data, along with the advancements of classification
techniques. Nevertheless, it was difficult to reach such high accuracies in some cases.
Fan et al., for example, employed an object-based classifier to perform eight-class LULC
classification in five desert cities [5]. The authors succeeded in achieving accuracies superior
to 85% for all three target years in the considered cities except for those of the Indian city
of Jodhpur—which ranged between 80% and 82.57%. They attributed this relatively
low accuracy to the complex spatial distribution of different LULC classes alongside the
similarity of spectral responses in several of these classes. For this reason, unsupervised
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classification is usually first conducted by using satellite data to determine the spectral
separability of the LULC classes [54]. Unsupervised methods include ISODATA alone or
as a hybrid method with a supervised algorithm [105]. The initial use of a hybrid approach
initially allows authors to gain insight into the number of major spectral differences [77].
Other studies have solely relied on an unsupervised approach [92,99,106].

Samples for validation purposes have been collected through field surveys using
GPS [54,93,107,108] and aerial photos [51,72], as well as being extracted from the commercial
imagery of high-resolution satellites such as IKONOS [58,109], SPOT [51,52,63,72,107,110,111],
QuickBird [20,58], GeoEye [111], and GaoFen-1 [112] provided by private companies.
However, researchers are moving away from these methods for several reasons. First,
fieldwork is a time- and budget-consuming task that requires hefty effort. Second, high-
resolution images are costly, which has led to issues related to the availability of historical
data in many regions in the world. In recent years, however, the free-of-charge Google Earth
has offered a reliable alternative for these traditional sources to extract balanced validation
points using sampling techniques such as stratified random sampling [76,99,113–115].

4.2.3. Indices as LULC Proxy

The use of indices calculated from different sensors bands or other indices was found
to be common in the reviewed literature. Authors have used these indices to further
assess the relationship between LST and different characteristics of target areas including
biophysical properties, landscape composition and/or configuration, and (less frequently),
an alternative approach to the supervised/unsupervised methods for extracting LULC
types. Table A2 lists the most employed indices in the reviewed studies, as well as the
proportion of each category of indices. Broadly, the employed indices were found to fall
into five categories: vegetation, built-up, water, bare land, and landscape metrics.

There are several vegetation-related indices. However, the normalized difference
vegetation index (NDVI) and fractional vegetation cover (FVC) remain the most employed
indices, accounting for 52.5% and 8.2%, respectively, of SUHI research. The NDVI has
been solely used to extract emissivity values for LST retrieval (Section 4.3.1) in several
studies; as a result, these studies were not included in this analysis. A few other studies
relied on the soil-adjusted vegetation index (SAVI), transformed difference vegetation index
(TDVI), and enhanced vegetation index (EVI), which were used together only in 4.5% of
reviewed studies.

The built-up indices were found to be second in terms of frequency of use in the
reviewed studies. While several new indices, including the enhanced built-up and bareness
index (EBBI), index-based built-up index (IBI), and normalized difference impervious
surface index (NDISI)—accounting for 2.7%, 0.9%, and 0.9%, respectively—have been in-
troduced in recent studies, the normalized difference built-up index (NDBI) was employed
in almost 24.5% of studies to represent built-up areas. Water was mostly represented by the
modified difference water index (NDWI) in about 7.3% of studies, followed by the modified
normalized difference water index (MNDWI) with a share of 6.4%. Of the studies, only
0.8% relied on the land surface water index (LSWI) and normalized difference moisture
index (NDMI) each. Two indices were used as proxies of bare lands: the normalized
difference bareness index (NDBaI) and dry bare-soil index (DBSI), which were found to
account for, respectively, 4.9% and 2.1% of studies. Landscape metrics, both compositional
and configurational, were employed in approximately 5.7% of studies.

4.3. SUHI Calculation Methods

In this subsection, we shed light on the approaches employed in the considered litera-
ture to quantify SUHIs. The approaches roughly fall into two categories: the first consists of
methods using retrieved LST as a proxy, and the second is based on the calculation of SUHI
intensity defined as LST differences between UAs and less developed areas (e.g., rural).
Numerous studies combined both approaches. Though LST retrieval is a critical step in the
process, a detailed description of the different methods used is beyond the scope of this
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review. Instead, the reader is referred to a published review by Li et al. for a comprehensive
summary of the methodologies and algorithms developed for LST retrieval [116].

4.3.1. LST as a Proxy of SUHI

LST is regarded as the land surface’s radiative skin temperature [117], which is consid-
ered a key element in the physics of the land surface through energy and water exchanges
with the atmosphere [109]. Though LST is believed to be more adequate for quantifying
UHIs at urban canopy layers [6], SUHIs tend to follow the same patterns as AUHIs accord-
ing to several previous studies [118–120]. In most of the considered literature, LST was
used as the sole proxy of SUHIs to analyze their spatial variability concerning different
LULC classes, which can be attributed to the fact that LST is highly correlated with surface
properties [121]. Chen et al., for instance, classified the retrieved LST information into five
categories (very low, low, medium, high, and very high), reflecting its magnitude, based
on the deviation from the mean value [112]. The relationships between LST and different
LULC data are further detailed in the following section. In this section, an overview of the
methods of LST retrieval from satellite thermal data is presented as a critical step in the
reviewed literature.

The retrieval of LST from satellite thermal data is a complex but critical procedure in
SUHI studies. Its complexity resides not only in the multiple processes that are involved,
including radiometric sensor calibrations and the required adjustments for air and surface
emissivity [109] but also in the number of parameters that need to be accurately known,
such as emissivity transmittance and atmospheric temperature [114].

In general, efforts to retrieve surface temperature (ST) from the thermal data of
satellite sensors have been made since the late 1960s, when Anding and Kauth introduced
a method known as the split window (SW) that was capable of estimating sea surface
temperature [122]. Since then, numerous attempts were made to extend the SW technique
to obtain LST before the algorithm was extended to be able to retrieve it [123,124]. A wide
range of other algorithms and techniques have been additionally proposed to retrieve LST.

According to Li et al., LST-retrieval methods fall into three broad categories depending
on whether land surface emissivity (LSE) and atmospheric quantities are known [116]:
(i) retrieval methods with known LSE including single-channel (SC) algorithms, multichan-
nel (MC) algorithms, and multiangle algorithms; (ii) retrieval methods with unknown LSE
including the classification-based emissivity method (CBM) and NDVI-based emissivity
methods (NBEMs); and (iii) retrieval methods with unknown emissivity and unknown
atmospheric quantities. Among these methods, SC algorithms, characterized by their
simplicity, were found to have been widely used in the reviewed literature. As their name
suggests, they are used to extract LST from the thermal data of sensors with a single TIR
channel (e.g., Landsat 4–5 (TM) and 7 (ETM+)).

