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Abstract: Terrestrial features extraction, such as roads and buildings from aerial images using an
automatic system, has many usages in an extensive range of fields, including disaster management,
change detection, land cover assessment, and urban planning. This task is commonly tough because
of complex scenes, such as urban scenes, where buildings and road objects are surrounded by
shadows, vehicles, trees, etc., which appear in heterogeneous forms with lower inter-class and higher
intra-class contrasts. Moreover, such extraction is time-consuming and expensive to perform by
human specialists manually. Deep convolutional models have displayed considerable performance
for feature segmentation from remote sensing data in the recent years. However, for the large and
continuous area of obstructions, most of these techniques still cannot detect road and building well.
Hence, this work’s principal goal is to introduce two novel deep convolutional models based on UNet
family for multi-object segmentation, such as roads and buildings from aerial imagery. We focused
on buildings and road networks because these objects constitute a huge part of the urban areas.
The presented models are called multi-level context gating UNet (MCG-UNet) and bi-directional
ConvLSTM UNet model (BCL-UNet). The proposed methods have the same advantages as the UNet
model, the mechanism of densely connected convolutions, bi-directional ConvLSTM, and squeeze
and excitation module to produce the segmentation maps with a high resolution and maintain the
boundary information even under complicated backgrounds. Additionally, we implemented a basic
efficient loss function called boundary-aware loss (BAL) that allowed a network to concentrate on
hard semantic segmentation regions, such as overlapping areas, small objects, sophisticated objects,
and boundaries of objects, and produce high-quality segmentation maps. The presented networks
were tested on the Massachusetts building and road datasets. The MCG-UNet improved the average
F1 accuracy by 1.85%, and 1.19% and 6.67% and 5.11% compared with UNet and BCL-UNet for
road and building extraction, respectively. Additionally, the presented MCG-UNet and BCL-UNet
networks were compared with other state-of-the-art deep learning-based networks, and the results
proved the superiority of the networks in multi-object segmentation tasks.

Keywords: building extraction; boundary-aware loss; deep learning; remote sensing; road extraction

1. Introduction

Multiple urban features extraction, such as buildings and road objects from high-
resolution remotely sensed data, is an essential stage that has numerous applications in
many domains, e.g., infrastructure planning, change detection, disaster management, real
estate management, urban planning, and geographical database updating [1]. However,
this task is very expensive and time-consuming to execute by human experts manually.
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Additionally, labeling pixels of a large remote sensing image manually is a complicated and
time-consuming task. This is because remote sensing data are typically determined in the
structure of heterogeneous districts with lower inter-class dissimilarities and often higher
intra-class discrepancies [2]. Moreover, terrestrial features may be occluded with other
features, such as shadows, vegetation covers, parking lots, etc. This becomes even more
eminent with the presence of urban features such as road networks and buildings. A larger
number of existing techniques that ordinarily rely on a group of predefined properties
have been restrained by such heterogeneity in remote sensing data [3,4]. Consequently,
designing a technique that can obtain high precision on feature segmentation results,
especially from high spatial resolution remote sensing data, is quite challenging. Over the
last years, convolutional neural network (CNN) frameworks [5–7] have been applied for
semantic segmentation not only in computer vision applications, such as coined CNN with
conditional random fields (CRFs) [8], patch network [9], deconvolutional networks [10],
deep parsing network [11], SegNet [12], decoupled network [13], and fully connected
network [14], but also in the remote sensing field [15–17]. Seeing that the CNN framework
has the capability to utilize input data and efficiently encode spatial and spectral features
without any pre-processing stage, it is becoming extremely popular in the remote sensing
field as well [18]. CNN includes several interconnected layers that identify features in
many representation levels by learning a hierarchical representation of features from
raw data [19]. In recent years, CNN approaches have been applied in remote sensing
applications. For example, Ref. [18] combined multi-resolution CNN features with simple
features, such as the digital surface model (DSM), to identify several classes, such as low
vegetation, cars, trees, and buildings. For smoothening the pixel-based classification map,
they used CRF method as a post-processing stage. Kampffmeyer et al. [20] combined the
CNN framework with deconvolutional layers to extract small objects from orthophoto
images. The results showed that the method misclassified small areas of trees as vegetation
and detected many cars (false positive pixels) that are not in the imagery. Sherrah [21]
applied a similar CNN model to classify aerial imagery into multiple classes. By contrast,
they replaced pooling layers with no downsampling and all convolutional layers with
dense layers in CNNs to maintain output resolution and label aerial images semantically.
However, by retaining pooling layers with no downsampling, the number of parameters in
the model severely increased and caused over-fitting. Längkvist et al. [22] combined CNN
architecture with DSM to classify orthophoto image into multiple classes. They improved
the CNN performance by applying the simple linear iterative clustering method (SLIC) as
a post-processing step; however, the suggested approach misclassified some features and
could not deal with shadows that are intrinsic in the orthophoto imagery.

Generally, CNN frameworks utilize two principal methods, namely, pixel-to-pixel-
based (end-to-end) and patch-based approaches, for semantic pixel-based classification.
In the pixel-based techniques, encoder–decoder frameworks or the fully convolutional
network (FCN) are employed to recognize fine details of the input data [23]. Patch-based
techniques usually utilize small image patches to train the CNN classifier and then use a
sliding window method to predict every pixel’s class. Such a method is commonly used
for detecting large urban objects [18].

