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Abstract: Digital aerial photogrammetry (DAP) data acquired by unmanned aerial vehicles (UAV)
have been increasingly used for forest inventory and monitoring. In this study, we evaluated the
potential of UAV photogrammetry data to detect individual trees, estimate their heights (ht), and
monitor the initial silvicultural quality of a 1.5-year-old Eucalyptus sp. stand in northeastern Brazil.
DAP estimates were compared with accurate tree locations obtained with real time kinematic (RTK)
positioning and direct height measurements obtained in the field. In addition, we assessed the
quality of a DAP-UAV digital terrain model (DTM) derived using an alternative ground classification
approach and investigated its performance in the retrieval of individual tree attributes. The DTM
built for the stand presented an RMSE of 0.099 m relative to the RTK measurements, showing no
bias. The normalized 3D point cloud enabled the identification of over 95% of the stand trees and
the estimation of their heights with an RMSE of 0.36 m (11%). However, ht was systematically
underestimated, with a bias of 0.22 m (6.7%). A linear regression model, was fitted to estimate tree
height from a maximum height metric derived from the point cloud reduced the RMSE by 20%. An
assessment of uniformity indices calculated from both field and DAP heights showed no statistical
difference. The results suggest that products derived from DAP-UAV may be used to generate
accurate DTMs in young Eucalyptus sp. stands, detect individual trees, estimate ht, and determine
stand uniformity with the same level of accuracy obtained in traditional forest inventories.

Keywords: UAS; 3D point cloud; enhanced forest inventories; precision silviculture; SfM; individual
tree detection; Gini; lorenz curve

1. Introduction

Brazil has one of the world’s largest areas (~9 million ha) of rapid-growth forest
plantations. Of these, around 77% are Eucalyptus stands. The derived forest products
supply domestic and foreign markets, with an estimated US$ 11.3 billion of exports in
2019 [1]. Beyond its economic importance to the country, representing 1.2% of the national
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gross primary product (GPP), these plantations also play a key role in the promotion
of ecosystem services such as carbon sequestration and reduction of the pressure on
native forests.

The productivity of rapid-growth commercial stands, such as Eucalyptus, is defined
by the environment, genetic material and silvicultural treatments applied during the
production cycle [2]. Initial silvicultural quality has a direct impact on the productivity
observed at the end of the growth cycle, highlighting the importance of its monitoring [3].
Silvicultural quality can be assessed by metrics that describe uniformity, such as the
Gini index and the Lorenz curve [4–7]. Traditionally, these metrics are estimated from
dendrometric characteristics of the trees (height, diameter at breast height, basal area,
crown area, among others), measured during the initial growth of the stand [3]. Large
planted areas with high growth rates subject to extreme climate change effects require even
more attention in early-stage monitoring in order to maximize productivity at the end of
the production cycle [8,9].

In recent decades, remote sensing techniques provided an effective and reliable means
of forest monitoring [10–14]. Three-dimensional (3D) remote sensing instruments such as
light detection and ranging (LiDAR) stand out because of their precise measurements of ver-
tical profiles of the forests, from which structural metrics are extracted and used to estimate
the main dendrometric characteristics. Despite encouraging results in the characterization
of forest plantations in Brazil [15–17], LiDAR data still incur high costs, hampering their
operational use. As an alternative, digital aerial photogrammetry (DAP) data have been
utilized by the scientific community in recent decades [18–21], as they have become more
accessible with the popularization of unmanned aerial vehicles (UAV). Besides the lower
costs, DAP-UAV products present similarities to LiDAR data and are generated at a higher
point density in a shorter time interval [22,23]. Some studies indicate that the performance
of UAV photogrammetry data is adequate for estimating the characteristics of Eucalyptus
stands [24,25], thus making them a feasible alternative to forest monitoring [26,27].

Despite their potential and similarity to LiDAR data, some UAV photogrammetry
products have limitations within vegetated areas, which may compromise their
usage [28,29]. In digital terrain models (DTMs), for example, UAVs commonly over-
estimate elevation under the forest, leading to an underestimation of tree heights [30,31].
In contrast with LiDAR, DAP-UAV products cannot penetrate the forest canopy and de-
scribe the vertical profile of the vegetation in detail [23]. It is noteworthy that the capacity
to penetrate the forest’s vertical structure depends on the type of vegetation, age, canopy
structure, disturbance history, and terrain characteristics [32,33].

In addition to forest characteristics, the capacity of UAV photogrammetry to model
terrain under vegetation also relies on the structure from motion (SfM) algorithm utilized,
the point density, and the classification of the 3D point cloud [20,34,35]. The point cloud
classification process can be carried out both manually and automatically. Once classified,
terrain points may be interpolated to generate a DTM [36]. However, few studies have
assessed the quality of the DTM acquired by different classification procedures and its po-
tential to estimate the structural features of forest stands during initial growth stages [37].

One may utilize two approaches to estimate vegetation characteristics from 3D remote
sensing products and traditional field survey data: (i) the area-based approach (ABA) [38]
and (ii) individual tree detection (ITD) [39,40]. Both approaches have benefits and draw-
backs, as their usage is dictated by 3D data properties, available field data, allometric
models and vegetation type. For ABA, each field plot is considered as a unit of analysis.
On the other hand, for ITD, each tree is considered a unit of analysis, and direct/derived
estimates of their characteristics are determined by metrics extracted from the point cloud
of each identified tree [41]. Subsequently, their estimates may be extrapolated to plot or
stand levels [17].