Various variants of the single-channel method have been proposed, notably the algo-
rithm (often referred to as the mono-window algorithm (MWA)) specifically developed
for the thermal band of Landsat 5 TM channel 6 by Qin et al. [125], which was applied
in multiple reviewed studies [14,94,112,114,126,127]. The MWA generally requires three
parameters: emissivity, transmittance, and effective mean atmospheric temperature [112].
Jiménez-Muñoz and Sobrino developed a universal single-channel (USC) algorithm capa-
ble of retrieving LST from any TIR channel requiring two parameters, such as atmospheric
moisture content and emissivity [128]. Similar to the MWA, the USC algorithm has been
applied in the considered literature across different cities [45,111]. SC algorithms, how-
ever, are limited in their applicability due to a variety of criteria that have been deemed
difficult, if not impossible, to meet—notably, the a priori knowledge of the emissivity of
each pixel [116] and detailed information about atmospheric profiles during the satellite
overpass of a given target area [51,116]. In contrast to SC algorithms, MC algorithms,
known as split-window algorithms, have been employed to retrieve LST from sensors with
multiple adjacent thermal bands, including Landsat 8 TIRS, ASTER, and MODIS without
the need for accurate atmospheric profile data at acquisition time.
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4.3.2. SUHI Intensity

SUHIi is the second most common approach that has been used to quantify SUHI
magnitudes in cities. Generally, SUHIi is the difference between retrieved LST means
calculated in UAs and their surroundings, often underdeveloped, including suburban or
rural areas. The boundary that has to be established to distinguish between the two regions
is problematic to define. Broadly, two methods have been employed in the literature.

The first heuristic approach relies on city features such as traffic rings, administrative
boundaries, and buffer zones. In a Shanghai-focused study [51], the authors divided the
target area into three sublevels based on the inner and outer traffic rings surrounding the
city: (i) the city proper located within the inner traffic ring, (ii) a periurban area within the
inner and outer traffic rings, and (iii) a region beyond the outer traffic ring, which is a rural
area with low-to-moderately dense residential areas, farmland, and natural surroundings.
After considering this layout, the authors calculated seasonal and interannual variations
of two SUHI intensity indices: the first was between the city center and surrounding
rural areas, and the other was between urban fringe and surrounding rural areas. A
similar approach has been employed in other cities such as Jinan city [107] and Fuzhou
city [72]. Another way to delineate urban and rural areas found in the literature consists
of using administrative boundaries [129]. Buffer zoning while centering the city core is
an alternative approach found in the literature to extract urban/rural areas. Rasul et al.
defined rural areas with a 10 km buffer zone beyond the city core [71]. However, the
authors did not report how the core was delineated. It should be noted that this approach
was applied to an arid city with outskirts characterized by quasi similar land cover classes.
Nonetheless, these heuristic approaches might not be suitable for studies focusing on the
decadal monitoring of SUHIi due to major changes in landscapes.

Other studies have opted to rely on LULC classification as a way to differentiate urban-
and nonurban-labeled pixels. Ultimately, the LST means of areas classed as nonurban
are subtracted from areas identified as nonurban, including vegetation (grass, forest, etc.)
and bare land. Numerous studies were found to have followed this approach [130,131].
Following the same concept, other studies employed ISs as proxies of UAs, and rural areas
have been represented by green space (GS) in most cases. This approach was applied, for
instance, by Estoque and Murayama to calculate the SUHIi in the tropical mountain of
Baguio, Philippines [12]. The authors calculated the SUHIi as the mean LST difference
between ISs and GSs. Furthermore, in an attempt to replicate the concept of the inter-zone
UHI intensity comparison proposed in [132], which involves an initial classification of the
landscape into urban or local climate zones followed by inter-zone temperature differences,
the authors distinguished two types of GS in addition to IS: a GS1 that includes forest and
shrubland and a GS2 that includes grassland and cultivated land. Subsequently, the SUHI
magnitude between the IS and other zones (GS, GS1, and GS2) was calculated. The same
approach was applied in Kandy City, Sri Lanka [83].

4.4. Relationship Assessment of LULC and SUHIs

Various methods have been employed to assess the relationship between LULC
changes and SUHI changes. Some studies used more than one method for the analysis,
either for comparison or validation purposes.

Regression analysis tops the list with approximately 20.9% of manuscripts. Ordi-
nary least square (OLS) regression has been used more frequently to characterize the
relationship between LST and LULC based on several indices presented in Section 4.2.3.
Though popular among researchers, OLS estimators present a major limitation; according
to Deilami et al. [133], they do not account for spatial variability, which leads to issues
associated with spatial autocorrelation and nonstationarity. Due to this limitation, the
geographically weighted regression (GWR) was used in several studies as a potential
alternative to counter OLS limitations. In GWR models, the spatial variability between the
response variable (LST) and explanatory variables (e.g., indices and other factors detailed in
Section 4.5) is taken into consideration. A GWR model generates estimates for every point
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in space based on local linear regression estimators that depend on a subset of information
from neighboring points [134]. Although it was found that GWR models outperform OLS
models in multiple studies [108,133–135], both procedures have their own benefits. In
contrast to GWR, which is more effective at the local level, OLS has been found to aid in
quantifying the impacts of various factors of SUHIs at the regional level [133,134].

Chart analysis, which relies on the zonal statistics method and is presented in the form
of charts to illustrate the relationship between LULC and SUHIs over time, was found to
come second (19.8%). Among the selected papers, 11 analyzed the mean LST for each LULC
category and compared the LST change in different years. Overall, the trend of mean LST
was found to be increasing in all LULC categories, and the built-up always had the highest
LST among all LULC categories [54]. Moreover, vegetation coverage is an essential factor
that can help cool cities and reduce the impact of LST. However, the benefit of vegetation
has not been given sufficient attention. For example, the percentage of vegetation was
found to have decreased from 6.3% to 1.9% over 25 years in Shiraz city, Iran [136]. At the
same time, the mean LST of vegetation changed from 35.1 ◦C in 1993 to 39.5 ◦C in 2018,
which proved that the cooling power of vegetation was affected by the total quantity. More
accurate analyses would help to better identify the impact of different LULC types on LST.
For instance, some authors plotted the space lattice of the LST, NDVI, and LULC, and the
results showed that the LST values of water and green spaces were lower than those of
built-up and cropland spaces [137].