Numerous prior studies have tried to extract urban features such as buildings and
roads from remote sensing imagery with high spatial resolution. Some prior studies
that utilized remote sensing data and deep-based learning framework for automatic road
detection are deliberated below. For instance, Zhou, et al. [24] performed D-LinkNet model
to extract roads from DeepGlobe road dataset. They used dilated convolution in their model
to change and extend the feature points’ receptive fields and improve the performance;
however, the method showed some road connectivity problems. Buslaev et al. [25] detected
road parts from DigitalGlobe’s satellite data with 50 cm spatial resolution based on the UNet
model. In their model, encoder and decoder paths were designed similar to the RezNet-34
and vanilla UNet networks. The proposed technique did not obtain high road detection
accuracy for the Intersection Over Union (IOU). Constantin et al. [26] extracted roads from
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Massachusetts road dataset on the basis of the modified UNet network. For decreasing the
number of false positive pixels (FPs) and increasing the precision, they utilized Jaccard
distance and binary cross-entropy loss function for training the network; however, the
model could not achieve high quantitative values for the F1 score. Xu et al. [27] used World-
View2 satellite imagery and the M-Res-UNet deep learning model to extract road networks.
For a pre-processing step, they applied a Gaussian filter to remove noise from images.
The proposed method could not efficiently extract roads from areas with high complexity.
In [28], a new deep learning based model based on an FCN family named U-shaped FCN
(UFCN) was performed for road extraction from UAV imagery. The suggested network
outperformed other deep learning-based networks, such as one- and two-dimensional CNN
networks, in terms of accuracy only for the small area of obstacles. In [29], a generative
adversarial network (GAN) was implemented for road extraction from UAV imagery. For
the generator part, the FCN network was used to make the fake segmentation map. The
proposed technique could achieve high road extraction accuracy; however, the network
misclassified non-road classes as road classes in complicated scenes. In [30], a new network
called VNet with a hybrid loss function named cross-entropy-dice-loss (CEDL), which was
a combination of dice loss (DL) and cross-entropy (CE), was introduced to segment road
parts from Ottawa and Massachusetts road datasets. The quantitative results confirmed
that the suggested network could achieve better results than other comparative deep
learning-based models for road extraction. In another work [19], a patch-based CNN
method was applied to extract building and road objects. For the post-processing step, the
SLIC method was utilized to integrate low-level features with CNN feature and improve
the performance. They figured out that their model requires more processing for accurate
detection of building and road boundaries. Wan et al. [31] implemented a dual-attention
road extraction network (DA-RoadNet) model to extract roads from Massachusetts and
DeepGlobe road datasets. To tackle class imbalance, they developed a hybrid loss function
based on a combination of binary cross entropy loss (BCEL) and DL, which allows the
network model to train steadily and avoid local optimums. In another work, Wang et al. [32]
extracted roads from the Massachusetts road dataset based on inner convolution integrated
encoder-decoder model. Additionally, they used directional CRFs to increase the quality
of the extracted road by including road direction in the conditional random fields’ energy
function. In the following, prior works related to building extraction from remote sensing
data are discussed.

Xu et al. [33] extracted building objects from the Vaihingen and Potsdam datasets
based on the Res-Unet method. For removing salt-and-pepper noise and improving the
performance, they applied guided filter as a post-processing stage. The outcomes illus-
trated that the suggested technique obtained high accuracy in building extraction; however,
the model classified some irregular and blurry boundaries for some buildings that are
surrounded by trees. Shrestha and Vanneschi [34] utilized the FCN network to extract
buildings from the Massachusetts building dataset. They performed CRFs to sharpen the
buildings edges; however, their results showed that one of the leading causes of the loss
in accuracy was utilizing the constant receptive field in the network. Bittner et al. [35]
mixed DSM and FCN for building extraction from World_View2 imagery with 0.5 m
spatial resolution. They used VGG-16 network to fine-tune and construct the proposed
FCN network. They also implemented CRF approach to produce a building binary mask.
The results demonstrated that the proposed approach could not detect buildings that are
surrounded by trees and show noisy representations. In [36], a deconvolutional CNN
model (DeCNN) was applied for building object extraction from the Massachusetts dataset.
Deconvolutional layers were added to the model to increase accuracy, but the memory
requirement was extremely enlarged. For the dense pixelwise remote sensing imagery
classification, an end-to-end CNN network was proposed by [37], which directly trained
CNN on the input image to generate a classification map. The introduced network was
tested on the Massachusetts building dataset, and the outcomes showed that the sug-
gested network could produce a fine-grained classification map. In another work [38],