Given the high quality of current 3D remote sensing products (LiDAR and DAP) and
the unprecedented processing capabilities provided by cloud-based platforms, applications
focused on individual tree detection and height estimation are becoming increasingly more
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common [16,42,43]. However, in most studies published to date, the validation of tree
detection is not performed with accurate location data obtained directly in the field by real-
time kinematic (RTK) positioning or total station (see Guerra et al. [24] and Krause et al. [44]
for exceptions). In addition, tree heights are usually compared with indirect field-based
estimates subject to measurement errors, which are usually not quantified [45,46]. Few
studies have shown the DAP-UAV’s potential to detect individual trees and estimate
height in young Eucalyptus plantations for the purpose of qualitative forest inventory.
Hentz et al. [37] explored this gap, but precise measurements of tree location and direct tree
height measurements were not used to validate the results. Studies that evaluate the quality
of DTMs and other DAP-UAV products in young Eucalyptus stands are also missing.

In this study, we assessed the potential of UAV photogrammetry data to detect indi-
vidual trees, estimate their heights, and monitor the initial silvicultural quality of a young
Eucalyptus sp. stand in northeastern Brazil. DAP estimates were compared with accurate
tree locations obtained with RTK positioning and direct height measurements obtained in
the field, with known measurement errors. In addition, we assessed the quality of a DAP-
UAV DTM derived with an alternative ground classification approach and investigated its
performance in the retrieval of tree attributes.

2. Materials and Methods
2.1. Study Area

The study area comprised a 0.15 ha Eucalyptus grandis stand located in the municipality
of São Cristóvão, Sergipe, Brazil (−10.924◦S, −37.196◦W) (Figure 1). The tree spacing was
3 m × 2 m and the stand was 1.5 years old at the time of data collection. The region’s
climate is classified as tropical wet and dry (As), with a dry summer and the driest month
with a rainfall of less than 60 mm (less than 4% of the total annual precipitation) [47].
In the region, the mean annual precipitation is 1200 mm, concentrated between April and
September, and the mean air temperature is 30 ◦C [48]. The soil is classified as red yellow
argisol [49], and the terrain is considered smooth, with an elevation of 11.8 m above sea
level and a slope of less than 5%.

2.2. Forest Inventory Data

For this study, 214 trees were measured in August 2018. All trees were geolocated
using a Trimble® R8s Integrate GNSS System Antenna with a dual-frequency real time
kinematic (RTK) receiver (Trimble, Sunnyvale, CA, USA) (https://geospatial.trimble.com/,
accessed on 25 March 2021). Coordinates of the basis of the trees (XRTK, YRTK and ZRTK)
were recorded following the UTM projection (zone 24 S), with the SIRGAS2000 Datum.

The mean root mean square error (RMSE) of tree geolocation was ±0.017 m for XRTK
and YRTK (horizontal position) and ±0.024 m for ZRTK (elevation). A DTM of the stand was
derived by the interpolation of the 214 measures of ZRTK and was labelled as DTM_RTK.
The values of ZRTK were interpolated using the triangulated irregular network (TIN)
method, which was available on the open-source software QGIS [50].

The total height (htField, m) of each tree in the field was measured with the aid of
a graduated ruler of 6 m. The ruler was placed vertically beside each plant by a field
assistant and the readings were carried out at a distance of approximately 5 m by an
experienced observer. The maximum tree height measured was 5.4 m (Table 1) and all tree
tops were clearly visible to the observer, who stood between planting lines. At the end of
the inventory, 37 trees (17%) were randomly selected and had their htField remeasured by
the same observer. The paired measures were used to estimate the measurement error for
htField, following the methods of Gonçalves et al. [51]. Errors were estimated and described
in total (root mean square deviation, RMSD), systematic (bias) and random (standard
deviation, SD) terms. Table 1 presents a summary of ht values measured in the field and
the associated errors.

https://geospatial.trimble.com/


Remote Sens. 2021, 13, 3655 4 of 21

Figure 1. Location of the study area, highlighting tree identification and Ground Control
Points (GCPs).

Table 1. Summary of total heights (ht) measured in the young Eucalyptus stand and the associated
measurement errors (all values in meters).

htField Statistics

Measurements Errors

Minimum 0.6 Range 0.8–4.6
Median 3.35 RMSD 1 0.08 (3.0%)
Mean 3.34 Bias 0.02 (0.7%)
Maximum 5.4 SD 2 0.08 (2.9%)
1 Root Mean Square Deviation; 2 Standard Deviation.

2.3. Silvicultural Quality of the Stand

Silvicultural quality was estimated using uniformity indices calculated from ht values.
Four indices were utilized to describe the uniformity of the stand: coefficient of variation
(CV) of the total heights, Gini index (Gini), canopy relief ratio (CRR), and percentage of
cumulative heights for the 50% lowest trees (PV50). A plot with a Lorenz curve was also
utilized to assess the silvicultural quality of the stand [4].

In general, stand uniformity is related to lower coefficients of variation. The CV was
estimated as:

CV =

√
∑n

i=1(hti−htmean)2

(n−1)

htmean
(1)

where i is the tree index, n is the number of trees in the plot, htmean is the mean plot-level
height, and hti is the height of the i-th tree.
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The Gini is also utilized to estimate the variance in tree heights in a forest stand. In its
minimal value (zero), all trees have the same height, while in its maximum value (one), all
trees except one have the same height [52–54]. The Gini index was estimated as:

Gini = ∑n
r=1(2t − n − 1)htr

∑n
r=1 htr(n − 1)

(2)

where htr is the height of the tree in rank r, where r is the rank of all trees ordered by total
height (1, 2, 3, . . ., n) [52,55,56].