Correlation analysis was found to be the third most common method (8%), and it
has often been used together with regression analysis. We distinguish three types of cor-
relations used in reviewed studies: (i) Pearson correlation, (ii) Kendall rank correlation,
and (iii) canonical correlation analysis. Pearson correlation was used in most of the stud-
ies [11,45,52,97,99]. Only two studies opted for the other two types. Lo and Quattrochi used
both canonical and Pearson correlations analyses to investigate the relationship between
LST spatial patterns and those of volatile organic compounds (VOC) and nitrogen oxide
(NOx) emissions in Atlanta, US [31]. Kendall rank correlation was used in [5] to detect the
monotonic dependence between SUHIs and relative urban-rural vegetation differences—a
metric that measures the difference of NDVI means in urban and rural areas—concerning
the populations and UAs of five desert cities. The authors argued that Kendall’s coefficient
offers resistance against outliers and missing values in addition to its capability to iden-
tify any type of monotonic relationship—not just linear dependence, as measured by the
Pearson coefficient.

Calculating the contribution index (CI) was found to be another common approach
(8%) used to evaluate the impacts of different LULC types on LST variations. The CI
measures the thermal contribution of various LULC categories on the LST by multiplying
the proportion of a given LULC type to the entire study area by the difference between the
mean LST of the LULC type in the question and that of the whole study area. Positive CI
values of an LULC type indicate a direct influence on enhancing SUHIs, whereas negative
values indicate a negative effect on SUHIs [138]. The index was first employed by Chen
et al. to assess the impact of 10-year LUCL spatiotemporal changes on SUHIs at a regional-
scale level in the Pearl River Delta located in Guangdong Province and a city-scale level
in Shenzhen city [87]. It was then used in multiple studies in different research areas,
including Shenyang, China [94]; Ethekwini, South Africa [77]; Wuhan, China [139]; Malda,
India [138]; and Delhi, India [55]. Based on the obtained CI values of different LULC
types, Pramanik and Punia further calculated another index called the landscape index
(LI), defined as the quotient of the CI of SUHI sink (i.e., croplands, vegetation, and water
bodies) and source (i.e., built-up, fallow, and bare lands) landscapes [55].

Though fewer, other noteworthy methods such as the ANOVA test [61], the crossover
comparison method [12,83], grid-level analysis [11], centroid movement analysis [45,140],
temperature vegetation index space [55,141], and hot-spot analysis [80] have also been
used in studies.
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4.5. Factors Affecting SUHIs

Various factors contribute to variations in SUHI magnitude over space and time. While
the examined literature mainly focused on the impacts of LULC types and their interannual
dynamics, the effects of additional variables were also investigated. Figure 6 shows the
main factors that were found to have been used in the reviewed literature, as well as the
most common combinations between them. These variables fall into four broad categories:
(i) LULC types and their spatiotemporal dynamics, (ii) landscape composition and configu-
ration, (iii) terrain characteristics, and (iv) socioeconomic factors. In the following section,
we provide a detailed explanation of the main factors included in each category.
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4.5.1. LULC Types and Their Spatiotemporal Dynamics

The conversion of land cover to urban land uses across space and over time has been
singled out in most reviewed studies as the primary cause for the increase in recorded
LST values in UAs and ultimately high SUHI intensity in cities across the globe, regardless
of their climates or geographic settings. In the tropical Malaysian capital city of Kuala
Lumpur, for instance, Amanollahi et al. found that the LSTs of areas previously covered by
forest and light vegetation before being transformed into UAs as a result of a 16-year urban
sprawl (1990–2006) had increased by 4 and 3 ◦C, respectively [142]. Similar observations
were reported in [97] for the temperate Indian municipality of English Bazar, where the
LULC dynamics of 23 years (1991–2014) resulted in the radical transformation of multiple
land cover classes into the built-up areas of water, agricultural lands, and Mango orchards,
which led to increases in LST values by 1.9, 1.4, and 1.5 ◦C, respectively. In Beijing, a
continental-climate city, Guo et al. noticed an 8% increase in ISs from 2005 to 2015, resulting
in the mean LST of ISs being about 2 ◦C higher than that recorded in green areas [59]. In
an arid climate, El-Hattab et al. found an increase of approximately 1.6 ◦C in Cairo from
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1984 to 2015 as a result of a heavy urban expansion and vegetation cover loss [143]. In
mountain cities, identical tendencies were also observed. Increases in SUHIi were reported,
for instance, in Baguio (+0.7 ◦C between 1987 and 2015) [12] and Kandy (+2.3 ◦C between
1996 and 2017) [83].

The resulting LULC spatial structure has been found to predominantly affect the
spatial patterns of the recorded LST and to intensify SUHI effects [80]. By examining
various studies carried out in different cities across the globe, we compiled a list of the
LULC types with considerable influence on SUHIs including ISs/UAs, vegetation, water
bodies, and seasonal variations.

• IS/UA: UAs, along with pavements and road networks, form ISs. A substantial
body of research points to the fact that ISs have strong warming effects in cities [20],
regardless of the reigning climate (tropical, desert, etc.) or the geographical settings
(topography, elevation, etc.). While some studies have focused on ISs, others have
separately investigated the effects of UAs, roads, and pavements on UHI. However,
both sets of studies concluded that the highest LST values are exhibited by either UAs
or ISs [11,14,41,45,72,74,80,97,111,112,115,126,133]. Regarding association, it has been
found that both ISs and UAs have strong and significant linear positive correlations
with LST [80,87,99,112] during all seasons [97]. This is attributed to the fact ISs absorb
more solar radiation and have greater thermal capacities and conductivities, allowing
heat to be retained during the day and released at night [143]. Ultimately, urban
expansion exacerbates this process. Tran et al. estimated that a 1% increase in UAs in
the Hanoi inner city could raise the surface temperature anywhere between 0.075 and
0.108 ◦C [80]. Urban expansion, however, does not only concern the size of UAs (i.e.,
footprint areas), due not only to their low albedo roofing materials (e.g., concrete and
asbestoses)—as observed in [11,33,106,113]—but also the buildings’ heights [56,76],
UA density [112], porosity (defined as the ratio of total open space to total built-up
areas [133]), and UA development level [74]. Another IS component, which consists
of pavements such as parking lots and harbor jetty covered with dark materials such
as asphalt, was found to be a significant contributor to UHIs [33]. Roads, on the other
hand, have been found to increase SUHI impacts in two ways: first through their
paved surfaces that absorb shortwave radiation and store heat throughout the day and
release it slowly at night [99] (similarly to other pavements) and second via emissions
produced by traffic passing through them.