Remote Sens. 2021, 13, 3710 4 of 22

an ImageNet model was performed to extract building objects. They also performed
Markov random field (MRF) to obtain ideal labels regarding building scene detection. For
training and testing procedures, they utilized patch-based sliding window, which was
time-consuming. Additionally, the last dense layer discarded the spatial information at
a more satisfactory resolution than is essential for dense prediction. Chen et al. [39] pro-
posed an object-based multi-modal CNN (OMM-CNN) model to extract building features
from multispectral and panchromatic Gaofen-2 (GF-2) imagery with 0.8 per pixel spatial
resolution. They also applied the SLIC approach to improving the building extraction
efficiency. The outcomes depicted that the suggested model could not segment irregular
and small buildings well. To generate building footprints masks from only RGB satellite
images, Jiwani et al. [40] proposed a DeeplabV3+ module with a Dilated ResNet backbone.
In addition, they used an F-Beta measure to assist the method in accounting for skewed
class distributions. Protopapadakis et al. [41] extracted buildings from satellite images
with near infrared band, based on a deep learning model called Stacked Autoencoders
Driven (SAD) and Semi-Supervised Learning (SSL). To train the deep model, they used
only a very small amount of labeled data. In contrast, they utilized the SSL method to
estimate soft labels (targets) for the large amount of unlabeled data that already exists,
and then they utilized these soft estimates to enhance model training. Deng et al. [42]
applied a deep learning model called Attention-Gate-Based Encoder–Decoder model to
automatically detect buildings from Aerial and UAV images. To collect and retrieve fea-
tures sequentially and efficiently, they used the atrous spatial pyramid pooling (ASPP) and
grid-based attention gate (GAG) modules. A hybrid method based on the edge detection
technique and CNN model was implemented by [43] for building extraction from GF-2
satellite imagery. For pixel-level classification, the CNN model was firstly applied. An
edge detection method called Sobel was then utilized for building edge segmentation, but
the proposed technique could not generate non-noisy building segmentation maps with
high spatial vicinity. Although the aforementioned algorithms have gained achievements
in road and building extraction, they still have some short comings. For instance, most of
these techniques do not perform well in road and building segmentation applications in
the heterogeneous sectors [44], where there are barriers such as vegetation covers, parking
lots, and shadows. Thus, two novel deep learning-based techniques called MCG-UNet and
BCL-UNet are employed in the current study for road and building detection to address
those issues. A constant result for road and building can be achieved by the presented
methods even under the heterogeneous sectors or barriers of trees, shadows, and so on.

The main contribution of this study is listed as follows: (1) we implemented two
end-to-end frameworks, the MCG-UNet and BCL-UNet models, which are an extension
of the UNet model, and which have all the advantages of UNet, dense convolution (DC)
mechanism, bi-directional ConvLSTM (BConvLSTM), and squeeze and excitation (SE) to
identify road and building objects from aerial imagery. The BCL-UNet model only takes
the advantages of BConvLSTM, whereas the MCG-UNet model also takes the benefit of
SE function and DC. (2) We concentrated on buildings and road networks because these
objects constitute a huge part of the urban areas. (3) The densely connected convolutions
(DC) are used to increase feature reuse, enhance feature propagation, and assist the model
to learn more various features. (4) The BConvLSTM module is applied in the skip con-
nections to learn more discriminative information by combining features from encoding
and decoding paths. (5) The SE function is employed in the expanding path to consider
the interdependencies between feature channels and extract more valuable information.
(6) A BAL loss function is also used to focus on hard semantic segmentation regions, such
as overlapped areas of objects and complex regions, to magnify the loss at the edges and
improve the model’s performance. We used this strategy to improve the border of semantic
features and make them more appropriate for actual building and road forms. By adding
these modules to the models and using BAL loss, the model’s performance for building
and road segmentation is improved. As far as we are aware, the presented techniques
are implemented for multi-object segmentation tasks in this work for the first time and
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have not been applied before in the literature. The rest of this manuscript is organized into
four subsections. Section 2 highlights an overview of the proposed BCL-UNet and MCG-
UNet approaches. The experiential outcomes and detailed comparison are depicted in
Sections 3 and 4, respectively. Lastly, the most significant finding is described in Section 5.

2. Methodology

In this work, we applied BCL-UNet and MCG-UNet models on the aerial imagery to
automatically extract building and road features. The overall methodology of the presented
techniques is depicted in Figure 1. The proposed framework includes three main steps.
(i) Dataset preparation step was firstly applied to produce test imagery and training and
validation imagery for building and road objects. (ii) The presented networks were then
trained on the basis of training imagery and validated based on validation imagery. After
that, the trained frameworks were applied on the test images to generate the building and
road segmentation maps. (iii) Common measurements factors were finally used to assess
the model’s performance.

Figure 1. Overall flow of the offered BCL-UNet and MCG-UNet frameworks for multi-object segmentation.

2.1. BCL-UNet and MCG-UNet Architectures

The proposed BCL-UNet and MCG-UNet models are inspired by dense convolu-
tions [45], SE [46], BConvLSTM [47], and UNet [48]. The architectures of the UNet and
the proposed BCL-UNet and MCG-UNet are shown in Figures 2–4, respectively. The
widely used UNet model comprises the encoding and decoding paths. In the contracting
path, hierarchically semantic features are extracted from the input data to take context
information. A huge dataset is required for training a complicated network with a massive
number of parameters [48]. However, deep learning-based techniques are mainly localized
on a particular task, and collecting a massive volume of labeled data is very challeng-
ing [49]. Therefore, we used the concept of transfer learning [49] by employing a pretrained
convolutional network of VGG family as the encoder to deal with the isolated learning
paradigm, leverage knowledge from pre-trained networks, and improve the performance
of the UNet. To make utilizing pre-trained networks feasible, the encoding path of the
proposed model was designed similar to the first four VGG-16 layers. In the first two layers,
we used two 3× 3 convolutional layers chased by a 2× 2 max pooling layer and ReLU
function. In the third layer, we used three convolutional layers with a similar kernel size
chased by a similar ReLU function and max pooling layer. At every stage, the quantity of
feature maps was doubled. In the final step of the contracting path, the main UNet model
included a series of convolutional layers. This allowed the networks to learn various sorts
of features. However, in the successive convolutions, the model might learn excess features.
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To moderate this issue, we used the idea of “collective knowledge” by exploiting densely
connected convolutions [45] to reutilize the feature maps through the model and improve
the model performance. Inspired by this idea, we concatenated feature maps learned from
the current layer with feature maps learned from all prior convolutional layers and then
forwarded to utilize as the next convolutional layer input.

Figure 2. UNet model without any dense connections and with BConvLSTM in the skip connections.

Figure 3. BCL-UNet model without any dense connections and with BConvLSTM in the skip connections.