The CRR describes the relationship between total height extremes (minimum and
maximum) and the mean value of all heights. The closer to its maximum value (one),
the more uniform the stand; the closer to the minimum value (zero), the less uniform the
stand. CRR was estimated as:

CRR =
htmean − htmin
htmax − htmin

(3)

where htmean, htmin, and htmax are, respectively, mean, minimum, and maximum tree
total heights.

The PV50 can be utilized to describe the uniformity of the stand [3]. The closer the
index is to its maximum value (50%), the more uniform the stand. PV50 was estimated by
sorting ht in ascending order, and using the equation:

PV50 =
∑n/2

i=1 htr50

∑n
i=1 htr50

(4)

where htr50 is the total height of the tree in rank r50, where r50 is the rank of the 50 smallest
trees ordered by height.

The Lorenz curve was plotted as the cumulative frequency of the number of trees in
the stand (horizontal axis) by the cumulative percentage of ht values, from the smallest tree
to the tallest one (vertical axis).

2.4. Digital Aerial Photogrammetry
2.4.1. UAV Data Collection

Using a DJI Phantom 4 PRO quadcopter UAV (SZ DJI Technology Co., Ltd., Shenzhen,
China), 70 high-resolution aerial photographs were taken during a field campaign. Imagery
were acquired on August 1st 2018 (10:00 a.m local time), using a compact RGB digital
camera with a 20 megapixel CMOS sensor and a resolution of 5472 × 3648. The camera
was installed on a stabilized gimbal to reduce the impact of mechanical vibrations. Me-
teorological conditions were clear sky (cloud cover <5%) and light winds (<10 m s−1),
following the recommendations of Dandois et al. [30]. The flight was performed 50 m above
ground, using the visual line of sight (VLOS) method, as determined by the Brazilian UAV
piloting standards (https://www.anac.gov.br, accessed on 11 March 2021). Photographs
were recorded using the JPG format, with 85% frontal and side overlap rates. The flight
duration was about six minutes, representing almost half of the maximum duration of a
flight with a fully charged battery. With one hectare of mapped area, the setup achieved a
performance of two hectares per flight/battery.

2.4.2. Structure from Motion Processing

Structure from motion (SfM) processing was performed using the Agisoft Metashape
Professional Edition 1.6 (https://www.agisoft.com, accessed on 15 April 2021) software.
For photo alignment, the accuracy parameter was set as “high”, with pair pre-selection
as “generic” and limits of 40,000 key points and 7000 tie points. Four ground control
points (GCPs) were used to georeference the aerial photographs and three complementary
GCPs were used to determine the geolocation accuracy (Figure 1). GCPs were randomly
distributed throughout the stand. All GCPs were measured using an RTK system, fol-

https://www.anac.gov.br
https://www.agisoft.com
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lowing the UTM projection (zone 24 S) with SIRGAS2000 Datum. The RMSE obtained
for point geolocation was ±0.016 m for x and y, and ±0.023 m for z. After alignment,
the georeferencing error was ±0.03 m for x and y, ±0.1 m for z, and ±0.11 m for the total
error (x, y and z).

To create the dense cloud point (around 2200 points m−2), the parameters were set as
“high” for quality and “mild” for depth filtering mode. The mean theoretical ground sample
distance (GSD) obtained was approximately 2 cm. The point cloud was then exported
following the public 3D Point cloud format LAS (https://www.asprs.org, accessed on 15
April 2021).

2.4.3. Digital Terrain Model

The first DTM UAV, labelled as DTM_UAV1, was generated using the TIN interpola-
tion of 3D cloud points identified as terrain by an unsupervised classifier. For this step, we
used an unsupervised classification algorithm developed by Axelsson et al. [36], which is
available on the Agisoft metashape software (“Classify Ground Points” function). The al-
gorithm divides the point cloud into regular grids, and the lowest points within the grid
area are processed using the TIN method. Next, the remaining points within the grid
are classified in relation to the linear distance to the face of the nearest triangle and the
angle formed with the vertices of the initial TIN triangular faces. Points with distances
and angles lower than a given threshold are labeled as terrain and a new TIN is generated
based on the initial TIN. New TINs are iteratively created until no more points are labeled
as terrain. For this procedure, we adopted a cell size of 5 m, a horizontal distance threshold
of 1 m, and an angle of 15◦.

The second DTM UAV, labeled as DTM_UAV2, was generated by the interpolation
of 3D point clouds manually classified as terrain. Using the function “Select Points by
Color”, available on the Agisoft Metashape software, 30 representative ground points were
selected in the point cloud and used as a training set for the automatic classification of
terrain. Points were classified as terrain if they presented an absolute difference (tolerance)
in the RGB values of less than two units. The DTM was then generated using the TIN
method. All UAV_DTMs were exported as raster files with a spatial resolution of 0.2 m.