• Vegetation: In contrast to ISs, vegetation absorbs solar radiation and removes a
great amount of stored heat via evapotranspiration—a process that releases water
vapor into the ambient air and subsequently contributes to cooling surrounding
areas [11,12]. The relationship between LST and vegetation cover is complex. It
depends on many considerations related to the study area (e.g., seasonal variations and
landscape topography) and the characteristics of the vegetation cover itself (e.g., the
nature of species, heights, and density). Numerous studies in the reviewed literature
reported a negative linear relationship between LST and vegetation, as quantified
through multiple indices (refer to Section 4.2.3 for a detailed list), most notably the
NDVI [11,45,53,87,88,98,111,126,136,144–149] and FVC [53]. Rotem-Mindali et al. even
found an exponential relationship between the NDVI and LST [150]. A few other
studies reported negligible correlation due to various possible causes. Rasul et al.,
for instance, found a weak yet significant inverse relationship between LST and the
NDVI during the summer season in the city of Erbil, Iraq, which is characterized by a
temperate climate [71]. After considering seasonal variations in the Chinese city of
Jinan, Meng and Liu concluded that FVC is negatively correlated with LST during
all seasons except for winter [107]. Likewise, Wang et al. argued that variations of
seasons were a possible cause of their obtained weak correlation between LST and the
NDVI in Shanghai [20]. After exploring the reviewed case studies, however, it became
evident that a fast rate of urban expansion to the detriment of vegetation cover leads
to the weakening of the impact of vegetation on LST in comparison to the influence
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exerted by ISs. This can be concluded from the weak correlation between LST and
vegetation when compared with LST and ISs, as reported in [20,96].

• Water: As with vegetation, water bodies have a cooling effect due to their ability to absorb
heat and release it in the form of water vapor, leading to lower ambient temperatures in
their vicinities. In an investigation of the Chinese city of Wuhan, in which water accounts
for over 25% of the total area of the central district—including two rivers (the Yangtze
River and Han River), East Lake (the largest urban lake in China), and dozens of other
lakes—Wu et al. found that both the area and the spatial distribution of water bodies
contributed to significant distributions in the effects caused by SUHIs [70]. Moreover,
the findings reported in multiple studies have affirmed that water bodies exhibit
the lowest LSTs [11,20,41,45,47,60,73,78,79,88,90,93,97,98,111,112,115,138,139,151–153],
along with vegetation cover. Furthermore, water has generally been found to have
a negative correlation with LST [20,111,154], except for a few circumstances due to
various reasons primarily related to the climate characteristics of cities. For instance,
in [99], the authors attributed the lack of a significant relationship between LST
variations and water bodies’ changes that occurred in desert city Phoenix between
2000 and 2014 to the scarcity of large and evenly distributed open-air water bodies in
the target area, along with possible LULC classification errors. In comparison with
vegetation, water usually has a less significant association with LST [20].

• Seasonal variations: Seasonal variations have significant impacts on the spatial and
temporal distribution of SUHIs. While the bulk of research has focused on interannual
variations, seasonal fluctuations were also taken into account in several manuscripts,
particularly in those with short study durations (less than 10 years). An illustration
of such investigations was reported in [107], where the authors analyzed SUHI vari-
ations in all seasons for the Chinese city of Jinan. Based on LST data derived from
Landsat images acquired between 1992 and 2011, they calculated two SUHIi indices
(while considering rural areas) based on the two traffic rings surrounding Jinan urban
center. Their findings showed that both SUHIi indices were stronger during summer
(0.98–1.75 ◦C) and spring (0.40–0.85 ◦C) and weaker during autumn (0.16–0.37 ◦C)
and winter (from −0.05 to −0.03 ◦C). These results are aligned with those reported
in [52] for Shanghai. In the tropical Indian city of Delhi, Sharma and Joshi also found
that summer had the maximum SUHIi (16.2 ◦C), followed by monsoon and spring
seasons with SUHIi values of 13.8 and 12 ◦C, respectively [22]. On the other hand,
the post-monsoon and winter seasons exhibited the lowest SUHIi values of 10.5 and
7.4 ◦C, respectively. The dominant factors impacting SUHI levels depend on seasonal
changes. For instance, Zhang et al. determined that water, vegetation, and developed
lands are the major drivers during all seasons except for summer in Shanghai [52].
These results partly agree with those reported in [77], where the authors found that
the functional zone “dense green spaces” (including different types of forests, water
bodies, and wetlands) in Ethekwini, South Africa, had a major heat contribution in the
autumn, winter, and spring seasons. On the other hand, Song et al. reported that ISs
had higher mean LSTs during all seasons except for winter in the Chinese temperate
city of Hangzhou [155].