Using densely connected convolution (DCC) instead of the usual one [45] has some
benefits. First, it prompts the model to avoid the risk of vanishing or exploding gradients
by getting advantages from all the generated features before it. Furthermore, this idea
allows information to flow through the model, in which the representational power of
the networks can then be improved. Moreover, DCC assists the models to learn various
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collections of feature maps rather than excessive ones. Therefore, we employed DCC in the
suggested approaches. One block was introduced as two successive convolutions. There
is a sequence of N blocks in the final convolutional layer of the contracting path that are
densely connected. The feature map concatenation of all previous convolutional blocks,
e.g., [x1

e , x2
e , . . . , xi−1

e ] ∈ R(i−1)Fl×Wl×Hl was considered as an input of the ith (i ∈ {1, . . . , N})
convolutional block and xi

e ∈ RFl×Wl×Hl was considered as its output, where the number
and size of feature maps at layer l are defined as Wl × Hl and Fl , respectively. A sequence
of N blocks that are densely connected in the final convolutional layer is presented in
Figure 5.

Figure 4. MCG-UNet model with dense connections, with the SE function in the expansive part and BConvLSTM in the
skip connections.

Figure 5. Densely connected convolutional layers of MCG-UNet.

In the expansive path, every phase starts with an upsampling layer over the prior
layer output. We used two significant modules, namely, BConvLSTM and SE, for the
MCG-UNet and BConvLSTM module for BCL-UNet to augment the decoding part of the
original UNet and improve the representation power of the models. In the expanding
part of the main UNet model, the corresponding feature maps were concatenated with
the upsampling function output. For combining these two types of feature maps, we
employed BConvLSTM in the proposed frameworks. The BConLSTM output was then
fed to a set of functions containing two convolutional modules, one SE function, and
another convolutional layer. SE module takes the output of the upsampling layer, which is
a collection of feature maps. On the basis of interdependencies between all channels, this
block uses a weight for every channel to promote the feature maps to be more instructive.
SE also allows the framework to utilize global information to suppress useless features and
selectively emphasize informative ones. The SE output was then fed to an upsampling
function. Figure 6a,b illustrate the structure BConvLSTM in BCL-UNet framework and
BConvLSTM with SE modules in MCG-UNet framework, respectively. Presume that
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Xd ∈ RFl+1×Wl+1×Hl+1 defines a set of exploited feature maps from the prior layer in the
expansive part. We have Hl+1 = 1

2 × Hl , Wl+1 = 1
2 ×Wl and Fl+1 = 2× Fl , which we

assume as Xd ∈ R2F×W
2 ×

H
2 for simplicity. As illustrated in Figures 4 and 5, the set of feature

maps first goes through an upsampling function chased by convolutional layer with size
2× 2, in which these functions halve the channel number and double the size of every
feature map to produce Xup

d ∈ RF×W×H . In the decoding part, the size of the feature maps
is increased layer-by-layer to achieve the primary size of input data. These feature maps
are then converted into prediction maps of the foreground and background parts in the
last layer based on the sigmoid function. The detailed configurations of all approaches, the
number of parameters and layers, batch size, and input shape are shown in Table 1. In the
following, the batch normalization (BN), BConvLSTM, and SE modules are described.

Figure 6. (a) Structure of BConvLSTM in the expansive part of the BCL-UNet model, and (b) BConvLSTM with the SE
module in the expansive part of the MCG-UNet model (b).

Table 1. Detailed configurations of all approaches.

Approaches Number of
Parameters

Number of
Layers

Batch
Size Input Shape Computer Configuration

UNet 9,090,499 30 2 768 × 768 × 3 A GPU: Nvidia Quadro RTX 6000
24 GB and a computation capacity of

7.5
Python: 3.6.10

TensorFlow: 1.14.0

BCL-UNet 13,580,995 42 2 768 × 768 × 3

MCG-UNet 27,891,901 74 2 768 × 768 × 3

2.2. SE Function

The SE function [46] is suggested to gain a clear relationship between the convolutional
layers channels and improve the representation power of the model by a context gating
mechanism. By allocating a weight for every channel in the feature map, this function
encodes feature maps. The SE module comprises two main sections named squeeze and
excitation. Squeeze is the first operation. We accumulated the input feature maps to SE
block to generate channel descriptor by applying global average pooling (GAP) of the
entire context of channels. We have Xup

d = [Xup
1 , Xup

2 , . . . , Xup
F ], in which the input data to

SE function is Xup
f ∈ RW×H , and spatial squeeze (GAP) is calculated as:

z f = Fsq(Xup
f ) =

1
H ×W

H

∑
i

W

∑
j

Xup
f (i, j) (1)

where the size of the f th channel, the channel spatial location, and the spatial squeeze
function are expressed as Xup

f (i, j), H ×W, and Fsq, respectively. In other words, z f

can be produced by compressing every two-dimensional feature map using a GAP. The
initial stage (Squeeze) introduces the global information, which is then fed to the next
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stage (Excitation). The excitation stage comprises two dense (FC) layers as shown in
Figure 3. To shape 1× 1× F

r and 1× 1× F, the pooled vector is initially encoded and
decoded, respectively. Next, the excitation vector is generated as s = Fex(z; W) =
σ(W2δ(W1z)), where r is the reduction ratio, σ denotes the sigmoid function, δ is Relu, and
W1 ∈ R

F
r ×F denotes the initial fc layer RF× F

r parameters. The SE block output is pro-

duced as
∼
X

up

f = Fscale(Xup
f , zc) = scXup

f , where sc is the scale factor, Fscale is the input

feature map, and
∼
X

up

d = [
∼
X

up

1 ,
∼
X

up

2 , . . . ,
∼
X

up

F ] is defined as a multiplication between the
channel’s attention on a channel-by-channel basis. In [46], a dimensionality-reduction and
a dimensionality-increasing layer with ratio r were utilized, respectively, in the initial FC
layer and the second one to aid generalization and limit model complexity.

