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Abstract: In this study, Sentinel-2 data were used for the retrieval of three key biophysical parameters
of crops: leaf area index (LAI), leaf chlorophyll content (LCC), and leaf water content (LWC) for
dominant crop types in the Czech Republic, including winter wheat (Triticum aestivum), spring
barley (Hordeum vulgare), winter rapeseed (Brassica napus subsp. napus), alfalfa (Medicago sativa),
sugar beet (Beta vulgaris), and corn (Zea mays subsp. Mays) in different stages of crop development.
Artificial neural networks were applied in combination with an approach using look-up tables that
is based on PROSAIL simulations to retrieve the biophysical properties tailored for each crop type.
Crop-specific PROSAIL model optimization and validation were based upon a large dataset of in situ
measurements collected in 2017 and 2018 in lowland of Central Bohemia region. For LCC and LAI,
respectively, low relative root mean square error (rRMSE; 25%, 37%) was achieved. Additionally,
a relatively strong correlation with in situ measurements (r = 0.80) was obtained for LAI. On the
contrary, the results of the LWC parameter retrieval proved to be unsatisfactory. We have developed a
generic tool for biophysical monitoring of agricultural crops based on the interpretation of Sentinel-2
satellite data by inversion of the radiation transfer model. The resulting crop condition maps can
serve as precision agriculture inputs for selective fertilizer and irrigation application as well as for
yield potential assessment.

Keywords: Sentinel-2; PROSAIL; radiative transfer; leaf area index; leaf chlorophyll content; leaf
water content; artificial neural network; look-up table

1. Introduction

Remote sensing is a valuable tool for objectively and nondestructively assessing the
status of terrestrial vegetation [1]. A wide range of remote-sensing applications have
been developed to monitor the status and development of agricultural crops [2]. This has
revolutionized the agriculture sector by introducing the concepts of so-called precision
farming. The availability of detailed spatial information relating to, for example, crop vigor,
crop heterogeneity, nitrogen fertilization needs, or crop water deficiency have enabled
more effective crop management on the level of individual parcels. This can bring benefits
in such forms as substantially reduced costs, higher yields, and diminished environmental
pressures (e.g., by avoiding overfertilization that leads to nitrogen leaching). A review on
using remote sensing for precision farming can be found for example in [3].

There exist numerous crop parameters that can be retrieved either directly or indirectly
from remote-sensing observations. Direct parameters include the canopy structural pa-
rameters such as canopy height [4], leaf biomass [5], leaf water [6], chlorophyll content [7],
and indirect parameters, e.g., the nitrogen content [8]. Variation in these parameters leads
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to direct changes in remotely observed canopy signal, including reflectance [9], emissiv-
ity [10,11], or backscattering [12] coefficient. These can then be used to develop a regression
model examining the relationship between a crop variable of interest and the remote-
sensing observation [13]. This approach offers fast and simple retrieval of vegetation
parameters and can establish important correlations, but its practical use is limited by
several facts. Empirical models are generally site specific. On top of that, the relationship
between vegetation reflectance and biophysical variables is influenced also by canopy
structure (e.g., leaf orientation) and the developed model is thus also species specific. Since
vegetation spectral properties change in time due in relation to plant phenology, the relation
to plant biophysics changes also in time (and the model is thus time specific). All these
issues significantly limit applicability of empirical approach for developing a generic tool
for biophysical crop monitoring.

Alternatively, a physics-based approach can be applied using an inversion of a crop
radiative transfer model (RTM) against remote-sensing observations [14]. The parametriza-
tion of a crop radiative transfer model and its inversion against remote-sensing observations
is a demanding task that requires large amounts of input data for representative simulations
of crop spectral behavior across a wide range of possible crop scenarios. When successful, a
canopy radiative transfer model offers generic, large-scale retrieval of crop parameters for
a wide range of observation conditions, crop types, and their development stages. Indirect
parameters of crops do not influence the remotely observed signal directly. Rather, their
retrieval typically requires synthesis of multisource data (e.g., remote-sensing observations,
meteorological variables, in situ observations) in a land surface process model. In this
way, numerous crop parameters, including, for example, crop yield [15] and gross primary
production [16] can be predicted.

The high complexity and non-linearity of crop variables retrieval from the remote-
sensing observation (regardless of whether empirically obtained or RTM simulated) re-
quires usage of advanced regression methods [5]. Such powerful regression methods are
non-linear machine learning techniques, e.g., support vector regression (SVR) or artificial
neural network (ANN) [5], that have been successfully used in the crop variable retrieval
context since the early 2000s [2]. The advantages of the ANN approach are the ability to
predict multiple variables at the output, the general rapidity in performing predictions
after training and the stability of results [5].

Retrieved direct and indirect parameters may be used directly within the precision
farming concept as a map of traits of interest and their farm-level heterogeneity [17] for
variable application of, for example, fertilizers [18], insecticides, seeds, or watering.

In this study, we apply a physics-based approach to retrieve several direct crop
parameters for dominant crop types of the Czech Republic, including winter wheat
(Triticum aestivum), spring barley (Hordeum vulgare), winter rapeseed (Brassica napus subsp.
napus), alfalfa (Medicago sativa), sugar beet (Beta vulgaris), and corn (Zea mays subsp. mays).
It uses PROSAIL, which couples a leaf optical properties model and a canopy radiative
transfer model, together with a large in situ dataset collected during field campaigns and
the ANN regression approach.

Main research objective of this study was to test the applicability of radiative transfer
inversion approach to retrieve crops parameters for a wide range of conditions, e.g.,
different crop types and their growing stages to design a generic yet crop specific calibrated
tool for biophysical monitoring further applicable in precision farming concept.

2. Materials and Methods
2.1. In Situ Data Collection and Processing
2.1.1. Test Sites and Sampling Design

Intensive ground sampling campaigns were organized during vegetation seasons in
2017 (3 campaigns) and 2018 (5 campaigns) to (1) collect reference data for assessing the
atmospheric corrections of Sentinel-2 data, (2) perform representative parameterization
of the PROSAIL radiative transfer model, and (3) obtain a reference database of in situ
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measurements for validation of crop biophysical parameter retrievals. Campaigns were
conducted at selected agricultural parcels of cooperating farms namely: Poděbradská Blata
(50.16◦ N, 15.16◦ E), Pěstitel Stratov (50.19◦ N, 14.91◦ E), and ZAS Podchotucí (50.28◦ N,
15.10◦ E). The overview map of those parcels is shown together with true color Sentinel-2
images for different parts of the growing season in Appendix A Figure A1. All of these
farms are situated in lowland of Central Bohemia region known as Polabí (Elbeland).
Thanks to favorable climatic conditions (mean annual temperature 8–9 ◦C, sum of tem-
perature over 10 ◦C 2600–2800, mean annual precipitation 500–600 mm), it is one of the
most fertile and productive areas in the Czech Republic. Representative dates had to be
selected to accommodate differences in phenology while covering all growing states of the
crops. Selection was based on the results of analyzing temporal profiles for normalized
difference vegetation index (NDVI) [19] used to describe vegetation phenology. The timing
of the campaigns in relation to the phenological development of crops is shown along with
the number of sampled points in Figure 1. In total, the ground sampling activities were
performed in the following extent:

• Eighteen parcels (7×winter wheat, 4× spring barley, 5×winter rapeseed, 1× alfalfa,
1 × sugar beet, 1 × corn) including 188 reference points in 2017.

• Twenty-one parcels (3 × winter wheat, 2 × spring barley, 6 × alfalfa, 4 × sugar beet,
4 × corn) including 244 reference points in 2018.
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idation data subsets (203 calibration/188 validation points in 2017; 124 calibration/144 validation 
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1.1. = 1, 2.1. = 2…31.12. = 365 etc.). 