4.5.2. Landscape Composition and Configuration

In addition to LULC’s different types and their dynamics, several studies have ana-
lyzed the relationships between urban climate and landscape patterns. A wide range of
metrics has been developed to characterize these patterns and relate them with ecological
processes [156]. As described in Section 4.2.3, these metrics can be categorized into two gen-
eral groups: compositional and configurational. Metrics for landscape composition assess
the existence and quantity of various patch types in the landscape without specification on
its spatial characteristics, whereas those for landscape configuration measure the spatial
distribution of patches within the landscape [50]. An illustration of such investigation was
reported in [50], the authors analyzed the impacts of landscape structure on SUHIs in the
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Shanghai metropolitan area in early spring (March 2001) and summer (July 2001). Eight
landscape metrics—compositional (PLAND, SHEI, and SHDI) and configurational (ED, PD,
LSI, CI, and CONTAGION)—were selected to investigate the relationship between LST and
landscape patterns with regard to the LULC types of residential, public facilities, industrial,
traffic, green land, water, agricultural, and other land uses including under-construction
sites, cemeteries, and historic relics. High correlations were found between LST and land-
scape metrics for residential and urban green, with significant fluctuations observed due to
alterations in SUHI spatial configurations induced by seasonal changes affecting vegetation
patterns. Furthermore, residential areas’ contributions to LST were found to be significantly
influenced by their morphological characteristics. High-rise residential areas were found to
have lower LSTs than low-rise residential areas for many reasons. First, low-rise residential
zones have more horizontal active surfaces than high-rises. Second, smaller structures
with lower thermal inertia produce shorter shadows than high ones. Third, when wind
speed rises with height, the lower boundary layer’s aerodynamics vary considerably. As
a result, high-rise structures have a greater aerodynamic conductance than low-rise ones.
Finally, the temperature of the lower boundary layer drops with height. The top of the high
rise is cooler than the bottom. The proposed methodology was further expanded in [78],
where the authors selected 2D and 3D building metrics related to shape, arrangement,
composition, and distribution (in addition to landscape metrics) to evaluate the association
between SUHIs and 2D/3D urban morphology in Wuhan, China. Two functional zones
were considered: built-up (including residential, industrial, commercial, open space, and
public services) and non-built-up (including urban green areas, agricultural lands, forests,
rivers, and lakes). The findings of the study can be summarized as follows: (1) during
the summer daylight, four LULC classes, namely buildings, other ISs (e.g., pavements,
open areas, and squares), grass/shrubs, and trees, have significant effects on intraurban
LST variation at a fine-scale; (2) the proportion of trees is the primary element affecting
LST cooling via evapotranspiration and shade casting; and (3) during summer daylight,
3D urban morphology has an effect on LST, although the correlations are not as tight as
those for 2D urban morphology. It was found that the most significant 3D metrics are the
mean height (MH) and the sky view factor (SVF)—a metric measuring the extent of 3D
open space that ranges from 0 (no sky in sight) to 1 (no obstacles in sight). A negative
correlation was found between MH and LST in summer, indicating that high-rise buildings
may help counteract SUHIs throughout the day. The SVF impact on LST is complex because
it depends on the surrounding environment and relates to enhancing air circulation in the
case of a higher SVF and reducing incoming solar radiation in the case of a lower SVF.

4.5.3. Terrain Characteristics

Generally speaking, most of the investigated cities in the reviewed literature are
located in flat areas with slight or barely noticeable topographic variations. For that reason,
few researchers have considered topography-related factors. On the other hand, researchers
who focused on mountain cities or those dotted with varied landscapes concluded the
importance of topography in understanding the spatial variability of LST. In a study that
focused on exploring the spatial variations of LST between 2000 and 2010 in the tropical
Malaysian capital Kuala Lumpur, Amanollahi et al. concluded that its elevated landscape
plays a significant role in stabilizing the heat island in the city in two ways [142]. First, the
expansion of ISs has resulted in fragmented vegetation cover—mainly consisting of forests
in the study area—which has led to increases in surface temperatures; second, forests
located at high elevations were recorded to have the lowest temperatures. The rise of
LST due to fragmented forests had been somewhat regulated by the low LST recorded
in high-elevated forests, resulting in the highest standard deviation of LST values of any
LULC type. Second, the Titiwangsa mountain range with peaks over 2500 m above sea
level (asl), located to the east, northeast, and north of the city, acts as a dam that stops
winds coming from the north and east from blowing in the directions toward the city
which, according to the authors, stabilizes the heat island in Kuala Lumpur. These findings
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relatively correspond to those reported in [157], in which the author partly attributed the
lowest LST values observed in forests to their highest altitudes in the Czech city of Brno.
Even in cities with a dry climate and relatively low landscape, such as Cairo, topography
has been deemed a key factor influencing LST [106]. The author found that the mean
LST at the highest region, El-Mokatam Plateau at 500 m asl, was 37 ◦C in comparison to
the 39 ◦C value recorded at 100 m—which indicates an LST increase of 0.5 ◦C for each
100 m elevation. In the tropical mountain city of Baguio, the Philippines, Estoque and
Murayama investigated the effects of topography on UHIs through additional parameters
including elevation, slope, aspect, and hill shade [12]. Empirical analysis showed that these
parameters, together with those of landscape composition, were capable of explaining a
great deal of LST spatial variability in three different years of 1987, 2001, and 2015.

4.5.4. Socioeconomic Factors

Though relatively limited in occurrence, socioeconomic factors have also been con-
sidered as potential variables that contribute to elevated LST in cities, especially from
the perspective that anthropogenic activities of residential, industrial, and/or commercial
natures are responsible for enhancing surface temperatures.

• Population density (PD): PD has been introduced in several studies as a factor im-
pacting SUHIs. For example, Zhang et al. investigated the links between PD and
SUHIs in Nanchang, China [115]. The authors found significant positive correlations
between PD and mean LST in 2000 and 2013, concluding that as PD increases, LST
also increases. This result is consistent with that found in other studies carried out
in different cities such as Wuhan [129], Fuzhou [72], Brisbane [133], Shanghai [45],
Zhengzhou [73], and Hefei [158]. However, a PD-induced LST increase does not con-
cern the total number of people located in a given area as much as it is related to the
socioeconomic activities carried out by people daily in houses or places of work (e.g.,
industrial centers) [115]. This was confirmed in [129], where the authors concluded
that, in contrast to PD variations that have been found to be somewhat correlated
with LST, Wuhan population changes from 2000 to 2009 had no direct relationship
with LST.

• Other socioeconomic factors: Our investigation shows that socioeconomic factors
are often overlooked, generally because of a lack of data. Nevertheless, several re-
searchers introduced such variables and assessed their impact on SUHI development.
These include (i) emissions such as those of VOC and NOx [31], waste gas emis-
sions [46], and carbon dioxide (CO2) [115]; (ii) electricity [76,96]; (iii) employment
density [61,133]; (iv) night light [45]; (v) gross domestic product (GDP, [46]); and (vi)
house rent [159].