2.3. BN Function

The dispensation of the activations alters in the intermediate layers in the training
stage and this issue slows down the training process. This is because every layer in each
training stage must learn to adjust themselves to a novel distribution. Therefore, the
BN function [50] is used to enhance the consistency of the networks. The batch mean is
subtracted and then divided by the batch standard deviation using the BN function to
standardize the inputs to a layer in the models. The BN function improves the performance
of the networks in some cases and efficiently hastens the speed of training process. BN uses
∼
X

up

d as an input after upsampling to generate
∧
X

up

d . Additional details are available in [50].

2.4. BConvLSTM Function

The standard long short-term memory (LSTM) networks utilize full relationships
between transmissions of input-to-state and state-to-state and do not take the spatial
correlation into account, which is the major disadvantage of these networks [51]. Therefore,
ConvLSTM was suggested by [52] to exploit convolution operations into transmissions
of input-to-state and state-to-state and tackle this issue. ConvLSTM includes a memory
cell, a forged gate, an output gate, and an input gate, which work as controlling gates
for accessing, updating, and clearing the memory cell. The ConvLSTM function can be
calculated as:

it = σ(Wxi × Xt + Whi × Ht−1 + Wci × Ct−1 + bi)
ft = σ(Wx f × Xt + Wh f × Ht−1 + Wc f × Ct−1 + b f )
Ct = ftoCt−1 + ittanh(Wxc × Xt + Whc × Ht−1 + bc)
ot = σ(Wxo × Xt + Who × Ht−1 + WcooCt + bc)
Ht = ototanh(Ct),

(2)

where bc, bo, b f , and bi are bias terms, Ht is the hidden state, Xt is the input state, o is
the Hadamard and × denotes the convolution functions, Ct is the memory cell, and WX∗
and Wh∗ are Conv2D kernels corresponding to the input and hidden state, respectively.

To encode Xe and
∧
X

up

d , we applied BConvLSTM [47] in the proposed BCD-UNet and
MCG-UNet models that derive the output of BN step. The BConvLSTM function decides
for the current input based on processing the data dependencies in both forward and
backward directions. In contrast, a standard ConvLSTM only processes the dependencies
of the forward way. In other words, the BConvLSTM processes the input data into two
paths (forward and backward) utilizing two ConvLSTM. The output of BConvLSTM can
be formulated as:

Yt = tanh(W
→
H
y ×

→
Ht + W

←
H
y ×

←
Ht + b) (3)

where Yt ∈ RFt×Wt×Ht denotes the last output with bidirectional spatio-temporal informa-

tion,
←
Ht and

→
Ht are the backward and forward hidden tensors, respectively, b is the bias

term, and tanh is a non-linear hyperbolic tangent used to mix the output of both states. Ana-
lyzing the forward and backward data dependencies will boost the predictive performance.
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2.5. Boundary-Aware Loss

In this work, we suggested a boundary-aware loss function (BAL), which is a simple
yet efficient loss function. We first extracted boundaries Ei by filter fE = 2 × 2 from
semantic segmentation labels li for every class i (Equation (4). Then, at the boundary image,
we adopted Gaussian blurring using a Gaussian filter fG, summed all of the channels
results EG, and added bias β (Equation (5). We calculated the BAL by multiplying the
original binary cross-entropy loss L to the Gaussian edge EG (Equation (6)) between ground
truth and prediction to suppress the inner regions of every class and amplify loss around
boundaries. The Gaussian edge efficiently concentrates on not only small objects, occluded
areas between objects, and complex parts of objects, but also boundaries and corners of
objects [53].

Ei(x,y) =

 0
∣∣∣(li ⊗ fE)(x,y)

∣∣∣ = 0

1
∣∣∣(li ⊗ fE)(x,y)

∣∣∣> 0
(4)

where fE =

[
1 −0.5
−0.5 0

]
EG = ∑

i
(Ei ⊗ fG) + β (5)

BAL =
1
n ∑
(x,y)

EG(x, y)× L(x, y) (6)

where the number of pixels in the label l is denoted as n.

3. Experimental Results

In this part, the road and building dataset preparation, performance measurement
factors, and quantitative and qualitative results obtained by the suggested networks for
building and road object extraction are presented.

3.1. Road Dataset

We used the Massachusetts road dataset [54] to test the proposed networks for road ex-
traction. This dataset comprises 1171 aerial imagery with a dimension of 1500 × 1500 pixels
and a spatial resolution of 0.5 m. We selected some good-quality imagery with complete
information of road pixels and then split them into the size of 768 × 768. The last dataset
that we utilized comprised 1068 images. We divided the dataset into 64 test images and
1004 validation and training images. Furthermore, we applied vertical and horizontal
flipping and rotation as data augmentation approaches to extend our dataset. Deeper con-
volution layers were given a 0.5 dropout to overcome over-fitting concern [55]. Figure 7a
portrays instances of road dataset within the complex urban areas.