2.4.4. Tree Tops Detection

To accurately detect trees and determine their heights, the point cloud must undergo
a normalization process. The normalization compensates for terrain effects and provides
an elevation baseline to retrieve the heights of each detected tree. The point cloud is
normalized by subtracting the elevations of a DTM from the elevations of each point within
the point cloud. In this study, the point cloud was normalized by subtracting the DTM_RTK,
DTM_UAV1 and DTM_UAV2, generating the normalized point clouds (NPC) NPC_RTK,
NPC_UAV1, and NPC_UAV2, respectively. Tree tops (XUAV and YUAV), and their total
heights (Hmax), were then identified on each NPC utilizing the local maximum filter (LMF)
algorithm [57] implemented on the lidR package [58] of the R programming language [59].
The algorithm received each NPC, a 1.5 m × 1.5 m circular detection window and a
minimum tree height of 0.6 m (minimum ht measured in the field, Table 1) as input.
In order to validate the tree detection step, a map of tree crowns was generated through
visual interpretation of an RGB orthomosaic of the study area by an experienced GIS
analyst. An orthomosaic was generated using the DTM_UAV1 and exported following a
raster format with spatial resolution of 0.2 m.

2.5. Digital Aerial Photogrammetry Assessment
2.5.1. DTM_UAV

To assess the quality of the DTMs generated from the point cloud, we used elevation
measurements obtained in the field with the aid of an RTK system. The measurements
reflect the elevations of 214 trees recorded during the tree geolocation step. Measured
(RTK) and estimated (DTMs) values were compared using a paired sample t-test with

https://www.asprs.org
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a significance level of 5%, along with the determination of RMSE and bias, as well as
descriptive statistics of the differences. A DTM generated from the RTK measurements
was also subtracted from each DTM in the point cloud. The results were then compiled as
maps for further evaluation.

2.5.2. Tree Tops Detection

The quality of each NPC was assessed by determining the accuracy of the detection of
the tree tops, calculating the percentage of the correctly detected trees (CD) and the relative
omission (OE) and commission (CE) errors:

CD =
Ndetected
Nobserved

(5)

OE =
Nmissed

Nobserved
(6)

CE =
Nextra

Nobserved
(7)

where Ndetected is the number of correctly detected trees, Nmissed is the number of unde-
tected trees, Nextra is the number of trees detected where there were no trees in the field,
and Nobserved is the number of trees observed in the field.

A tree top was considered correctly detected when the LMF algorithm placed it inside
the polygon representing the crown of the given tree. In cases where more than one tree
was placed inside a crown polygon, the point closest to the field location was considered
for the CD calculation. The detection step was also assessed by the RMSE between the
positional coordinate values (XRTK and YRTK) of each tree and the estimated coordinates of
their tops (XUAV and YUAV).

2.5.3. Tree Height

The total heights of trees automatically identified by each cloud point (Hmax) were
compared to the respective heights measured in the field (htField). The accuracy was
assessed using R2, RMSE, and bias metrics, along with the mean, maximum, minimum,
median, and standard deviation of the differences.

2.6. Modeled Heights

A linear regression model (htUAV = α + β Hmax + εi) was used to estimate ht values
as a function of the Hmax obtained from the best NPC, all in meters. The normality of the
residuals was evaluated using the Shapiro–Wilks test with a significance level of 5%.

2.7. Stand Silvicultural Quality via DAP-UAV

Using Hmax and htUAV values estimated from the best UAV NPC, the silvicultural
quality of the stand was estimated (CV, Gini, CRR, PV50 and Lorenz curve) and compared
to values obtained in the traditional field inventory. In addition, maps of individual
heights were generated for the entire stand: (i) plotting XRTK and YRTK coordinates of each
tree, associated with htField values, and (ii and iii) plotting XUAV and YUAV coordinates
associated with Hmax and htUAV values, respectively. The visual quality of the estimates
and the spatial distribution pattern of tree heights were analyzed and compared to values
found in the field.

3. Results
3.1. DAP Assessment
3.1.1. DTM_UAV

Table 2 presents statistics for differences between altitude collected in the field using
an RTK system (ZRTK, n = 214) and that estimated from the two DTM_UAVs. Paired sample
t-tests indicated that RTK and DTM_UAV altitudes did not show statistical differences
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(p-value < 0.05). Overall, DTM_UAV2 performed better in estimating ZRTK. The com-
parison between measured and estimated altitude values indicated an overestimation for
DTM_UAV1, with an average bias of −0.127 m (−1.07%) and an RMSE of 0.286 m (2.43%).
For DTM_UAV2, in addition to a lower RMSE value (0.120 m or 1.01%), we observed a
negligible underestimation of the altitude values (bias = 0.067 m or 0.56%).

Table 2. Statistics for differences between altitudes collected in the field using an RTK system (ZRTK ,
n = 214) and those estimated from two UAV DTMs of a young Eucalyptus stand.

Statistic Elevation Difference (ZRTK−ZDT M_U AV )
DTM_UAV1

1 DTM_UAV2
2

Minimum difference (m) −0.931 −0.192
Maximum difference (m) 0.283 0.289
RMSE (m) 0.286 (2.43%) 0.120 (1.01%)
Bias (m) −0.127 (−1.07%) 0.067 (0.56%)
Standard deviation (m) 0.257 (2.18%) 0.099 (0.84%)
1 DTM generated from terrain points extracted from the point cloud using unsupervised classification; 2 DTM
generated from terrain points extracted from the point cloud using supervised classification.

The three selected DTMs and the spatial distribution of the differences between them
are shown in Figure 2. The DTM_RTK and DTM_UAV2 had similar performances, showing
similar elevation values (Figure 2b,d). DTM_UAV1 contains vegetation points misclassified
as terrain, represented as circular contours. This result may be observed in greater detail
by comparing the ellipses in Figure 2a,c.

While Figure 2b,d highlight a clear correspondence between DTM_RTK and
DTM_UAV2, one may notice a greater dispersion for DTM_UAV1 elevation values
(range = 2.42 m), as presented in Figure 2c. The largest differences (0.58 to −1.35 m)
were found between DTM_RTK and DTM_UAV1 (Figure 2e), and the smallest ones (−0.255
to 0.312 m) between DTM_RTK and DTM_UAV2 (Figure 2f).