Figure 1. Typical NDVI profiles (extracted from series of Sentinel-2 data) of the agricultural crops
considered in this study characterizing temporal changes of crop canopies during the growing season.
Reference in situ data were collected during 8 field campaigns A (29–31 March 2017); B (17–19 May
2017), C (19–21 June 2017), D (4–5 April 2018), E (27–30 April 2018), F (21 May 2018), G (20–21 June
2018), and H (26 July 2018). Collected measurements were further divided into calibration/validation
data subsets (203 calibration/188 validation points in 2017; 124 calibration/144 validation points in
2018). DOY (day-of-year) stands for the ordinal number of the day in the given year (i.e., 1.1. = 1,
2.1. = 2 . . . 31.12. = 365 etc.).

Even as the collected in situ measurements had to be representative, they also should
cover sufficient variability within the variables of interest. Selection of the reference parcels
was consulted with the agronomists working at the cooperating farms. A transect of
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at least five reference points with minimum spacing of 40 m (= 2 Sentinel-2 pixels) was
established at each reference parcel in order to cover the maximum variability in crop
condition. Location of the transect on each parcel was designed with the help of an NDVI
map generated from the latest cloud-free Sentinel-2 or Landsat-8 scene prior to the planned
ground campaign (Figure 2). The spatial setting of the particular transects takes into
consideration (a) intra-field variability but also (b) representative coverage of both “high
productivity” and “low productivity” areas in terms of whole farm. At each sampling point,
multiple measurements were made and then averaged to reduce the risk of measurement
error. Coordinates of reference points were measured using a Garmin Oregon 300 field
GPS receiver with a declared spatial accuracy between 3–5 m [20].

Remote Sens. 2021, 13, 3659 4 of 30 
 

Even as the collected in situ measurements had to be representative, they also should 
cover sufficient variability within the variables of interest. Selection of the reference par-
cels was consulted with the agronomists working at the cooperating farms. A transect of 
at least five reference points with minimum spacing of 40 m (= 2 Sentinel-2 pixels) was 
established at each reference parcel in order to cover the maximum variability in crop 
condition. Location of the transect on each parcel was designed with the help of an NDVI 
map generated from the latest cloud-free Sentinel-2 or Landsat-8 scene prior to the 
planned ground campaign (Figure 2). The spatial setting of the particular transects takes 
into consideration (a) intra-field variability but also (b) representative coverage of both 
“high productivity” and “low productivity” areas in terms of whole farm. At each sam-
pling point, multiple measurements were made and then averaged to reduce the risk of 
measurement error. Coordinates of reference points were measured using a Garmin Ore-
gon 300 field GPS receiver with a declared spatial accuracy between 3–5 m [20]. 

 
Figure 2. Selection of in situ transects. The latest cloud-free scene acquired before the date of an in situ sampling campaign 
(in this case 16 March 2017) was used to calculate a normalized difference vegetation index (NDVI) product. Spatial gra-
dients of NDVI (assumed to describe spatial heterogeneity of canopy characteristics) were used for locating the sampling 
transect. 

2.1.2. Measurements of Crop Leaf Biochemical Traits 
Leaf chlorophyll content was measured nondestructively using a handheld Force-A 

Dualex device [21]. The leaf chlorophyll content was estimated from leaf transmittance 
measurements of narrow wavelengths that strongly correlate with changes in chlorophyll 
content. Ten measurements were performed at each sampling point and the average of 
these measurements was calculated as the reference chlorophyll value for the given sam-
pling point. The main benefit of using the Force-A Dualex device is linear response of its 
readings to the increasing chlorophyll content (in contrast with other widely used chloro-
phyll meters SPAD and CCM-200 exhibiting non-linear response) [22]. According to [22], 
the Dualex reading can be considered as equivalent to leaf chlorophyll content in µg/cm2. 
The Dualex calibration model (based on comparing device readings against chlorophyll 
extracts) shows globally R2 = 0.88 and absolute RMSE = 5.20 µg/cm2 or R2 = 0.96 and abso-
lute RMSE = 6.36 µg/cm2 in case of wheat and corn samples [22]. 

Leaf water content was determined gravimetrically as the difference between leaf 
fresh (FW) and dry (DW) weights. Collected leaf samples were transported into a mobile 
laboratory immediately after being cut from the canopy. Here, fresh weight was measured 
using laboratory scales (with 0.001 g precision). A desktop scanner was then used to esti-
mate samples’ projected leaf area (LAP). Finally, leaf samples were dried for at least 48 h 

Figure 2. Selection of in situ transects. The latest cloud-free scene acquired before the date of an in situ sampling campaign
(in this case 16 March 2017) was used to calculate a normalized difference vegetation index (NDVI) product. Spatial gradients
of NDVI (assumed to describe spatial heterogeneity of canopy characteristics) were used for locating the sampling transect.

2.1.2. Measurements of Crop Leaf Biochemical Traits

Leaf chlorophyll content was measured nondestructively using a handheld Force-A
Dualex device [21]. The leaf chlorophyll content was estimated from leaf transmittance
measurements of narrow wavelengths that strongly correlate with changes in chlorophyll
content. Ten measurements were performed at each sampling point and the average
of these measurements was calculated as the reference chlorophyll value for the given
sampling point. The main benefit of using the Force-A Dualex device is linear response
of its readings to the increasing chlorophyll content (in contrast with other widely used
chlorophyll meters SPAD and CCM-200 exhibiting non-linear response) [22]. According
to [22], the Dualex reading can be considered as equivalent to leaf chlorophyll content
in µg/cm2. The Dualex calibration model (based on comparing device readings against
chlorophyll extracts) shows globally R2 = 0.88 and absolute RMSE = 5.20 µg/cm2 or
R2 = 0.96 and absolute RMSE = 6.36 µg/cm2 in case of wheat and corn samples [22].

Leaf water content was determined gravimetrically as the difference between leaf
fresh (FW) and dry (DW) weights. Collected leaf samples were transported into a mobile
laboratory immediately after being cut from the canopy. Here, fresh weight was measured
using laboratory scales (with 0.001 g precision). A desktop scanner was then used to
estimate samples’ projected leaf area (LAP). Finally, leaf samples were dried for at least
48 h in an electric dryer at 70 ◦C and then weighed again to obtain their dry weights. The
leaf water content expressed as equivalent water thickness (EWT (cm)) was then calculated
as EWT = (FW − DW)/LAP. In addition to the water content, specific leaf area (cm2/g)
and leaf specific weight (g/cm2) were calculated.
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2.1.3. Measurements of Crop Structural Traits

Reference values of leaf area index (LAI) as a measure of crop leaf biomass and canopy
closure were obtained by two different methods: (1) using a Delta-T SunScan device [23],
and (2) from digital hemispherical photography (DHP). Two methods were used due to
the applicability of each for different crop canopy conditions and development phases. In
the case of the SunScan device, five measurements were collected at each sampling point
and averaged into a single reference value. Similarly, eight DHP images were taken at each
sampling spot using a Canon 700D digital camera equipped with a Sigma 4.5 mm f/2.8
circular fisheye lens. Sampling design covering an area of 20 × 20 m (corresponding to
one Sentinel-2 pixel represented by the given sampling point) is shown in Figure 3. All
images were taken using a tripod and horizontally levelled, resulting in sampling of the
entire upper hemisphere with 180◦ circular field of view. Areas of the images that were
obscured (e.g., by tripod) were masked manually. Next, the images were thresholded into
binary masks of vegetation canopies. Sequences of the eight DHP images referring to one
particular sampling point were then processed using the CanEye software [24], where LAI
was inverted from angular distributions of canopy gaps. Both of the two inputs required by
the CanEye software (optical center of the hemispherical images and projection function)
were calibrated following instructions available in CanEye user manual and with help of
the CanEye author [24].
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Figure 3. Sampling scheme for digital hemispherical photography. Shown are a sampling reference
point (blue) and eight DHP acquisition spots covering the corresponding Sentinel-2 pixel area
(20 × 20 m).