Figure 7. Samples from the Massachusetts road (a) and building (b) datasets. The RGB imagery and
reference maps are displayed in the first and second columns, respectively.
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3.2. Building Dataset

For the building dataset, we also used the Massachusetts building dataset [54] to test
our models. This dataset contains 151 aerial imageries with a pixel dimension of 1500 × 1500.
Similar to road dataset, we split the original building images into 768 × 768 pixel dimensions.
Our building dataset contains 472 images that we split it into 460 training and validation
images and 12 test images. Horizontal and vertical flipping and rotation were implemented
to increase the dataset size. Figure 7b portrays instances of the building dataset.

3.3. Performance Measurement Factors

For assessing the performance of the introduced techniques for road and building ob-
ject segmentation, we utilized four principal metrics, namely, IOU, F1, precision, Matthew
correlation coefficient (MCC), and recall [34]. The IOU factor is expressed as the number
of shared pixels between the identified and true masks divided by the total number of
existent pixels across both masks (5). The proportion of pixels that specified exactly amid
the predicted pixels is denoted as precision (6). The amount of accurately predicted pixels
of pixels that are predicted accurately amid the entire actual pixels is represented as recall
(7). MCC (9) stands for the correlation coefficient between the detected and recognized
binary classification, and it has a value between 1 and 1. Finally, a trade-off factor, which
is a combination of precision and recall, is signified as F1 (8) [56,57]. The true negative
(TN), false negative (FN), true positive (TP), and false positive (FP) pixels can be used to
calculate these metrics as:

IOU =
TP

TP + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 =
2× Precision× Recall

Precision + Recall
(10)

MCC =
TP·TN − FP·FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(11)

3.4. Quantitative Results

The results of the UNet, BCL-UNet, and MCG-UNet models for road and building
extraction are discussed in this section. BCL-UNet model is inspired by UNet and BConvL-
STM, whereas dense convolutions and the SE function are also added in the MCG-UNet
model. The BCL-UNet model has one convolutional layer without a dense connection in
that layer. An optimization method is necessary to reduce the energy function and update
the model parameters while training the network. Thus, we utilized the adaptive moment
estimation (Adam) optimization algorithm in our framework with a learning rate of 0.0001
to diminish the losses and update weights and biases. The entire process of the presented
approaches for building and road extraction in this study was implemented using Keras
with a TensorFlow backend and a GPU Nvidia Quadro RTX 6000 with a 7.5 computation
capacity and memory of 24 GB.

To show the ability of the presented models for building and road object extraction,
we measured the accuracy assessment factors. Tables 2 and 3 depict the accuracy of every
specified measurement factor for road and building extraction, respectively. The average F1
accuracy achieved by the UNet, BCL-UNet, and MCG-UNet is 86.89%, 87.55%, and 88.74%,
respectively, for road extraction and 88.23%, 89.79%, and 94.90%, respectively, for building
extraction. Clearly, the MCG-UNet model worked better than the other approaches in road
extraction and could improve the F1 percentage to 1.19% and 1.85% compared with the
BCL-UNet and UNet models, respectively, for road segmentation results and 5.11% and
6.67%, respectively, for building segmentation results.



Remote Sens. 2021, 13, 3710 12 of 22

Table 2. Comparison of the MCG-UNet, BCL-UNet, and UNet networks for road segmentation.

Metrics UNet BCL-UNet MCG-UNet

Im
ag

e1

Recall 0.8592 0.8604 0.8643

Precision 0.8757 0.8801 0.9051

F1 0.8674 0.8701 0.8842

MCC 0.8431 0.8465 0.8637

IOU 0.7657 0.7701 0.7924
Im

ag
e2

Recall 0.8277 0.8374 0.8984

Precision 0.884 0.887 0.8984

F1 0.8549 0.8615 0.8984

MCC 0.8283 0.8358 0.8797

IOU 0.7466 0.7567 0.8156

Im
ag

e3

Recall 0.857 0.8589 0.8672

Precision 0.9043 0.9165 0.9191

F1 0.88 0.8868 0.8924

MCC 0.8546 0.8632 0.8699

IOU 0.7857 0.7965 0.8057

Im
ag

e4

Recall 0.7787 0.7831 0.7658

Precision 0.8874 0.8924 0.905

F1 0.8295 0.8342 0.8296

MCC 0.7943 0.80 0.7969

IOU 0.7086 0.7154 0.7088

Im
ag

e5

Recall 0.9026 0.9097 0.9340

Precision 0.9233 0.9410 0.9312

F1 0.9128 0.9251 0.9326

MCC 0.9034 0.9171 0.9251

IOU 0.8396 0.8606 0.8736

A
ve

ra
ge

Recall 0.8450 0.8499 0.8659

Precision 0.8949 0.9034 0.9118

F1 0.8689 0.8755 0.8874

MCC 0.8447 0.8525 0.8670

IOU 0.7692 0.7799 0.7992

3.5. Qualitative Results

For qualitative results, we showed examples of road and building segmentation maps
achieved by the networks in Figures 8 and 9, respectively. The figures are presented in three
rows and five columns. The first and second columns of the figures depict the RGB and
reference images, respectively. The results acquired by UNet, BCL-UNet, and MCG-UNet
are depicted in third, fourth, and fifth columns, respectively. All the networks can normally
obtain an accurate road and building segmentation maps. However, the road and building
segmentation maps produced by the MCG-UNet is more accurate than those by other
methods. In other words, the presented MCG-UNet network can obtain a high-quality
segmentation map, preserve the higher accuracy of object boundaries’ information on
the edge segmentation, and predict fewer FPs (depicted in yellow color) and more FNs
(depicted in blue color), which achieved an average F1 accuracy of 88.74% for road and
94.90% for building compared with other deep learning-based models. This is due to the
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addition of the BConvLSTM, DC, and SE modules to the network. BConvLSTM mixes
the encoded and decoded features that include more local information and more semantic
information. Additionally, the DC assist the model to learn more varying features and the
SE module can capture the spatial relations between features. Therefore, these modules,
which were embedded into the models, could improve the performance in building and
road object segmentation.