3.1.2. Tree Tops Detection

The LMF algorithm was able to identify over 95% of the stand trees within the DAP
point cloud (Table 3 and Figure 3). Among the NPCs, NPC_RTK and NPC_UAV2 had
the best performance, with approximately 97% of correctly identified trees (208 and 209
plants, respectively) and virtually no omission and tree duplication errors. Despite its
lower performance, NPC_UAV1 presented a small OE (5.0%) and CE (1.0%). The smallest
tree detected in the plantation was 0.75 m tall, while the smallest tree measured in the field
was 0.58 m.

Figure 3a displays a subset of the stand, indicating tree base locations (XRTK, YRTK)
obtained in the field with RTK (black dots) and their automatically detected tops using
each NPC: NPC_RTK (yellow dots), NPC_UAV1 (white circles), and NPC_UAV2 (orange
circles). Crown areas for each tree, retrieved by visual interpretation of the orthomosaic,
are shown as black outlined polygons. Figure 3 presents a high correspondence between
tree tops estimated by NPC_RTK (yellow dots) and NPC_UAV2 (orange circles). RMSE
values between tree base and tree top coordinates estimated from NPC_RTK, NPC_UAV1,
and NPC_UAV2 were 0.25, 0.17, and 0.15 m, respectively. Figure 3b–d present subsets of
these NPCs, which were able to properly represent the vertical structure of the trees.
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Figure 2. (a) Orthomosaic of the study area; (b) DTM generated from RTK measurements; (c) DTM
generated from unsupervised classification of the point cloud; (d) DTM generated from supervised
classification of the point cloud; and (e–g) Spatial distribution of differences between the DTMs.

Table 3. Tree detection metrics for each normalized point cloud (NPC) analyzed.

Point Cloud CD 1 OE 2 CE 3 Duplicated Trees

NPC_RTK 208(97.2%) 6(2.8%) 0(0.0%) 0(0.0%)
NPC_UAV1 204(95.3%) 10(4.6%) 2(0.9%) 2(0.9%)
NPC_UAV2 209(97.6%) 5(2.3%) 0(0.0%) 0(0.0%)
1 Percentage of correctly detected trees; 2 Omission error; 3 Commission error.
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Figure 3. (a) RGB orthomosaic of a young Eucalyptus stand indicating tree crowns mapped through
visual interpretation (black outlined polygons), tree bases obtained in the field with RTK (black dots),
and three tops detected with three different normalized point clouds: (b) NPC_RTK (yellow dots),
(c) NPC_UAV1 (white circles), and (d) NPC_UAV2 (orange circles).

3.1.3. Tree Height

Hmax values obtained from each NPC were compared to htField values (Table 4 and
Figure 4). All UAV photogrammetry products led to ht underestimation, with bias ranging
from 0.2 to 0.3 m (Table 4). Underestimation of ht, as well as the underestimation of the
mean and maximum values for the stand, is also evident on scatterplos and boxplots
shown in Figure 4. The worst performance was observed for estimates derived from
the NPC_UAV1, which presented greater scattering and limitations in the retrieval of the
heights of the smallest trees (Figure 4b,d). Overall, the best estimates were achieved by
the NPC_UAV2, which showed smaller RMSE (0.36 m or 10.9%) and bias (0.22 m or 6.7%)
(Table 4 and Figure 4).
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Table 4. Statistics of tree height estimates, considering each normalized point cloud (NPC) analyzed.

Statistic htField−Hmax

NPC_RTK NPC_UAV1 NPC_UAV2

Mean difference (m) 0.30 0.29 0.22
Standard deviation (m) 0.28 (8.3%) 0.34 (9.1%) 0.27 (8.3%)
Median difference (m) 0.25 0.24 0.17
Minimum difference (m) −0.51 −0.62 −0.78
Maximum difference (m) 1.46 1.82 1.35
BIAS (m) 0.30 (8.9%) 0.29 (8.2%) 0.22 (6.7%)
RMSE (m) 0.41 (12.4%) 0.43 (12.9%) 0.36 (10.9%)

Figure 4. Scatterplots (a–c) and boxplots (d) of observed (htField) versus estimated (Hmax) tree heights
from UAV photogrammetry, considering three normalized point clouds (NPC). The dashed line in
(d) represents the mean value of htField.

3.2. Modelled Tree Height

A linear regression model was built to estimate ht as a function of Hmax values obtained
from the NPC_UAV2. The predicted ht values were termed htUAV . Compared to heights
estimated directly with DAP-UAV (i.e., Hmax), the adjusted regression model improved
the accuracy, reducing the RMSE by 20% (Figure 5a). In addition, the model improved the
height estimates for the largest trees of the stand (Figure 5b) and delivered height estimates
that were unbiased relative to the field heights.
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Figure 5. Scatterplot (a) and boxplot (b) of observed (htField) versus estimated (htUAV) tree heights
from UAV photogrammetry in a young Eucalyptus stand. The dashed line in (b) represents the mean
value of htField.

3.3. Silvicultural Quality of the Stand

Figure 6 presents the Lorenz curve and stand uniformity metrics estimated from
htField (Figure 6a), Hmax and htUAV (Figure 6b). The stand presents a Lorenz curve close
to its optimum (line of equality), Gini values close to zero (Gini = 0.16), low coefficient of
variation (CV = 30%), and a PV50 of 38% (close to its maximum value of 50%). There were
no significant differences between the silvicultural quality estimated from htField and that
estimated from Hmax and htUAV .