Cases when both DHP-based and SunScan LAI measurements had been performed at
the same time were used to check the relationships between the LAI values estimated by
the two methods. A simple linear transformation of the SunScan-based LAI values was
defined and applied to ensure maximal intercomparability of the two LAI datasets (see
Figure 4 and Equation (3)).
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2.1.4. Measurements of Leaf and Canopy Spectra

Optical properties were measured using an ASD FieldSpec 4 field spectroradiome-
ter [25]. The device measures incoming radiation in the spectral range from 350 to 2500 nm
with 1 nm sampling interval. Different modes of operation allowed us to measure various
remote-sensing quantities, ranging from surface (top-of-canopy) reflectance, leaf reflectance,
and transmittance to incoming irradiance. We used the spectroradiometer to measure crops’
(1) top-of-canopy reflectance, and (2) leaf-level reflectance and transmittance.

The measurements followed a general sampling scheme, with several campaigns
targeting phenological progress of the crops of interest. Top-of-canopy measurements were
conducted using the ASD FieldSpec 4 with bare-fiber optics attached to the pistol grip. The
measurements were performed under natural illumination conditions, which necessitated
frequent collection of calibrated white reference (99% Spectralon surface reflectance panel
with 12.7 cm square). After taking the reference measurement, we collected at each sam-
pling point (the same for all sampled quantities, see Section 2.1.1) an average reflectance
from four transects of a square with 10 m sides. These measurements were used to (a)
validate the performance of atmospheric corrections of Sentinel-2 images, and (b) assess
goodness of fit between the theoretical canopy radiative transfer modeling in the PROSAIL
coupled model (see Section 3.2.1) and measured ground and satellite reflectances.

Leaf-level optical properties were measured using an attached ASD RTS-3ZC integrat-
ing sphere [25]. This allowed us to measure hemispherically integrated reflectance and
transmittance of sampled leaves in a wide spectral range from 350 to 2500 nm with a 1 nm
sampling interval. The measurements followed standard protocol as recommended by the
manufacturer. The instrument was preheated for at least 20 min to avoid changes in radio-
metric characteristics. In total, 50 measurements were averaged for both white reference
and the sample measurement. The leaf-level reflectance and transmittance measurements
were used for (a) direct retrieval of the numbers N for the crops of interest (see Section 2.2.1
for details of PROSAIL model parametrization), and (b) collection of input reflectance for
leaf optical properties.

2.2. Radiative Transfer
2.2.1. PROSAIL Model Parametrization

In this study, the widely used PROSAIL radiative transfer model [26–28] was selected
to simulate canopy spectral signatures of the studied crops in forward mode. The PRO-
SAIL model combines the leaf-level PROSPECT and canopy-level SAIL models [29–31].
Specifically used was the Python implementation of the PROSPECT5 and 4-SAIL model
version [32]. PROSAIL input parameters consist of leaf biochemical characteristics (e.g.,
chlorophyll and carotenoid content, water and dry matter content, brown pigment content),
structural parameters of leaves (N) and canopy (LAI, LIDFa, LIDFb, Hspot), properties of
illumination and observation geometry (solar zenith and azimuth angle, observation zenith
and azimuth angle, fraction of diffuse incoming solar radiation), and the background soil
spectra. The output of the PROSAIL model is simulated top-of-canopy spectral reflectance
in wavelength range 400–2500 nm with 1 nm step.

A parametrization was performed in order to adjust the PROSAIL model for the
six crops of interest. The aim was to determine the most suitable combination of input
parameters that are not directly measurable in the field. We parameterized three PROSAIL
input parameters: LIDFa, LIDFb, and Hspot. The parametrization’s principle consists
in running the radiative transfer model iteratively for a specified range of the estimated
parameters, whereas the rest of the input parameters (N, LCC, carotenoid content [Cx],
LWC, dry specific leaf weight [SLW], and LAI) are fixed using field measurements (a strong
linear correlation with LCC was found for parameter Cx [33]). The simulated canopy
spectra are then compared with the reference spectra and the match is assessed by the
root mean square error (RMSE). We used cloud-free Sentinel-2 (considering S2A in 2017
season and both S2A and S2B in 2018 season) images with the closest acquisition date as a
reference. The simulated spectra were resampled to the Sentinel-2 spectral resolution using
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a sensor response function provided by the European Space Agency (the response functions
for both variants, 2A and 2B, differ very little, so a single response function was used) [34].
Finally, the values of the calculated parameters were determined as weighted averages of
parameters from 10 simulations with the best fit to the reference data (the weights were
set as the reciprocals of the RMSE values). The statistical distribution functions were then
designed for each crop and retrieved parameters (detailed in Section 3.2.1).

A particular case was the treatment of rapeseed during the flowering phase, because
the flower reflectance considerably affects the overall canopy spectral signature. The
PROSAIL model is not able to simulate the flowering rapeseed canopy. Our solution was
to spectral mix the “green” and “yellow” components of the overall canopy biomass in a
specific ratio, expressed by the following formula:

Rc = w · Rf + (1 − w) · Rg (1)

where Rc corresponds to the whole canopy reflectance and Rf and Rg, respectively, represent
reflectance of the flower and green biomass. The green biomass spectra (Rg) samples were
extracted from Sentinel-2 images captured shortly before the flowering phase had begun,
whereas the final (flowering) canopy reflectance (Rc) samples were taken from Sentinel-
2 images of the same canopy in the middle of flowering phase. The rapeseed flowers
spectra (Rf) were obtained by measuring the in situ flower samples with the portable ASD
Fieldspec 4 spectroradiometer. The ratio of spectral mixing (w) was determined using
a merit function assessing the fit between simulated and reference data. The proposed
procedure was then applied to real Sentinel-2 data of the rapeseed canopy in flowering
phase. The whole procedure of estimating the spectral mixing ratio (w) was performed
on an empirical basis, meaning certain limitations in terms of site specificity. The value
of Rg will be influenced by density and closure of the rapeseed canopy before starting of
flowering phase. Similarly, the Rc will be influenced by intensity of rapeseed flowering
(density of flowers) which may vary with different climatic/growing conditions (moreover,
we assume that amount of green biomass does not change significantly from starting of
the flowering phase). Although the procedure was developed using data obtained from
rapeseed canopies with different density, it would be good to have data covering wider
range of growing conditions to ensure greater robustness.

2.2.2. Design and Creation of Look-Up Tables

The biophysical parameters retrieval is based on a look-up table (LUT) approach. This
method was chosen for its robustness and ease of use [14,28]. The crop-optimized PROSAIL
model (see Section 2.2.1 for details) was run in forward mode. The canopy reflectances
obtained were then resampled to Sentinel-2′s spectral resolution using the sensor spectral
response function [34].

The simulated reflectances must cover any possible illumination conditions during
the entire vegetation season in the Czech Republic so that the methodology is actually
applicable in agricultural practice. The annual range of illumination geometry properties
(sun zenith [SZ], sun azimuth [SA]) was determined based on Sentinel-2 time series (related
to the time of a satellite’s passing over the Czech Republic) from 25◦ to 70◦ and from 150◦

to 170◦ for SZ and SA, respectively. The range of illumination geometry was divided in the
interval of 5 ◦ into a total of 50 SZ–SA combinations.