Table 3. Comparison of the MCG-UNet, BCL-UNet, and UNet networks for building segmentation.

Metrics UNet BCL-UNet MCG-UNet
Im

ag
e1

Recall 0.8802 0.8969 0.9441

Precision 0.9076 0.9214 0.9612

F1 0.8937 0.909 0.9526

MCC 0.8649 0.8843 0.9398

IOU 0.8078 0.8331 0.9094

Im
ag

e2

Recall 0.8732 0.8921 0.9399

Precision 0.8834 0.8984 0.9554

F1 0.8783 0.8952 0.9476

MCC 0.8506 0.8714 0.9357

IOU 0.7829 0.8103 0.9003

Im
ag

e3

Recall 0.8937 0.9122 0.938

Precision 0.8621 0.875 0.9558

F1 0.8776 0.8932 0.9468

MCC 0.8596 0.8775 0.9392

IOU 0.7819 0.807 0.8989

Im
ag

e4

Recall 0.9190 0.9400 0.9494

Precision 0.8616 0.8758 0.9520

F1 0.8894 0.9067 0.9507

MCC 0.8739 0.8939 0.9438

IOU 0.8007 0.8294 0.9060

Im
ag

e5

Recall 0.8418 0.8511 0.9261

Precision 0.9058 0.9223 0.9692

F1 0.8726 0.8853 0.9472

MCC 0.8355 0.8496 0.9302

IOU 0.7650 0.7942 0.8996

A
ve

ra
ge

Recall 0.8816 0.8985 0.9395

Precision 0.8841 0.8986 0.9587

F1 0.8823 0.8979 0.9490

MCC 0.8569 0.8753 0.9377

IOU 0.7877 0.8148 0.9028
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Figure 8. Obtained products with the presented UNet, BCL-UNet, and MCG-UNet networks from the Massachusetts road
dataset. The yellow, blue, and white colors present the FNs, FPs, and TPs, respectively.

Figure 9. Obtained products with the presented UNet, BCL-UNet, and MCG-UNet networks from the Massachusetts
building dataset. The blue, white, and yellow colors display the FNs, TPs, and FPs, respectively.
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4. Discussion

To further investigate the advantage of the presented techniques in this study for
building and road object extraction from aerial imagery, we compared the F1 accuracy
measurement metric attained by the networks with other comparative deep learning-
based networks applied for building and road segmentation. Note that the findings for
other networks are taken from the key published manuscripts, whereas the presented
networks were performed on experiential datasets. Specially, the proposed models in the
current work were compared with convolutional networks, such as DeeplabV3 [58], BT-
RoadNet [59], DLinkNet-34 [24], RoadNet [60], and GL-DenseUNet [61] for road extraction,
and building residual refine network (BRRNet) [62], FCN-CRF [34], a modification of UNet
model pretrained by ImageNet called TernausNetV2 [63], Res-U-Net [64], and JointNet [65]
for building extraction.

Tables 4 and 5 provide the average F1 accuracy for the proposed frameworks and
other comparative techniques for road and building extraction, respectively. As indicated
in Tables 4 and 5, both the models applied in the current study, such as BCL-UNet and
MCG-UNet, worked better than other comparative models for building and road extrac-
tion, except FCN-CRF [34], which is applied for building segmentation. The BCL-UNet
and MCG-UNet models achieved F1 accuracy of 87.55% and 88.74% for road extraction,
respectively, which is higher than other comparative road segmentation methods. This
is because the proposed BCL-UNet and MCG-UNet networks use dense connections and
BConvLSTM in the skip connections and SE in the expansive part. These functions help
the networks learn more various features, learn more discriminative information, extract
more valuable information, and improve accuracy. For building extraction, the proposed
MCG-UNet model even obtained better F1 accuracy than the FCN-CRF [34], which is the
second best model with an F1 accuracy of 93.93%, and achieved higher accuracy than
BCL-UNet, which had an F1 accuracy of 89.79%. The higher F1 accuracy and high-quality
segmentation map for buildings by the proposed MCG-UNet networks is because of the
addition of BConvLSTM, which takes forward and backward dependencies into account
and considers all the information in a sequence and SE module that uses a context gating
mechanism to gain the distinct relationship between channels of convolutional layers.

Table 4. Quantitative results generated by the BCL-UNet and MCG-UNet and other deep learning-
based techniques for road extraction.

Methods Precision Recall IOU F1

DeeplabV3 74.16 71.82 57.60 72.97

BT-RoadNet 87.98 78.16 74.00 82.77

DLinkNet-34 76.11 70.29 57.77 73.08

RoadNet 64.53 82.73 56.86 72.50

GL-DenseUNet 78.48 70.09 72.73 74.04

BCL-UNet 0.9034 0.8499 0.7799 87.55

MCG-UNet 0.9118 0.8659 0.7992 88.74

Additionally, we portrayed the visual road and building products achieved by other
techniques and the proposed BCL-UNet and MCG-UNet frameworks in Figures 10 and 11,
respectively, to evaluate the efficiency of the suggested approaches in multi-object segmen-
tation. The proposed BCL-UNet and MCG-UNet methods could maintain the boundary
information of roads and buildings and produce a high-resolution segmentation map for
building and road objects compared with other comparative frameworks. By contrast,
DeeplabV3 [58], BT-RoadNet [59], DLinkNet-34 [24], and RoadNet [60], which were per-
formed for road segmentation, and BRRNet [62], TernausNetV2, [63], and JointNet [65],
which were performed for building segmentation, achieved lower quantitative values for
F1 accuracy, could not preserve the boundaries of objects, and identified more FNs and
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FPs, especially where these objects were surrounded by obstructions and located in the
dense and complex areas. As a result, they produced low-resolution segmentation maps
for roads and buildings.