Figure 6. Lorenz curve and uniformity metrics of a young Eucalyptus stand. The metrics are based on
tree heights (ht) estimated from (a) traditional field inventory, and (b) UAV photogrammetry data
(Hmax in black and htUAV in red).

Tree height maps generated from field inventory measurements (htField) and
NPC_UAV2 data (Hmax and htUAV) are presented in Figure 7c–e, along with a RGB point
cloud (Figure 7a) and a vertical profile (Figure 7b). The maps highlight the conformity of
heights measured in the field and estimated via UAV photogrammetry, suggesting a better
performance of htUAV compared to Hmax.
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Figure 7. (a) RGB point cloud of a young Eucalyptus stand; (b) the associated vertical profile; and
maps detailing the spatial distribution of tree height as (c) measured in the field (htField) and (d,e)
estimated from UAV photogrammetry (Hmax and htUAV , respectively).

4. Discussion

In this study, we evaluated the potential of UAV photogrammetry products to carry
out the initial qualitative inventory of a Eucalyptus stand in northeastern Brazil. To retrieve
forest structural information from DAP-UAV products, we utilized an approach based on
individual tree detection (ITD) [39,40]. Its success relies on the correct identification of tree
tops and a precise estimation of their heights [44,60,61]. Therefore, the method is sensitive
to the quality of the DAP products, the efficiency of the identification method, and the
physical properties of the area under analysis [62–65].

4.1. DTMs Assessment

Our results indicate the efficacy of DAP-UAV products to model terrain in young
Eucalyptus stands. UAV photogrammetry products may present limitations to modelling
the terrain under vegetation [29,66–70], with DTMs commonly overestimating the elevation
under the forest, leading to underestimation of tree heights [30,31]. In contrast to LiDAR,
DAP cannot penetrate the forest canopy and describe the vertical profile of the vegetation in
detail [23]. Limitations emerge from different sources, such as hardware (cameras), software
(SfM algorithms), flight parameters (height, overlap rate, viewing angle), and physical
properties of the area (terrain and vegetation) [30,71]. Therefore, knowledge of the accuracy
of DAP-UAV products is crucial for success in forest applications [72].

The low canopy relief ratio (CRR = 0.56) of the stand, primarily determined by its
wide plant spacing (3 m × 2 m), led to an adequate representation of the terrain and
lower estimation errors. Several studies indicate that DAP-UAV products are suitable
for modelling terrain under sparse forest formations [28,71,73,74]. Similar results were
observed by Aguilar et al. [75] in a survey conducted to assess the quality of DTMs
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generated with DAP data for a Tectona grandis stand located in the coastal region of Ecuador.
In addition to the low CRR, the smooth terrain (<5%) of the study area contributed to
the quality of the DAP-UAV products, as studies have shown that UAV photogrammetry
products perform better in flat areas [71,74].

Proper identification of terrain points has a direct impact on the quality of the gener-
ated DTMs [35,76]. In this study, terrain models generated from supervised classification
of the 3D point cloud (DTM_UAV2) achieved the highest compatibility (RMSE = 0.12 m or
1.01%) with data collected in the field (Figure 2f) using an RTK system (DTM_RTK). In the
absence of LiDAR, DTMs generated from RTK surveys may be employed to normalize
3D point clouds [66]. However, RTK data may not be cost-effective because limitations on
GNSS signal reception may compromise its usage under dense vegetation conditions [44].
The supervised classification procedure (DTM_UAV2) described in this study enabled
accurate identification of terrain points and reduction in errors introduced by artifacts from
misclassified vegetation points (DTM_UAV1, Figure 2c). Elevation values of both models
did not show a statistically significant difference (p-value > 0.05, paired t-test) in relation to
the RTK elevations obtained in the field.

The supervised classification increased the quality of DAP products, highlighting the
potential of DAP-UAV data for areas with sparse vegetation. Nevertheless, in sites with
different types and colors of soils, this method may not represent the variation well if a
small number of points is used for training. However, although not tested in this study,
we expect that a large sample size, covering all the color variation in an area, may still
produce good results. In these cases, setting a higher tolerance limit (>2) may also help with
the ground classification. The supervised classification requires an extra step that cannot
be easily automated and will unavoidably increase the processing time. Although the
added time may not be significant for occasional or small-area inventories, it will add up in
continuous, large-scale inventories. However, for the operational inventory of Eucalyptus
stands, alternatives can be used to reduce the total processing time. For instance, once
the terrain is mapped when the soil is visible during pre-planting operations, the DTM
generated by either supervised or unsupervised classification can be used as the reference
for the normalization of point clouds generated in future acquisitions, when the vegetation
is present. In addition, if a good LiDAR, InSAR or topography-based DTM is available, it
can also be used as the reference surface for normalization in future UAV acquisitions.

Small shrubs and decomposing organic material compromised the proper representa-
tion of the terrain in the DTM_UAV1 (contour lines in Figure 2c). This behavior is similar
to that found by Fawcett et al. [77] when generating a DTM from DAP-UAV data in a
stand of Elaeis guineensis in the state of Sarawak, Malaysian Borneo. The terrain reconstruc-
tion errors found in our study are also similar to those observed for LiDAR data in areas
with deciduous forest and small shrubs and trees in South Carolina, United States [78].
The cost of a UAV photogrammetry survey represents one third to half the cost of a LiDAR
survey [79,80]. This economical aspect, together with its enormous potential, makes UAV
surveys an important alternative to terrain mapping in forest plantation areas. Good-
body et al. [23] point out that strengths of DAP products include their ability to acquire
data at high flight altitudes and speeds, increasing the mapped area and reducing costs.
The lower costs of UAV data allow for the continuous monitoring of forests [81], thus
supporting planning and management practices and filling gaps between strategic, tactical,
and operational aspects of the inventory [79,82].