For each of these 50 combinations, a set of 11,000 simulations (based on unique
combinations of PROSAIL input parameters) was generated as a prediction model training
subset (such a training subset size is considered as sufficient with respect to narrowly
limited illumination conditions, while reasonable computational requirements for effective
deployment in operational service). Soil background was approximated by generation
spectra for various soil moisture levels using spectral mixing of dry- and wet-soil spectra
given together with the PROSAIL model [32]. Three biophysical parameters of interest
(LAI, LCC, LWC) were sampled randomly with uniform statistical distribution to cover all
valid ranges of values. The ranges of LAI, LCC, and LWC were set according to previous
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studies [26] and values observed during our field campaigns as follow: 0–10 m2/m2 for LAI,
0–80 µg/cm2 for LCC, and 0.0005–0.07 cm for LWC (Table 1). The rest of the PROSAIL input
parameters were either generated based on empirical distribution functions, determined
by the parametrization procedure (LIDFa, LIDFb, and Hspot (see Section 2.2.1)) or based
on the field data (Cm). The specific values are listed in Table 2. The value for Skyl (i.e., the
ratio of diffuse versus total incident radiation) was set to 0.2, corresponding to cloudless
sky [35].

Table 1. Values of ProSail inputs common for all six crops of interest. LCC = leaf chlorophyll con-
tent, CX = carotenoid content, LWC = leaf water content, LAI = leaf area index, SA = sun azimuth,
SZ = sun zenith, OA = observer azimuth, OZ = observer zenith, SKYL = fraction of diffuse
solar radiation.

LCC CX LWC LAI SA SZ OA OZ SKYL

min 0 0 0.0005 0 150 25 - 0 0.2
max 80 8 0.07 8 (10) 170 70 - 0 0.2
dist. uniform uniform uniform uniform 5◦ step 5◦ step Fix fix fix

Table 2. ProSAIL inputs with different values for six crops of interest (SLW = specific leaf weight, N = leaf structural
parameter, LIDFa, LIDFb and HSpot = leaf and canopy structure parameters).

SLW N LIDF_A LIDF_B HOTSPOT
min max dist. fixed min max dist. minn max dist. min max dist.

W. cereals 0.0009 0.0197 norm 1.44 −1 0 emp. −1 1 emp. 0.01 0.5 emp
S. cereals 0.001 0.0138 norm 1.57 −1 0 emp. −1 1 emp. 0.01 0.5 emp

O. rapeseed 0.0005 0.01 uniform 1.78 −1 1 emp. −1 1 emp. 0.5 0.5 fix
S. beetroot 0.003 0.008 norm 1.67 −1 0 emp. −1 1 emp. 0.1 0.5 emp

Alfalfa 0.003 0.008 norm 1.53 −1 1 emp. −1 1 emp. 0 0.5 emp
Corn 0.003 0.008 norm 1.28 −1 1 emp. −1 1 emp 0.2 0.5 emp

2.3. Crop Biophysical Parameters Retrieval
2.3.1. Image Processing

The pair of Sentinel-2 satellites provides high spatial resolution (10, 20, and 60 m)
imagery in 13 spectral bands covering visible, near-infrared, and short-wave infrared
domains with high revisit time of 5 days (when both satellites are considered). In this study,
the spectral bands with native spatial resolution of 10 and 20 m were considered (all in
their 20 m version available in the L2A product). Atmospherically corrected top-of-canopy
reflectance data (i.e., Level-2A) covering the entirety of the Czech Republic were generated
for the years 2016, 2017, 2018, and 2019 (through 30 September 2019) using the SEN2COR
processor that had been set up in accordance with the metadata for the processed scene [36].

Masks of the valid pixels were generated from the scene classification layer (SCL)
created during the atmospheric correction using the SEN2COR tool. All pixels classified
as follows were considered as invalid and thus excluded from further processing: 0 = no
data, 1 = saturated or defective pixels, 3 = cloud shadows, 8 = medium probability clouds,
9 = high probability clouds, 10 = thin cirrus, and 11 = snow.

Because quality of atmospheric correction is one of the crucial factors influencing
accuracy of the estimated crop biophysical variables, it must be checked prior to applying
the crop biophysics retrieval algorithm to ensure that the canopy spectral signatures
extracted from Sentinel-2 imagery are in agreement with the signatures measured in situ
(see Section 2.1.4). Sentinel-2 top-of-canopy reflectances corresponding to reference points
measured in situ were extracted for selected scenes acquired as close as possible to the
times of the in situ campaigns (Table 3 lists reference Sentinel-2 scenes). These satellite
canopy reflectances were then compared to the canopy-level spectra measured in situ
(using ASD Fieldspec) and resampled from the original 1 nm resolution to the spectral
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characteristics of the Sentinel-2 MSI sensor using a sensor-specific response function [34].
The spectral signature of a pixel corresponding to a given reference point was compared to
the average spectral reflectance measured in a transect corresponding to Sentinel-2 pixel
size of 20 × 20 m. The RMSE between canopy reflectance (considering each Sentinel-2
band) and the spectra measured by ASD Fieldspec was calculated as:

RMSE = sqrt(sum (RSENb − RASDb)2/n), (2)

where: RSENb is reflectance at the spectral band “b” extracted from Sentinel-2 data, RASDb
is reflectance at the spectral band “b” extracted from data measured by ASD Fieldspec
(after applying sensor-specific SRF), and n is the number of samples.

Table 3. Summary on in-situ data collection campaigns dates and the reference Sentinel-2 scenes.

In-Situ Campaign Date Reference Sentinel-2 Scene
Acquisition Date

Reference Sentinel-2 Scene
Sun Geometry (SZ, SA)

29–31 March 2017 1.4.2017 46.8◦, 161.4◦

17–19 May 2017 14.5.2017 and 21.5.2017 32.2◦, 163.7◦ and 31.2◦, 158.4◦

19–21 June2017 20.6.2017 28.5◦, 154.5◦

4–5 April 2018 6.4.2018 44.9◦, 161.3◦

27–30 April 2018 26.4.2018 37.8◦, 160.8◦

21 May2018 21.5.2018 31.2◦, 158.5◦

20–21 June 2018 20.6.2018 28.5◦, 154.5◦

26 July2018 28.7.2018 32.5◦, 159.2◦

2.3.2. Biophysical Parameters Retrieval Approach

The artificial neural network (ANN) approach was chosen as a regression model for the
retrieval of LAI, LCC, and LWC. A major advantage of ANNs lies in their computing power
and ability to approximate any nonlinear relationship between different variables [37]. The
ANN training phase was conducted using an LUT subset of 11,000 records. The training
data was selected from the LUT database so that the illumination angles were as close as
possible to the actual illumination angles of the Sentinel-2 scene (available in the scene
metadata file). The training data were normalized and scaled to range 0–1 to ensure their
equal influence in the model.

A one-hidden-layer, feed-forward, back-propagation neural network was imple-
mented using the Python programming language and the TensorFlow machine learning
library. We decided to use a relatively large hidden layer (50 neurons with widely used
ReLu activation function) to cover the complex relationships between the biophysical
characteristics of crops and its spectral properties. However, such a relatively large neural
network requires an early stopping mechanism to prevent overfitting [38]. The training
dataset was split into calibration (80%) and validation (20%) subset. Loss function (mean
squared error) was monitored within the early stopping mechanism to stop the training
process after reaching the baseline of 0.1 in validation loss and if there was no improvement
in the next five epochs. The maximum number of epochs was set to 100, but this was never
reached during the testing.

Two neural networks were designed: one for LAI retrieval, the other for LCC and
LWC retrieval. The neural network for LCC and LWC retrieval uses all Sentinel-2 VIS to
SWIR spectral bands with a native resolution of 10 m and 20 m, excluding the blue spectral
band (B02), which is most sensitive to the quality of atmospheric correction. Green, red and
red-edge spectral bands were excluded from LAI retrieval in order to reduce the adverse
effect of the chlorophyll content on the LAI estimation (as these spectral bands are strongly
affected by the chlorophyll content).