4.6. An Overview of Proposed Mitigation Strategies

In light of the findings of the reviewed studies, the magnitude of SUHIs can be said to
be associated with rapid urban sprawl to the detriment of green areas. Several suggestions
have been proposed in the literature to alleviate SUHI impacts. We present a compiled list
of the main strategies suggested:

• Promoting greenery: Implementing policies encouraging more green areas [11,73,99,115],
preferably within the urban premise and beyond, is one of the most suggested SUHI
mitigation strategies given that increases in SUHI magnitude are highly associated
with depletion of vegetation cover. Within UAs, greening concepts need to be imple-
mented in both the horizontal and vertical directions [82]. Kleerekoper et al. described
four forms of vegetation that can be fostered: parks, trees along streets, green in private
gardens, and green roofs or facades [160]. Regarding the cooling effect, Wong et al. re-
ported that ground greenery often lowers the surface temperature by 2–9 ◦C, whereas
roofs or buildings walls covered with green layers reduce surface temperature by
approximately 17 ◦C [161]. Additionally, the type of planted vegetation makes a great
difference in cooling effects. For instance, Zhang compared the cooling effects of five
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regionally common shrubs in Guangzhou, China [162]. According to the author, only
one vegetation type, Murraya exotica L., showed excellent cooling effects. Furthermore,
various studies have emphasized other parameters deemed critical for maximizing
SUHI mitigation gains, including park shape [110,161], park size [110,161], and plant
placement [161]. Thus, such considerations need to be considered by urban planners
prior to implementing a strategy for optimal outcomes in the long run. Beyond UAs,
the use of greenbelts surrounding cities is an effective way to combat SUHIs. In [94],
the authors demonstrated the cooling effects of the greenbelt surrounding the Chinese
city of Shenyang based on an investigation of LULC changes on SUHIs from 1986 to
2007, although this effect had started to fade because of urban sprawl. In desert cities,
greenbelts are highly recommended, as seen in [106], where the authors recommended
expanding greenbelts to protect new urban communities in the Cairo metropolitan
area against SUHIs amplified by air pollution caused by dust and suspended aerosols.

• Safeguarding water bodies: Similar to vegetation, the reviewed studies reported that
changes in water bodies had had substantial effects on SUHI mitigation [50,87,163],
concluding that alleviating SUHIs necessitates safeguarding water bodies. In Wuhan
city, Wu et al. found considerable spatial variations in SUHI effects, which they
attributed to water bodies’ distribution [70]. In a study carried out on the tropical city
of Kuala Lumpur, Amanollahi et al. recommended increasing the number of retention
ponds and adding new vegetation areas [142]. Among various advanced materials
and techniques, Cai et al. suggested using waterscapes in the city of Fuzhou to counter
the impacts of SUHIs [72]. While it has been reported that the impacts of water bodies
on SUHIs are generally less effective than those of vegetation cover [164], combining
both approaches would be a good strategy to reduce SUHI impacts.

• Using cool roofing/paving materials: Though the increase in green and blue areas may
be feasible in cities under moderate climates (i.e., temperate, tropical, and continental),
such measures are difficult, if not impossible, to implement in desert cities due to
scarcity of water resources, as reported in the case of Phoenix [99]. Reducing ISs’
properties to absorb solar radiation by using reflective materials [11,33,165] is an
alternative option in cities with harsh and moderate climates alike. That can be
conducted using highly emissive materials to prevent heat retention and by painting
roofs and pavements with white paint [11].

• Other notable measures: Regarding LULC changes, the aforementioned measures
have been the most suggested ones in the reviewed literature to alleviate SUHIs. A
few studies suggested other ways such as (i) relying more and more on renewable
energy (e.g., solar and wind) at the expense of fossil-fuel-based energy to reduce
carbon emissions [11] and (ii) promoting incentive programs such as “carbon credits”
targeting polluting companies to reduce emitted anthropogenic gases [11].

In summary, mitigation measures depend on the characteristics of the target area,
mainly in terms of the reigning climate, local topography, size, and geographical set-
tings. It is worth noting that this review only covers commonly suggested mitigation
strategies in the considered literature. Policy and technology responses developed for
the alleviation of UHI impacts are not discussed. For more information, one may refer
to a study by Kleerekoper et al. [160] or a recent and more focused review conducted by
Degirmenci et al. [39].

4.7. Limitations and Future Directions

In this subsection, the limitations or obstacles facing studies focusing on the associa-
tions between LULC spatiotemporal changes and SUHIs are discussed. This is followed by
the proposed future paths that such a topic may be directed toward.

4.7.1. Limitations

Though studies focusing on the historical trends of SUHIs in relation to LULC changes
have helped our understanding, several critical limitations have been pinpointed in the
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reviewed literature and need to be addressed in future research. These limitations concern
the used data, executed methods, or a principal combination of both.

Perhaps the biggest challenge that limits such studies is the incapacity to validate
satellite-derived LSTs using in situ measurements collected from field surveys or historical
data collected via climatological station networks. The lack of such networks in targeted
areas and the time- and budget-consuming fieldwork are the main obstacles that have
hindered the validation process of satellite-derived LSTs in numerous case studies. The
deployment of reliable networks usually comes with huge expenses, as it requires continu-
ous maintenance. Even when available, in situ records may be incomplete due to various
reasons, such as the forced relocation of stations (as reported in [144]), which makes them
inadequate for studies focusing on the long-period monitoring of SUHI and LULC changes.
In addition, high costs or privacy barriers may hinder researchers from accessing such
valuable data. Nevertheless, numerous researchers have been able to confirm small dif-
ferences between SUHIs and AUHIs, as illustrated in [54], where the authors found an
error of 2–3 ◦C between satellite-derived mean LSTs and average temperatures based on
in situ measurements. Error fluctuations were found to vary depending on the LULC
type, while vegetation averaged 28.7 ◦C based on field measurements and 30.8 ◦C based
on estimation via satellite data; UAs averaged 30.1 ◦C based on field measurements, and
satellite estimations indicated 32.7 ◦C. In the city of Zhengzhou, quasi-identical results
were described by Min et al., who found differences ranging between 2.7 and 4.7 ◦C, based
on historical meteorological data [73]. Similarly, using records from four climatological
stations, Nguyen et al. found that these differences varied between 0.3 and 3.34 ◦C, with
higher differences observed in UAs and lower differences observed in rural areas [96]. A
different approach was used in [22], where the authors conducted a field survey intending
to collect over 200 ground observations across Delhi during the spring season. A high cor-
relation (0.89), along with a relatively high coefficient of multiple determination (r2 = 0.79)
and quasi-equal standard deviation (0.72 ◦C), was reported between the two sets, thus
indicating that the LST estimated from satellite thermal sensor data was as precise as those
measured in situ. These findings are partly aligned with those reported in [97], in which
the authors found a significant correlation between air temperatures (measured at 137 sites)
and satellite-estimated LST during the winter (January 2014) and pre-monsoon (April 2014)
seasons in the city of Malda. Aside from validation using meteorological station data or
field survey measurements, LST data retrieved from satellite sensors have been used for
comparison against each other. This was described in [126], where the authors used the
MODIS LST product to validate LST estimated from Landsat imagery in different years
(2006, 2009, and 2016). Empirical analysis showed the existence of moderate-to-strong
correlations ranging from 0.44 and 0.55 between the LST estimated from Landsat (5 TM
and 8 TIRS) and MODIS. According to Swain et al. [166], the refined MODIS LST products
were reliable because they had already been validated using ground observations; they
cited [167] as a reference paper where the authors demonstrated that their accuracy was
better than 1 K in 39 out of 47 cases, with all 47 cases having a root mean squares of
differences less than 0.7 K. A similar approach was used by Chaka and Oda to validate
Landsat 8 TIRS data in the city of Hawassa, Southern Ethiopia [79].