4.2. Tree Tops Detection

The normalization process transforms elevation into height by subtracting the DTM
from the 3D point cloud [83]. Tree tops and their respective heights can then be automatically
located and estimated using normalized point clouds and segmentation algorithms [57,84].
Therefore, the quality of the generated DTMs directly influences tree identification [35].
The NPC and LMF algorithms employed in this study were capable of identifying tree
tops (XUAV , YUAV) in the stand with over 95% accuracy (Table 3 and Figure 3a). This result
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is similar to that observed by Hentz et al. [37] (CD = 93.5%) in a study to identify young
plants (∼1.5 years old) in Pinus and Eucalyptus stands in Paraná, Brazil, and better than that
found by Fawcett et al. [77] (CD = 80.4%) for the identification of trees in a two-year-old
palm plantation in Sarawak, Malaysian Borneo.

The quality of the tree top identification process (Figure 3a) was supported by the
low RMSE values (<0.25 m) observed between estimated (XUAV , YUAV) and measured
(XRTK, YRTK) coordinates. Yu et al. [85], using LiDAR to identify trees in a boreal forest
in southern Finland, found smaller location differences than those observed in our study
(RMSE = 0.04 m). The overall better performance of LiDAR is related to its penetration
capacity, reaching the ground and the baseline plant level.

The best performance in tree top detection was achieved through the cloud normalized
by DTM_UAV2 (Table 3). The performance is directly related to low errors observed in
DTM_UAV2 achieved by the supervised classification of terrain points. It is noteworthy
that in contrast to previous studies [31,37,43], the effect of the tree top detection window
parameters were not assessed. For future research, we suggest the assessment of different
DAP-UAV point cloud densities, crown shapes, and detection window sizes, as well as
different identification methods.

4.3. Tree Height

All UAV photogrammetry products delivered adequate tree height estimates
(bias < 0.3 m and RMSE < 0.43 m or 13%). However, ht values were systematically
underestimated, even with the point cloud normalized using the DTM generated with
RTK measures (NPC_RTK). The accuracy of ht estimated in our study was similar to that
found by Hentz et al. [37] while estimating tree heights of a young Eucalyptus plantation
using DAP-UAV data (RMSE = 0.44 m). In a 7-year-old Eucalyptus plantation, Guerra-
Hernández et al. [25] also observed an underestimation of individual ht values, with an
RMSE and bias of 2.84 m and 2.67 m, respectively. Our results were also similar to those
observed by Krause et al. [44] (RMSE = 0.49 m or 2.78% and bias = 0.365 m or 2.21%), who
estimated individual ht using DAP-UAV and a DTM obtained by RTK in a wild pine stand
in northeastern Berlin, Germany. In that study, photogrammetric tree height measurements
were validated using destructive methods. Studies conducted with LiDAR data also show
a tendency to underestimate ht values [17,25,81]. Comparing ht values derived by LiDAR
with field measurements of young Eucalyptus stands (<4 years) in southeastern Brazil,
Leite et al. [17] found a RMS error of 11.98% and a bias of 11.17%.

Despite being able to explain about 90% (R2 = 0.87) of the ht variation, the NPC_UAV1
performed worse (OE = 10 trees or 4.6%) in identifying and estimating the height of the
smallest trees (ht < 1 m), as a result of the inferior quality of the DTM_UAV1 (Table 2
and Figure 2c,e). We, therefore, recommend the use of the DAP point cloud normalized
by a DTM generated with a supervised classification of terrain points. The low accuracy
of DTMs is considered by many authors to be the main source of uncertainty regarding
tree height estimation using DAP-UAV data [28,66,69,86]. Given the reduced bias for
elevations (ZRTK) measured at the base of each plant (−1.07% in DTM_UAV1 and 0.56%
in DTM_UAV2, Table 2), there is no evidence that the DTMs generated in this study were
responsible for the underestimation of tree heights (ht). The uncertainties associated with
htField measures can also be discarded as a source of the observed errors (Table 1). The un-
derestimation of ht is likely related to difficulties in reconstructing the upper part of the
tree tops using DAP techniques [87]. This hypothesis is supported by the small differences
between the maximum ht and the maximum heights estimated with each NPC (0.65 m in av-
erage) (Figure 4d). Cunliffe et al. [87] also reported issues with dense 3D point clouds when
modelling vegetation heights in the semiarid region of New Mexico, United States. Studies
show that height underestimation is more frequent when DAP-UAV products are collected
in sparse areas, such as forest stands in early stages of development [88,89]. Evaluating
different techniques to collect and process 3D vegetation data, Crespo-Peremarch et al. [90]
found that the SfM algorithm and the parameters used influence the quality of the DTM
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and, consequently, the subsequent UAV photogrammetry products. Therefore, we suggest
that different SfM algorithms and parameters are tested upon photo alignment.