Estimated values of biophysical parameters are written into raster layers. Finally,
the lowest and the highest possible values were set for each biophysical layer to avoid
unrealistic values and while using the same rules as those for LUT generation (described in
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Section 2.2.2). However, situations where the estimated values fell out of the bounds region
were very rare (0.73%, 0.12% and 1.39% of cases for LCC, LWC and LAI, respectively).

3. Results
3.1. In Situ Crop Biochemical, Structural and Spectral Properties
3.1.1. In Situ Data Collection

The basic descriptive statistics of the in situ data collection for each crop of interest
are documented in Table 4 (detailed statistics for both the calibration and validation data
subsets are given in Table A1).

Table 4. Summary of the in-situ measured values of selected biophysical variables (LCC—leaf chlorophyll content, LWC—
leaf water content, SLW—specific leaf weight and LAI—leaf area index).

Crop Variable LCC (µg/cm2) LWC (cm) SLW (g/cm2) LAI

Winter cereals
(winter wheat)

n = 180

MIN 2.24 0.0005 0.0003 0.31
MEAN 42.06 0.0157 0.0045 3.68
MAX 59.35 0.0360 0.0223 6.31
STD 11.24 0.0072 0.0022 1.56

Spring cereals
(spring barley)

n = 60

MIN 2.66 0.0016 0.0004 0.24
MEAN 33.12 0.0098 0.0031 4.19
MAX 53.37 0.0162 0.0069 7.67
STD 9.11 0.0036 0.0018 1.90

Winter rapeseed
n = 107

MIN 26.29 0.0022 0.0030 0.61
MEAN 43.19 0.0330 0.0071 3.45
MAX 55.30 0.1423 0.0280 8.62
STD 6.68 0.0174 0.0030 2.23

Fodder crops
(alfalfa)
n = 57

MIN 23.43 0.0010 0.0035 0.09
MEAN 31.59 0.0037 0.0052 2.78
MAX 39.02 0.0117 0.0076 10.16
STD 3.70 0.0030 0.0008 2.48

Sugar beetroot
n = 62

MIN 25.30 0.0033 0.0019 0.86
MEAN 32.20 0.0168 0.0058 4.33
MAX 54.95 0.0353 0.0082 6.72
STD 5.36 0.0087 0.0012 1.66

Corn
n = 71

MIN 30.99 0.0012 0.0007 0.70
MEAN 49.13 0.0083 0.0056 3.46
MAX 60.15 0.0144 0.0079 5.78
STD 7.00 0.0051 0.0013 1.32

According to the practical experiences obtained during fieldworks, each of the used
LAI measurement approaches seems to be more suitable for different type of vegetation
canopies. Using the SunScan device seems to be more adequate for dense canopies,
whereas its readings seem to be underestimated in case of sparse canopies and thus it can
be recommended mostly for mature canopies. Just the opposite situation was observed
in case of digital hemispherical photography which seems to be working well in case
of young and sparse canopies, but uncertainty of LAI estimation increases with growing
canopy density. A simple linear transformation was applied in order to harmonize SunScan-
based and DHP-based LAI measurements as both types of measurement were taken at
most of the sampling points (see Figure 4). This linear transformation is given by the
following equation:

LAIt = 0.77 LAISS + 1.54 (3)

where LAIt is the transformed LAI estimation and LAISS is the SunScan measured LAI value.
The linear models shows R2 = 0.62 but we still consider it as a meaningful tool for

establishing a generic database for validation of the LAI product across crop species with
different canopy structure.
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Transformed SunScan LAI values were merged with the DHP-based LAI estimations
to produce a harmonized dataset of in situ LAI measurements for validating the Sentinel-2
based LAI product (see Section 3.3).

Leaf-level reflectance and transmittance measured by the ASD Fieldspec 4 spectrora-
diometer attached to the RTS-3ZC integrating sphere were used to estimate the optimal
value of the PROSAIL’s structural parameter (N) for each crop. The number N represents
leaf optical thickness and thus determines the ratio of the leaf reflectance and transmittance
in PROSPECT leaf level simulations. The greater the leaf optical thickness (represented by
a higher number N) the higher the reflectance-to-transmittance (R:T) ratio and vice versa.
In the first step, PROSPECT was run iteratively with varying N value. The R:T ratios of the
PROSPECT simulations at 1000 nm were further compared with the R:T ratios calculated
from the leaf spectra measured in situ to find the most appropriate N value. Note that
reflectance/transmittance in NIR domain has been taken into account because it is strongly
correlated with the leaf internal structure and, at the same time, it is not influenced by, for
example, the contents of leaf pigments, water, or other traits. The following numbers N
ultimately were obtained for the crops of interest: winter wheat 1.44 ± 0.10, spring barley
1.57 ± 0.03, winter rapeseed 1.78 ± 0.27, alfalfa 1.53 ± 0.12, sugar beet 1.67 ± 0.19, and
corn 1.28 ± 0.09.

3.1.2. Quality of Sentinel-2 Atmospheric Correction

Sentinel-2 canopy reflectances were compared to the canopy-level spectra measured
in situ to assess atmospheric quality correction (see Section 2.3.1 for details). For the vast
majority of bands used, we have achieved a strong relationship (R2 > 0.7) over all crops of
interest. The relationship achieved with the other three bands was R2 = 0.57, 0.63 and 0.68
for B02 (490 nm), B11 (1610 nm) and B12 (2190 nm), respectively, and can also be considered
significant. The average rRMSE over all spectral bands and crops of interest was up to 30%.
This demonstrates the good quality of the atmospheric corrections of Sentinel-2 data and
direct comparability of crop in situ measurements with the satellite observations. Figure 5
shows scatter plots comparing Sentinel-2 and in situ measured canopy spectra across all
Sentinel-2 spectral bands used. Examples of Sentinel-2 and in-situ measured spectra for
the different development stages of crops of interest are shown in Figure A2.

3.2. Modeling Crop-Specific Reflectance in the Radiative Transfer Model
3.2.1. Crop-Specific Parametrization of the PROSAIL Radiative Transfer Model

Six crop-specific scenarios of PROSAIL parametrization were designed. For each
crop of interest, an empirical distribution function of crop-specific structural PROSAIL
model inputs (LIDFa, LIDFb, and Hspot) was constructed based on the frequency of their
values obtained during the parameterization process. The main objective was to provide a
generic yet representative statistical distribution of simulated parameters. Figure 6 shows
the empirical distribution functions of LIDFa, LIDFb, and Hspot for six crops of interest
extracted from LUTs.

A particular issue in radiative transfer model parametrization was to deal with any
unrealistic PROSAIL input combinations, as these could lead to ambiguity in the model
inversion. During leaf senescence, chlorophyll and water contents naturally decrease [39].
Acute water stress, however, has no immediate impact on leaf chlorophyll content [40].
Although there is no clear relationship between leaf chlorophyll and water content through-
out the vegetation season, certain combinations of these parameters are indeed unrealistic
(e.g., very low chlorophyll and high water content). The LCC–LWC relationships observed
in situ (Figure 7) show that high chlorophyll concentrations are associated with a wide
range (from low to high) of water contents but that low chlorophyll concentrations occur
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only with low water content. We therefore have introduced arbitrary water content limits
(LWCmax) for three considered chlorophyll content levels (Figure 7):

1. LCC < 20 µg/cm2: LWCmax = 0.02 cm
2. 20 µg/cm2 ≤ LCC < 40 µg/cm2: LWCmax = 0.04 cm
3. LCC >= 40 µg/cm2: LWCmax = 0.07 cm

(4)
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Synthetic spectral signature of flowering rapeseed is obtained by spectral mixing of
the “green” and “yellow” components of the overall canopy biomass. The spectral mixing
ratio was determined as 15% of the yellow component and 85% of the green component.
Figure 8 illustrates the improvement of fit between simulated PROSAIL and observed
Sentinel-2 spectral signature. PSorig shows the original PROSAIL spectral signature (100%
of the green component), whereas PSmod represents PROSAIL spectral signature modified
by spectral mixing. It is clear that the best improvement was achieved at green (560 nm),
red (665 nm), and the first red-edge band (704 nm). These are wavelengths that are most
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affected by color change of the upper canopy layer due to yellow flowers. The total RMSE
decreased from 0.053 to 0.047.
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Figure 7. Chlorophyll to water content relationship recorded in our in situ data, showing water
content limits.