Table 5. Quantitative results generated by the BCL-UNet and MCG-UNet and other deep learning-
based techniques for building extraction.

Methods Precision Recall IOU F1

BRRNet - - 0.7446 84.56

FCN-CRF 95.07 93.40 89.08 93.93

TernausNetV2 0.8596 0.8199 0.7234 83.92

Res-U-Net 0.8621 0.8026 0.7114 83.12

JointNet 0.8572 0.8120 0.7161 83.39

BCL-UNet 0.8986 0.8985 0.8148 89.79

MCG-UNet 0.9587 0.9395 0.9028 94.90

Figure 10. Road map comparisons generated by the presented BCL-UNet and MCG-UNet techniques against other deep
learning-based networks. The yellow boxes show the predicted FPs and FNs.

Other Datasets

Moreover, we implemented our proposed models on other datasets called the Deep-
Globe road dataset [66] and AIRS building dataset [67] to prove the effectiveness of the
models on the road and building segmentation from various types of remote sensing
images. DeepGlobe dataset includes 7469 training and validation images and 1101 testing
images with a spatial resolution of 50 cm and a pixel size of 1024× 1024. Additionally, AIRS
includes 965 training and validation images and 50 testing images with a spatial resolution
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of 7.5 cm and a pixels size of 1024× 1024. We compared the results of our methods for
both roads and buildings with other comparative methods, such as Res-U-Net [64], Joint-
Net [65], DeeplabV3 [58], and LinkNet [68]. Table 6 presents the quantitative results, while
Figures 12 and 13 present the visualization outcomes obtained by the proposed models
and other methods for road and building extraction from both datasets, respectively. The
proposed BCL-UNet and MCG-UNet models could improve the F1 accuracy compared
to the comparative techniques and achieved an accuracy of 93.53% and 94.34% for build-
ing extraction, respectively, and an accuracy of 87.03% and 88.09% for road extraction,
respectively. Additionally, according to the qualitative outcomes (Figures 12 and 13), the
proposed models could extract roads and buildings from the DeepGlobe and AIRS datasets
accurately and achieve high-quality segmentation maps compared to the other approaches,
which confirms the efficiency of the models for road and building extraction from other
remote sensing datasets.

Figure 11. Building map comparisons produced by the presented BCL-UNet and MCG-UNet techniques against other deep
learning-based networks. The yellow boxes present the predicted FPs and FNs.

Table 6. Quantitative results generated by BCL-UNet and MCG-UNet for road and building extraction from other datasets.

Methods Recall Precision F1 MCC IOU

ISPRS Building Dataset

Res-U-Net 0.9197 0.9399 0.9296 0.8999 0.8688

JointNet 0.8982 0.9726 0.9338 0.9084 0.8760

BCL-UNet 0.9318 0.9391 0.9353 0.9118 0.8862

MCG-UNet 0.9017 0.9891 0.9434 0.9224 0.8928

DeepGlobe Road Dataset

DeeplabV3 0.8115 0.8750 0.8411 0.8139 0.7258

LinkNet 0.8852 0.8238 0.8486 0.8199 0.7369

BCL-UNet 0.8408 0.9047 0.8703 0.8482 0.7705

MCG-UNet 0.8597 0.9044 0.8809 0.8595 0.7870
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Figure 12. Building and road maps produced by the presented BCL-UNet and MCG-UNet techniques from the AIRS and
DeepGlobe datasets. (i) Original imagery, (ii) ground truth imagery, (iii) results of BCL-UNet, and (iv) results of MCG-UNet.
The yellow boxes present the predicted FPs and FNs.

Figure 13. Building and road maps produced by the comparative techniques from the AIRS and DeepGlobe datasets.
(i) Original imagery, (ii) ground truth imagery, (iii) results of DeeplabV3 for roads and Res-U-Net for buildings, and
(iv) results of LinkNet for roads and JointNet for buildings. The yellow boxes present the predicted FPs and FNs.
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5. Conclusions

We used two new deep learning-based networks in this research, namely, BCL-UNet
and MCG-UNet, which were inspired by UNet, dense connections, SE, and BConvLSTM,
for the segmentation of multi-objects from aerial imagery, such as buildings and roads. The
presented networks were tested on the Massachusetts road and building datasets. The
results achieved by the presented BCL-UNet framework and MCG-UNet models were
firstly compared. The qualitative and quantitative products proved that both frameworks
worked better than others and generated an accurate segmentation map for road and build-
ing objects. To show the efficiency of the introduced models in multi-object segmentation,
we also compared the BCL-UNet and MCG-UNet quantitative and visualization findings
to those of other state-of-the-art comparative models used for road and building segmen-
tation. The empirical consequences affirmed the advantage of the offered techniques for
the extraction of building and road objects from aerial imagery. In summary, the proposed
techniques could detect roads and buildings well even in incessant and prominent regions
of closures, and could also generate high-resolution and non-noisy road and building
segmentation maps from separate datasets. In future research, the proposed methods
should be applied to multi-object segmentation from remote sensing data simultaneously.
For this, there is a need to prepare a dataset including ground truth images with three
classes, i.e., background, buildings, and roads, to extract these objects at the same time.
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