Crown movements caused by wind may have led to failures in the identification of
key and tie points. In consonance with the study by Dandois et al. [30], we suggest that
UAV surveys are performed only when the wind speed is under 8 m/s. We also suggest
further research into methods to identify tree tops that utilize unnormalized point clouds as
input data, since the normalization process may impact the reconstruction of tree tops [91].
We also expect that angular and rotational variation in UAV imaging has the potential to
improve tree identification and DTM quality because different viewing angles increase the
chance of seeing the ground and facilitate the identification of key and tie points. Therefore,
we recommend that this feature be evaluated.

Diverging from the observed by Krause et al. [44], we found that ht estimated directly
from the DAP-UAV point cloud (Hmax) led to a higher RMSE and bias than those found
for the field inventory, as estimated from repeat measures (Table 1). Nevertheless, it is
noteworthy that the measurement errors observed in our study are low because of the
small scale of the experiment and the usage of a graduated ruler to measure ht directly.
Given that tree heights are usually estimated from indirect methods that are less accurate
than that used in our study [92–94], the errors for estimates generated from DAP-UAV can
be considered satisfactory.

4.4. Modelled Tree Height

Regression models are widely used to estimate heights from 3D remote sensing
metrics that represent the vertical structure of a forest [17,31,85,86,89]. Studies suggest
that the use of linear regression models may eliminate biased predictions found in the
ITD approach [60,85]. Using Hmax values estimated from the NPC_UAV2, a simple linear
regression model was fitted to estimate ht values (htUAV) for the analyzed Eucalyptus stand
(Figure 5). The model was able to explain 90% of the ht variation, reducing the RMSE
by 20% (Figure 5a). Additionally, the model was able to improve height estimates for
the tallest trees (Figure 5b). The performance of the regression model, marked by small
errors and unbiased estimates of tree heights, highlights the enormous potential of UAV
photogrammetry data to monitor the initial silvicultural quality of Eucalyptus stands.

4.5. Stand Silvicultural Quality

Traditionally, the initial silvicultural quality of forest plantations is determined by
means of data collected in field campaigns [3,27,95]. The usage of DAP-UAV data is
still reduced for this purpose, especially for Eucalyptus stands [37,96]. In this study, we
found that, regardless of the height estimation procedure (directly via Hmax or indirectly
via htUAV), the uniformity estimated by DAP-UAV is similar to that found in traditional
inventory (Figure 6).

However, a slight tendency to overestimate stand uniformity was found, with lower
values for Gini and CV and higher values for CRR and PV50 (Figure 6b). The trend is
related to difficulties presented by the DAP technique to identify small trees and estimate
maximum ht values (Table 4 and Figure 4), as discussed in the sections above. Figure 7d,e
illustrate the quality of the 3D point cloud and the underestimation of heights, especially
for the largest height classes (yellow and red points). One may also verify the improvement
in height estimation (Figure 7e) brought by the regression model between ht and Hmax,
particularly for the largest height classes (4.20 to 5.4 m).

Finally, we can observe the flexibility of the approach used, allowing for stand charac-
teristics to be estimated and mapped at the tree level. The approach presented in our study
may support management and initial protection activities of the stand, assisting rescue,
enrichment, and protection activities, in addition to general assessments of the quality in
the field. DAP-UAV surveys are low-cost and highly accurate, being a suitable tool for
precision silviculture activities in developing countries, such as Brazil.
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5. Conclusions

In this study, we assessed an approach to estimate forest attributes at the tree level
using UAV photogrammetry data. The approach allows for a direct connection between
DAP-UAV data and tree-level measurements obtained in the field. An alternative would
be an area-based approach, which inherits the setback of establishing an indirect relation
between UAV data and average forest attribute values at the plot level. The results are
promising, indicating that UAV photogrammetry data can be employed to identify individ-
ual trees, estimate their heights, and evaluate the initial silvicultural quality of Eucalyptus
stands. From the results, we conclude that: (i) The terrain model generated from supervised
classification of the 3D point cloud achieved the best performance; thus, it is recommended
as the preferred approach for terrain modelling by UAV photogrammetry. (ii) The point
cloud normalized with the DTM generated from the supervised classification led to the
best performance in the automatic detection of tree tops. (iii) Tree heights derived directly
from UAV point clouds resulted in underestimation when compared to field measurements.
However, a linear regression model based on the maximum UAV heights reduced the
RMSE and improved height estimates for the tallest trees. (iv) There were no differences
between silvicultural quality metrics estimated from DAP-UAV and field data.

In future research, we suggest evaluating the technique presented in this study for
stands on sloping terrain conditions. It is also important that the approach is explored
for stands with different ages, plant spacing, management regimes, and genetic materials.
We also suggest that studies are carried out with angular and rotational variation in UAV
imaging in order to evaluate its impacts on product quality.
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The following abbreviations are used in this manuscript:

ABA Area-based approach
CD Correctly detected
CO Commission Error
CV Coefficient of Variation
CRR Canopy Relief Ratio
DAP Digital Aerial photogrammetry
DTM Digital Terrain Model
GSD Ground Sample Distance
GCPs Ground Control Points
GPP Gross Primary Product
GNSS Global satellite navigation systems
ITD Individual Tree Detection
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LIDAR Light Detection and Ranging
LMF Local Maximum Filter
NPC Normalized Point Cloud
OE Omission error
PV50 Percentage of cumulative heights for the 50% lowest trees
RMSE Root Mean Square Error
RMSD Root Mean Square Deviation
RTK Real-Time Kinematic
SfM Structure from Motion
SIRGAS Sistema de Referencia Geocéntrico para las Américas
TIN Triangulated Irregular Network
UTM Universal Transversa de Mercator
UAV Unmanned Aerial Vehicles
VLOS Visual Line of Sight
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