Simulated canopy reflectance (in Sentinel-2 spectral resolution) for in situ sample
points of known PROSAIL model inputs were compared to the Sentinel-2 reflectance
values extracted from the observations spatiotemporally closest to the terms of campaigns.
Figure 9 demonstrates the strength of the relationship through R2 between simulated
and observed reflectances. The best match (R2 > 0.9) was achieved with the red-edge
bands (B06 = 740 nm and B07 = 783 nm) and the NIR band (B08A = 865 nm). A significant
relationship (R2 > 0.6) was also achieved with the bands B02 (490 nm), B03 (560 nm),
B04 (665 nm), B05 (705 nm) and B12 (2190 nm). A weaker relationship (R2 = 0.45) was
achieved only with the B11 (1610 nm) band. The results show that PROSAIL simulations
are in accordance with observed Sentinel-2 data in the vast majority of spectral bands.
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We consider our simulated spectra to be suitable for crop canopy biophysics inversion.
Examples of Sentinel-2 spectra and PROSAIL simulations for the different development
stages of crops of interest are shown in Figure A3.
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3.2.2. Crop Quantitative Product Inversion and Validation

Accuracy assessment of the biophysical retrievals was performed on the validation
dataset of in situ measurements. For biophysical parameters retrieval, the closest Sentinel-2
scenes in terms of acquisition date (see Table 3 for list of Sentinel-2 scenes used) were
always used. Figure 10 shows scatter plots comparing observed and retrieved LAI, LCC,
and LWC values for all crops of interest.
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Figure 10. Scatter plots for biophysical parameters LAI, LCC, and LWC retrieved and measured in
situ (validation data subset).

For validation purposes, root mean square error (RMSE) and its relative magnitude
(rRMSE) were calculated as the metrics of accuracy. Coefficient of determination (R2)
and Pearson’s correlation coefficient (r), respectively, were chosen as the metrics for the
prediction model’s variability and linearity of the relationship between simulations and
reference in situ data. The values of these metrics at the level of individual crops and
individual field campaigns are given in Tables 5 and 6, respectively. Among the three
retrieved crop parameters, the LAI estimations perform relatively the best. Pearson’s
correlation coefficient for LAI retrieval was 0.80 (R2 = 0.63), total RMSE was 1.32, and the
corresponding rRMSE was 37%. The retrieved LCC values show a total RMSE of 9.88
µg/cm2 (rRMSE = 25%) and thus exhibit the lowest relative error among all three studied
parameters. However, significant relationship between simulations and reference in situ
data were achieved only for three crops (corn, r = 0.69, R2 = 0.48; winter rapeseed, r = 0.66,
R2 = 0.43; winter cereals, r = 0.41, R2 = 0.17), while the correlation for the remaining three
crops was weak (spring cereals, r = 0.06, R2 = 0.00; fodder crops, r = -0.28, R2 = 0.08; sugar
beetroot, r = 0.04, R2 = 0.00). Retrieval of LWC is the most uncertain. The errors achieved
are really high (RMSE = 0.0124 cm; rRMSE = 78%) and also the strength of the relationship
between simulated and reference in situ data is insufficient. Examples of annual changes
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in the values of estimated biophysical parameters are shown in Figure A4 (LAI), Figure A5
(LCC) and Figure A6 (LWC).

Table 5. Validation of LAI, LCC, and LWC estimations against in situ data: crop level results (statistics aggregated by crop
types across all campaigns).

Crop
LAI LCC LWC

RMSE
(cm/cm)

rRMSE
(%) r R2 RMSE

(µg/cm2)
rRMSE

(%) r R2 RMSE
(cm)

rRMSE
(%) r R2

Winter cereals 1.13 33 0.83 0.69 9.59 22 0.41 0.17 0.0105 65 −0.23 0.05
Spring cereals 1.62 39 0.73 0.53 10.90 32 0.06 0.00 0.0142 140 0.27 0.07

Winter rapeseed 0.95 31 0.88 0.77 8.20 19 0.66 0.43 0.0156 50 −0.28 0.08
Fodder crops 1.50 53 0.85 0.73 10.98 35 −0.28 0.08 0.0146 403 0.51 0.26

Sugar beetroot 1.13 25 0.92 0.84 11.52 36 0.04 0.00 0.0104 54 0.51 0.26
Corn 1.72 51 0.72 0.52 7.78 16 0.69 0.48 0.0105 107 0.4 0.16

All crops 1.32 37 0.80 0.63 9.88 25 0.47 0.22 0.0124 78 0.33 0.11

Table 6. Validation of LAI, LCC, and LWC estimations against in situ data: campaign level results (statistics aggregated by
terms of campaigns across all crop types).

Field Campaign
LAI LCC LWC

RMSE
(cm/cm)

rRMSE
(%) r R2 RMSE

(µg/cm2)
rRMSE

(%) r R2 RMSE
(cm)

rRMSE
(%) r R2

A
(Mar 2017) 1.08 46 0.6 0.36 6.05 14 0.42 0.18 0.0123 40 0.55 0.3

B
(May 2017) 1.33 26 0.52 0.27 9.49 25 0.81 0.65 0.0129 95 −0.07 0.01

C
(Jun 2017) 1.82 36 0.3 0.09 15.6 40 0.47 0.22 0.0104 68 0.7 0.48

D
(Apr 2018) 0.91 116 0.89 0.79 7.32 20 0.62 0.39 1.09 85 0.85 0.72

E
(Apr 2018) 0.57 19 0.98 0.96 7.98 20 0.64 0.41 0.0146 166 0.35 0.12

F
(May 2018) 0.79 21 0.95 0.90 10.66 32 0.56 0.31 0.0202 360 −0.7 0.49

G
(Jun 2018) 1.44 35 0.82 0.68 10.78 25 0.37 0.14 0.0069 39 0.93 0.87

H
(Jul 2018) 1.62 43 0.85 0.72 6.77 17 0.72 0.52 0.0155 326 0.7 0.5

All campaigns 1.32 37 0.80 0.63 9.88 25 0.47 0.22 0.0124 78 0.33 0.11

3.3. Practical Examples and Designing of Crop Management Zones

The entire workflow of quantitative estimation of canopy biophysics was applied to
the time series of Sentinel−2 data acquired during the 2017 and 2018 vegetation seasons
covering the farms where in-situ data were collected in the same time period. Representa-
tive samples were selected to show key features of the output products and to demonstrate
their potential use in agriculture management.

Figure 11 shows an example of LCC estimation for winter wheat canopies in the
preharvest period (the data were acquired on 20 June 2017). The two sample parcels exhibit
significantly different values of LCC corresponding to the difference in wheat maturity
(26 µg/cm2 and brownish status for late maturity compared to 52 µg/cm2 and greenish
status for early maturity). The chlorophyll content plays an important role in harvest
management, helping to estimate maturity and determine the optimal harvest date.
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Figure 11. Example of leaf chlorophyll content estimation for two winter wheat parcels demonstrating differences in current
maturity status as of 20 June 2017.