A second limitation observed in the reviewed literature is related to the limited number
of dates that were considered for analyzing the links between SUHIs and LULC changes,
especially those monitoring long periods. This might hinder the provision of a true picture
of the trends of the impacts of different LULC changes on SUHIs in cities during such a long
timeframe, specifically those related to seasonality [22] or the occurrence of rare abnormal
events (e.g., drought and cold waves) that might lead to misleading interpretations. A
study by Feng et al. in Xiamen city, China, revealed that a cold wave that occurred in
1992 may have been the cause behind water bodies exhibiting the highest LST that year,
despite being one of the coolest LULC types in other years (1987, 1997, and 2007) [121].
Moreover, in [111], the authors partly attributed the high temperature recorded in 2015
observed in the mountain city of Yan’an city, China, to the significant climatic impact
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of the global El Niño phenomenon. Another rare event impacting SUHIs was described
in [166], where the authors reported an unusual increase in MODIS-derived mean LST
recorded in 2009 in agricultural lands, which resulted in a small difference between rural
areas and UAs. These anomalies were attributed to the severe drought that affected the
region in 2009, which impacted the vegetation cover and soil moisture content. From this
perspective, while it requires massive efforts and resources, relying on imagery data with
higher temporal frequency to monitor interannual [83] and seasonal [22] SUHI variations is
highly recommended because it would improve our understanding of the impacts of LULC
spatial and temporal changes and prevent misleading interpretations. An example of such
investigations was illustrated in [168]; using 507 Landsat images, the authors analyzed
historic LULC changes—which occurred in Atlanta between 1984 and 2011—and explored
their effects on thermal landscape patterns.

The third challenge that faces SUHI/LULC studies is related to the quality of archived
remotely sensed data. It is evident that multiple data sources are available, as presented
in Section 4.1, which have allowed researchers to carry out studies in different cities
across the globe. However, a serious limitation that impedes the use of satellite data is
the high percentage of cloud cover, notably in tropical regions. This issue was illustrated
in [114], where the authors described cloud coverage as a “curse” for optical remote sensing
following their struggle to find Landsat data of the Kuala Lumpur metropolitan city with
minimal cloud cover. Subsequently, the authors could finally collect images during the
summer seasons of five years between 1997 and 2013, covering percentages ranging from
4% to 24%. In the same study area, Amanollahi et al. found the same issue regarding
the collection of cloud-free Landsat imagery, leading the authors to somewhat limit their
investigation of SUHIs to only two dates (1990 and 2006) [142]. Though the two collected
images were over 95% cloud-free, the authors noticed that 90% of clouds were clustered
above the vegetated area, leading the authors to classify them as vegetation. Clouds not
only contribute to less accurate LULC classification [142] but also affect the estimation of
LST. This was further detailed in [169], where the authors used over 80 Landsat images
to monitor SUHI evolution in the tropical metropolitan area of Rio de Janeiro between
1984 and 2015. It was found that in addition to the limited number of collected cloud-free
imagery, LST changes were affected by cloud-induced noise from undetectable clouds,
cloud shadows, and aerosols.

4.7.2. Future Directions

The findings of this study indicate that the majority of SUHI research has been concen-
trated in South Asian nations (Section 3.2), namely China and India, with less attention paid
to cities in developing countries in other continents, particularly Africa and South America.
Nine studies were interested in cities of six African countries—Cairo [5,106,113,143], Ethek-
wini [77], Hawassa [79], Akure [153], Osogbo [130], and Accra [170]. Only Brazilian cities,
including Rio de Janeiro [8,169], Cuiaba-Varzea Grande [171], and Paço do Lumiar [172],
were investigated in South America. More SUHI studies targeting cities in the African and
South American continents are highly recommended.

There is no doubt that SUHIs are heavily impacted by the spatial and temporal dynam-
ics of LULC. The increase witnessed in SUHI magnitude in several cities is attributed to IS
horizontal expansion to the detriment of previous green and blue areas as a result of popu-
lation growth and rising anthropogenic activities. As demonstrated in Section 4.5, however,
other critical factors, such as seasonal variations, landscape composition and configuration,
terrain characteristics in hilly and mountainous cities, and socioeconomic variables, highly
contribute to the development of SUHIs. Nonetheless, it has been observed that only a few
studies incorporated such important variables into their analyses. While acquiring data
associated with some variables would be challenging in certain target areas, it is important
to consider the changes of as many variables as possible while investigating SUHIs.

In the considered literature, most studies focused on exploring the past trends of SUHIs
in regard to LULC changes. However, recent studies, although few (four publications),
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have started to pay more attention to simulating future trends based on past ones. From this
perspective, Tran et al. estimated future urban climate patterns based on predicted LULC
changes in the Hanoi inner city [80]; the authors employed a nonparametric regression
to predict future LST values in 2023 based on past LST spatial variations with respect to
spatiotemporal changes witnessed within five LULC types (i.e., urban, vegetation, cropland,
water, and bare land). The examined two scenarios regeared whether future development
growth would be low or high. From 2015 to 2023, the hotter LST zones (≥40 ◦C) were
found to be likely to grow, while the cooler LST zones (≤38.5 ◦C) were found to tend
to decline. From low-to-high growth scenarios, the same pattern was found to persist,
albeit less pronounced. Guo et al. simulated two possible 2025 future scenarios in which
LULC and LST in Beijing fluctuate depending on whether or not the city’s population is
controlled [59]. The authors used the conversion of land use and its effect at the small
regional extent (CLUE-S) model to simulate LST based on land use demand that was
estimated using a linear extrapolation of population and land use type. The population-
controlled scenario had a projected reduction in future IS demand of 7.69%, resulting in a
reduction of 1.1 ◦C in the average LST. Another investigation of the sort was reported by
Wang et al. for the Chinese city of Nanjing [137], in which the authors simulated LULC
patterns using the cellular automata-Markov chain model and estimated LST of the years
2030 and 2050 based on past trends (2000–2018); they subsequently defined areas of high
and moderate risk depending on estimated LST values. The model predicted that high
LST risk regions would increase, assuming urbanization is maintained from 2018 to 2050.
A similar approach using the multilayer perceptron-Markov chain model was applied to
Lahore city, Pakistan, to detect how future LULC changes would impact LST [173]. The
findings suggested that if vegetation cover decreases by 3% in the next 15 years, there
would be a rise of roughly 2 ◦C by 2035. The results of these studies are more relevant
in the context that they provide concrete information to planners and decision-makers
regarding future trends. Thus, future studies of this kind are strongly recommended.