Figure 12 gives an example of LWC estimation for spring barley canopies. Significantly
different canopy water content patterns in barley canopy can be seen in the northern
section compared to the rest of the given parcel. The observed difference in vegetation
characteristics—green canopy exhibiting almost double the LWC (0.0109 cm) compared
to the brown canopy (0.0066 cm) on most of the field—is determined by the presence of
the remnant of river (now filled by fluvial sediments). The old river remnant creates a
local topographic sink with wet soil conditions compared to the rest of the area. Such local
difference in soil wetness influences the biophysical characteristics of the spring barley that
is being cultivated here. LWC can be used not only to monitor actual water nutrition of the
crop canopies, but also, similarly as is LCC, for assessing crop maturity.

A third example, shown in Figure 13, presents an LAI estimation applied on winter
wheat canopies at the beginning of the growing season (data acquired 1 April 2017). The
two parcels exhibit significantly different canopy density that is clearly reflected by the
differences in retrieved LAI values. Information on canopy density and other conditions
can be useful for variable application of fertilizers at the beginning of the growing season.
Continuous monitoring of the LAI estimation can then be used to assess increase in
vegetation biomass, which may in turn serve as an input to yield estimation models.
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4. Discussion
4.1. Sentinel-2 Images for the Determination of Crop Biophysics

Compared to more complex land cover types, such as forests, the agricultural canopies
are relatively homogeneous. This allowed direct comparison of in situ measured TOC
reflectance against Sentinel-2 TOC reflectance observations after applying the sensor re-
sponse function of Sentinel-2 satellite on hyperspectral ground measurements [41]. A
strong relationship (R2 > 0.7) for six spectral bands and also a significant relationship
(R2 = 0.57, 0.63 and 0.68) for the other three bands were achieved, so Sentinel-2 images
may be considered as constituting a suitable data source for retrieval of the biophysical
characteristics of agricultural crops.

4.2. In Situ Data Collection

A database of in situ crop biophysical characteristics was used for representative
parametrization of radiative transfer model and robust validation of its inverted parameters.
The measurements of LAI were taken using two different instruments (DHP and SunScan).
Each method is suitable for different crop types and their phenological stages. Because
the inversion of LAI from DHP images is based on the relationships between estimated
angular gap fractions and canopy structure, it is more suited for low-growing crops (e.g.,
sugar beet, alfalfa) or for early development stages of crops. In cases of tall dense canopies,
leaves may be mutually shaded and clumped, resulting in underestimation of LAI. In such
cases, the SunScan device is preferred since it determines the direct transmittance of solar
radiation through the canopy. On the other hand, the SunScan measurements of canopy
transmittance for low and sparse canopies may lead to the underestimations of LAI due to
the size of the plant.

The parameterization of the PROSAIL model also included setting of the crop-specific
leaf structural parameter (N). These were obtained from the inversion of the PROSPECT
model against measured leaf spectra with known model input biochemical parameters. The
retrieved N values were then compared to those included in the LOPEX-93 database. Our
results show good agreement of retrieved N number with those provided in the LOPEX-93
database: alfalfa 1.53 ± 0.12 vs. 1.61 ± 0.14, sugar beet 1.67 ± 0.19 vs. 1.75 ± 0.14, and corn
1.28 ± 0.09 vs. 1.41 ± 0.11 [33].

In our study, we used a fixed value of N for each crop. Because the N parameter
describes the leaf thickness, the exact N value may vary during the crop growth cycle as
the leaves develop. On the other hand, the crops addressed in this study are all annual
plants with short cycles, thus we assume that the changes in leaf thickness will be relatively
small. Although we consider quantification of the N number to be representative for
this study, more research on the seasonal changes in leaf biochemical (e.g., chlorophylls
and leaf water content) and structural (e.g., leaf thickness) are needed to further reduce
model uncertainties.

4.3. Satellite-Based Crop Biophysics Validation

Direct validation of remotely sensed crop parameters is a widely used method for
assessing the uncertainties of retrieved products. Nevertheless, the in situ data should not
be considered as a ground truth with no internal uncertainties. Each of the instruments
(Delta-T SunScan and DHP for LAI assessment, Force-A Dualex for LCC, laboratory scales
and desktop scanner for LWC measurements) has their individual accuracies and error
sources. In the case of LWC, the overall error is even a combination of several instruments.
As a result, such validation efforts are rather a comparison of two independent methods
for retrieving crop biophysical parameters.

Direct validation of PROSAIL model retrievals showed the highest accuracy for LAI
(r = 0.80, R2 = 0.63, RMSE = 1.32 m2/m2, and rRMSE = 37%). The best relative accuracy
of all three calculated biophysical parameters was achieved for the LCC (rRMSE = 25%).
However, the correlations with the in situ measurements were crop-specific (corn, r = 0.69,
R2 = 0.48; winter rapeseed, r = 0.66, R2 = 0.43; winter cereals, r = 0.41, R2 = 0.17), while
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the correlation for the remaining crops was not significant. The poor performance of the
LCC retrieval for some of the crops may be caused by the relatively low range of measured
in-situ values. For example, the RMSE of LCC retrieval for most of the crops was higher
than the standard deviation of in situ LCC measurements.

Retrieval of LWC, is technically feasible, but the total retrieval accuracy against in
situ data was rather poor (r = 0.33, R2 = 0.11, RMSE = 0.0124 cm, and rRMSE = 78%).
On the other hand, determination of LWC from in situ data might be also affected by
individual errors of the instruments used for its quantification. The in situ LWC exhibits
high variability across campaigns. We note that the relationship between retrieved and
reference in situ data for individual campaigns was often much higher (e.g., r = 0.70, 0.85,
and 0.93, respectively, for the campaigns dated 20–21 June 2017, 4–5 April 2018, and 21
June 2018).

4.4. Discussion of the Results Relative to the Literature

Results obtained in our study were also compared against previous studies focused
on crop monitoring using high-resolution satellite multispectral data using similar method-
ological approaches (i.e., inversion of radiative transfer model). It should be noted that the
retrieval accuracy is always specific to a given crop and its phenological phase. Therefore,
the comparison should be made only at the individual crop level while taking into account
the development stage of crop and collected in situ data.

We observed satisfactory results of model inversion for crop LAI and LCC, while the
inversion of LWC was of poor quality. This is in agreement with the previous studies [2,26].
Leaf area index is the most frequently retrieved crop biophysical parameter. As reported
in [9], the accuracy of LAI retrieval for winter wheat was RMSE = 1.53 m2/m2, for the
same crop, [42] reports RMSE = 0.43 m2/m2, [43] reports RMSE = 0.56 m2/m2, [44] re-
ports RMSE = 0.62 m2/m2, [45] reports RMSE between 0.4–0.6 m2/m2 and [46] reports
RMSE = 0.55 m2/m2. Our RMSE for winter wheat was 1.13 m2/m2, which is in line with
these reported values. The validation of other crops of interest (alfalfa, sugar beet, and
corn) is reported by [14] as RMSE = 1.39 m2/m2, 2.24 m2/m2, and 1.43 m2/m2 for alfalfa,
sugar beet, and corn, respectively. In our study, we achieved comparable accuracies (alfalfa:
RMSE = 1.50 m2/m2, sugar beet: RMSE = 1.13 m2/m2, and corn: RMSE = 1.72 m2/m2).

In previous studies, the chlorophyll content is frequently retrieved on the canopy
level as LAI × LCC. Direct comparison of leaf chlorophyll content (as performed in our
study) is shown, for instance, by [9]. They report the RMSE = 12.69 µg/cm2 for winter
wheat. A similar RMSEs for winter wheat are also presented by [47] (RMSE = 11.86 µg/cm2

for 2014 season and 7.17 µg/cm2 for 2014/2015 season), but for the data with higher
spectral resolution corresponding to the future EnMap mission. In [43] was obtained an
RMSE of 9.06 µg/cm2 for winter wheat retrieved from IRS LISS-3 sensor. Wheat and corn
LCC was retrieved by [48] for leaf level (RMSE = 9.45–13.62 µg/cm2) and Landsat-8 level
(RMSE = 16.18 µg/cm2). In our study we achieved the RMSE = 9.59 µg/cm2, which is
again well in line with the previous studies.

There are only a few studies focusing on the retrieval of LWC, all of them showed
rather poor retrieval accuracies. These include work by [49] on the retrieval of LWC for
grasses, shrubs and forests. Here the authors showed high rRMSE of grassess (rRMSE
between 100 and 160%), compared to forests (rRMSE around 50%) and shrubs (rRMSE
around 80%). Similarly, [43] reported poor performance of LWC retrieval for wheat,
compared to LAI and LCC retrievals. In our study, the validation of LWC was also poor,
exhibiting high rRMSE (78%) across studied crops and their development stages. We thus
conclude, that the only two retrievable crop parameters of interest are LAI and LCC.

5. Conclusions

Sentinel-2 multispectral imagery provides sufficient data for monitoring the health
condition of agricultural crop canopy. Its main advantage is the imagery’s high temporal
resolution (ca 5 days). This makes it possible to monitor even very gradual changes in the
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state of vegetation. By applying a physics based, transferable retrieval method, Sentinel-2
data can be a robust source of information for estimating crop biophysical indicators. The
main advantage over using a simple empirical approach can be seen in the fact that it is
based on well-defined physical laws which are not site and time specific. On the other
hand, each model represents some degree of generalization that can have some effect on the
obtained results. To ensure robustness of the estimated biophysical parameters, it is needed
to have a collection of reference in situ data obtained for different phenological phases
of the crop canopies which can be used for proper parameterization of the considered
radiative transfer model.

One such method, based on the inversion of biophysical parameters using the PRO-
SAIL model, look-up tables, and artificial neural network, was introduced in this study.
The procedure involved the calculation of three biophysical parameters (leaf chlorophyll
content [LCC], leaf water content [LWC], and leaf area index [LAI]) on six crops of interest
(winter wheat, spring barley, winter rapeseed, alfalfa, corn, and sugar beet).

It was found that good results were achieved for LAI (r = 0.80, R2 = 0.63,
RMSE = 1.32 m2/m2, and rRMSE = 37%). Satisfactory results in terms of absolute and rela-
tive accuracy were also achieved with the LCC (RMSE = 9.88 µg/cm2, and rRMSE = 25%).
However, significant correlations with in situ measurements were obtained only for corn,
winter wheat and winter rapeseed. Weaker results in terms of the strength of the rela-
tionship between retrieved and reference in situ data could be caused by relatively small
variability of LCC in situ measurement values. Results of LWC retrieval were found as
insufficient (r = 0.33, R2 = 0.11, RMSE = 0.0124 cm, and rRMSE = 78%). Such weak retrieval
results, however, could have been caused by error from the relatively complex calculation
of in situ values. On the other hand, even the LWC estimation in previous studies did not
lead to better results.

The main benefit of the presented study is that it outlines a complete procedure for
biophysical monitoring of agricultural crops usable in pursuing the principles of precision
agriculture. The study demonstrates the potential of Sentinel-2 data together with radiative
transfer modeling to support such agricultural management interventions as selective
fertilization and irrigation, as well as harvest planning.
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Appendix A

Table A1. Summary of the in-situ measured values of selected biophysical variables (LCC—leaf
chlorophyll content, LWC—leaf water content, SLW—dry matter content (specific leaf weight) and
LAI—leaf area index).

Crop Dataset Variable LCC
[µg/cm2] LWC [cm] SLW

[g/cm2] LAI

Winter cereals
(winter wheat)

calibration
n = 84

MIN 2.2 0.0005 0.0003 0.8
MEAN 42.2 0.0155 0.0044 3.9
MAX 55.0 0.0288 0.0072 6.0
STD 10.9 0.0072 0.0017 1.3

validation
n = 96

MIN 2.2 0.0007 0.0010 0.3
MEAN 41.8 0.0161 0.0047 3.5
MAX 59.4 0.0360 0.0223 6.3
STD 11.6 0.0071 0.0027 1.7

Spring cereals
(spring barley)

calibration
n = 31

MIN 2.7 0.0017 0.0005 0.3
MEAN 32.0 0.0095 0.0031 4.2
MAX 48.1 0.0153 0.0059 6.8
STD 9.7 0.0035 0.0019 1.8

validation
n = 29

MIN 4.1 0.0016 0.0004 0.2
MEAN 34.3 0.0102 0.0032 4.2
MAX 53.4 0.0162 0.0069 7.7
STD 8.3 0.0037 0.0017 2.0

Winter rapeseed

calibration
n = 56

MIN 26.1 0.0037 0.0003 0.4
MEAN 42.7 0.0324 0.0057 3.4
MAX 55.3 0.1423 0.0280 8.5
STD 6.5 0.0188 0.0043 2.6

validation
n = 51

MIN 26.3 0.0022 0.0006 0.7
MEAN 41.6 0.0301 0.0056 3.7
MAX 54.3 0.0501 0.0098 8.6
STD 7.2 0.0118 0.0029 2.1

Fodder crops
(alfalfa)

calibration
n = 29

MIN 24.0 0.0011 0.0037 0.1
MEAN 31.5 0.0038 0.0053 2.7
MAX 39.0 0.0117 0.0076 7.2
STD 3.8 0.0031 0.0008 2.4

validation
n = 28

MIN 23.4 0.0010 0.0035 0.1
MEAN 31.6 0.0036 0.0051 2.8
MAX 37.3 0.0111 0.0069 10.2
STD 3.6 0.0029 0.0008 2.6

Sugar beetroot

calibration
n = 26

MIN 25.3 0.0047 0.0021 0.9
MEAN 32.2 0.0112 0.0057 4.4
MAX 53.7 0.0353 0.0076 6.7
STD 5.1 0.0077 0.0012 1.7

validation
n = 36

MIN 25.7 0.0033 0.0019 0.9
MEAN 32.0 0.0118 0.0058 4.6
MAX 55.0 0.0285 0.0082 6.6
STD 4.9 0.0062 0.0012 1.5

Corn

calibration
n = 27

MIN 33.9 0.0012 0.0041 0.7
MEAN 50.4 0.0084 0.0058 3.6
MAX 60.2 0.0144 0.0125 5.8
STD 6.8 0.0053 0.0016 1.4

validation
n = 44

MIN 31.0 0.0019 0.0008 0.7
MEAN 49.2 0.0035 0.0057 3.4
MAX 59.4 0.0119 0.0079 5.8
STD 6.9 0.0024 0.0012 1.4
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Figure A1. Location of agricultural parcels where campaigns were conducted together with true 
color Sentinel-2 images for the “early season” (6 April 2018; (A)), “mid season” (14 May 2018; (B)) 
and “late season” (19 August 2018; (C)). 
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Figure A2. Sentinel-2 and in situ measured spectra for the different development stages of crops of interest. 

 
Figure A3. Sentinel-2 spectra and PROSAIL simulations for the different development stages of crops of interest. 
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Figure A4. Temporal changes in estimated leaf area index (LAI) values for all six crops of interest demonstrated using 
Q0.25, Q0.50, and Q0.75 quantiles. 
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Figure A5. Temporal changes in estimated leaf chlorophyll content (LCC) values for all six crops of interest demonstrated 
using Q0.25, Q0.50, and Q0.75 quantiles. 
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Figure A6. Temporal changes in estimated leaf water content (LWC) values for all six crops of interest demonstrated using 
Q0.25, Q0.50, and Q0.75 quantiles. 
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