5. Summary and Concluding Remarks

Since the turn of the century, research focused on historical and current SUHI trends
with respect to LULC spatiotemporal changes in cities has significantly increased. This
review shows that although case studies are growing, they have been geographically
skewed. These studies have focused on South Asian cities, but other cities in emerging
African or Latin American nations with fast urbanization trends have been less studied.
Thus, more studies are highly required, especially in these cities, because gaining an
accurate picture of SUHIs’ long-term impacts is a crucial first step toward minimizing
their consequences.

The increasing trend in SUHI studies is attributed to the free access to a multidecadal
archive of satellite imagery data and the development of robust techniques for LULC
extraction, LST retrieval, and the relationship assessment between the two. In terms of
the used data, the Landsat series was the main source in most reviewed studies due to its
long-term archived data dated back to the 1970s. On the other hand, MODIS and ASTER
data were primarily used to assess SUHIs regarding day and night variations. Several
methods to extract LULC from these datasets, notably the MLC, have been employed.
In contrast to LULC extraction, LST retrieval is a complicated task due to the lack of a
universal method that applies to all thermal sensors and the demanding nature of existing
methods. Regression analysis was found to have been the most common way to evaluate
LULC changes and LST.

SUHIs are strongly influenced by the spatial and temporal dynamics of LULC. The rise
in SUHI magnitude seen in many cities is primarily linked to the horizontal expansion of ISs
at the expense of formerly green and blue regions as a consequence of population growth
and increased human activity. However, other important factors such as seasonal changes,
landscape composition and configuration, topographical characteristics (especially in hilly
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and mountainous cities), and socioeconomic determinants all play significant roles in the
formation of SUHIs.

Specific mitigation measures to alleviate SUHIs are target area-specific, as they depend
on geographical settings and climatic conditions. Nonetheless, four common strategies
have been proposed in the revised literature: promoting greenery via planting and vertical
greening, safeguarding waterbodies, utilizing solar-blocking materials for roofing and
pavements, and adopting optimal urban designs.

The most significant limitation of SUHI studies concerns the inability to verify satellite-
derived LSTs with in situ measurements from field surveys or historical data from clima-
tological station networks. Another obstacle is related to the high cloud cover in remote
sensing data, particularly in tropical cities. In addition, it was found that few papers
included other critical factors (e.g., socioeconomic variables, topography, and landscape
metrics) in their analysis to assess SUHI evolution.

In terms of prospects for SUHI research, the addition of other characteristics such as
geography and socioeconomic variables will provide more insight into how SUHIs are
evolving. This will enable the more realistic modeling of future SUHI trends based on
historical patterns. The results of such research will be useful to planners and decision-
makers because they will provide specific information regarding future trends.
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Appendix A

Table A1. Characteristics of the satellite data sources used in SUHI studies.

Thermal Sensors MSS/TM/ETM+/TIRS MODIS ASTER

Carrier Satellite Landsat Series Aqua and Terra Terra

Resolution
Spatial 30 m 1

250 m (bands 1–2)
500 m (bands 3–7)

1000 m (bands 8–36)

VNIR: 15 m
SWIR: 30 m
TIR: 90 m

Temporal 16 days 1–2 days 1–16 days

Coverage Swath

L4: 170 × 183 km
L5: Width (185 km)
L7: Width (185 km)
L8: 185 × 180 km

2330 × 10 km 60 × 60 km

https://www.mdpi.com/article/10.3390/rs13183654/s1
https://www.mdpi.com/article/10.3390/rs13183654/s1
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Table A1. Cont.

Thermal Sensors MSS/TM/ETM+/TIRS MODIS ASTER

Temporal

L4: 1982–2001
L5: 1984–2013

L7: 1999–ongoing
L8: 2013–ongoing

Terra: since 1999
Aqua: since 2002 1999–ongoing (Terra)

Sensors

L4: MSS and TM
L5: MSS and TM

L7: ETM+
L8: OLI and TIRS

Terra MODIS (1999)
Aqua MODIS (2002) Terra ASTER (1999)

1 The spatial resolution of thermal infrared band 6 of L4 is 120 m.

Table A2. List of the most common indices employed in the reviewed literature.

Index Category Index Name Reference Studies Share

Biophysical

Vegetation

NDVI Normalized Difference Vegetation Index [174] 58.2%
FVC Fractional Vegetation Cover [175] 9.1%
SAVI Soil-Adjusted Vegetation Index [176] 2.7%
TDVI Transformed Difference Vegetation Index [177] 0.9%
EVI Enhanced Vegetation Index [178] 0.9%

Built-Up

NDBI Normalized Difference Built-Up Index [179] 32.9%
IBI Index-Based Built-Up Index [180] 1.2%

EBBI Enhanced Built-Up and Bareness Index [181] 3.7%
NDISI Normalized Difference Impervious Surface Index [182] 1.2%

DBI Dry Built-up Index [183] 1.2%

Water

NDWI Modified Difference Water Index [184,185] 9.8%
MNDWI Modified Normalized Difference Water Index [186] 8.5%

LSWI Land Surface Water Index [187] 1.2%
NDMI Normalized Difference Moisture Index Used in [85,154] 1.2%

Bare Land
NDBaI Normalized Difference Bareness Index [188] 7.3%
DBSI Dry Bare-Soil Index [183] 2.4%

Landscape Composition
PLAND Percentage of Landscape area

[189] 8.5%

SHEI Shannon’s Evenness Index
SHDI Shannon’s Diversity Index

Landscape Configuration

ED Edge Density
PD Patch Density
LSI Landscape Shape Index
CI Clumpiness Index

CONTAG Contagion
COHESION Patch Cohesion Index
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