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Abstract: Land cover classification of high-resolution remote sensing images aims to obtain pixel-
level land cover understanding, which is often modeled as semantic segmentation of remote sensing
images. In recent years, convolutional network (CNN)-based land cover classification methods have
achieved great advancement. However, previous methods fail to generate fine segmentation results,
especially for the object boundary pixels. In order to obtain boundary-preserving predictions, we first
propose to incorporate spatially adapting contextual cues. In this way, objects with similar appearance
can be effectively distinguished with the extracted global contextual cues, which are very helpful to
identify pixels near object boundaries. On this basis, low-level spatial details and high-level semantic
cues are effectively fused with the help of our proposed dual attention mechanism. Concretely, when
fusing multi-level features, we utilize the dual attention feature fusion module based on both spatial
and channel attention mechanisms to relieve the influence of the large gap, and further improve
the segmentation accuracy of pixels near object boundaries. Extensive experiments were carried
out on the ISPRS 2D Semantic Labeling Vaihingen data and GaoFen-2 data to demonstrate the
effectiveness of our proposed method. Our method achieves better performance compared with
other state-of-the-art methods.

Keywords: deep learning; land cover classification; semantic segmentation

1. Introduction

With the development of very high resolution (VHR) remote sensing technology,
large amounts of satellite remote sensing images with very high resolution are obtained
every day [1]. Semantic segmentation is a computer vision task that predicts the semantic
category for every pixel in an image, and such comprehensive image understanding is
essential for many vision-based applications such as orbital remote sensing, autonomous
driving [2,3], medical image analysis, and so on [4–6]. However, there are still lots of
challenges for the task of semantic segmentation in VHR remote sensing images with
complex scenes, such as poor accuracy of multi-category semantic segmentation, poor
speed of multi-category semantic segmentation, and so on.

Traditional machine learning-based methods [7–9] rely on human experience and
complex feature engineering. The segmentation performance mainly depends on whether
researchers can obtain the accurate features of their targets. Since feature extraction is done
manually by the researcher, these human-designed features may fail to handle various
complex applications. With the development of deep learning [10–14], there are lots of
CNN-based methods [15–21] applied in the semantic segmentation of the VHR remote
sensing images. Previous methods [22–24] have used ConvNets for semantic segmentation,
in which each pixel is labeled with the class of its enclosing object or region. The fully
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convolutional networks (FCNs) [25] replaces the fully connected layers in traditional
classification network with convolutional layers to get a segmentation result. Compared
with previous methods [22–24], FCN-based methods [26–29] have made great progress in
semantic segmentation, such as: accepting input images of any size, obtaining features
automatically, and so on.

A general semantic segmentation architecture can be broadly thought of as an encoder
network followed by a decoder network [30]: The encoder is usually a pre-trained classi-
fication network like VGG/ResNet [11,13] followed by a decoder network. The encoder
usually consists of a series of convolution or pooling operations. The task of the decoder is
to semantically project the discriminative features (lower resolution) learned by the encoder
onto the pixel space (higher resolution) to get a dense classification. VHR remote sensing
images generally consist of large and complex scenes with lots of scale-varying objects.
The large variability between some targets in the same category, and small difference
between some targets in different categories, brings a significant challenge to obtain precise
segmentation results, especially at the boundary regions [27]. Generally, long-range contex-
tual cues mean the relationship between pixels in long-range distance. For instance, boats
usually appear in the sea or rivers but not in indoor environments. With the long-range
context of a water scene, water-related feature channels should be weighted higher to
increase the probability of predicting boat pixels.

In order to overcome these challenges, Chen et al. [20] and Zhao et al. [17] introduced
long-range contextual cues into the top feature maps to better distinguish targets with
different scales and similar features. Hu et al. [31] aim to encode the global context to
generate a channel-wise feature weight that is used to re-weigh the feature channels for
improving segmentation accuracy. For instance, the surface of the road may have the same
color as the surface of the roof. However, the vehicles usually appear on the road but not on
the roof. Chen et al. proposed Deeplabv3 [21] to achieve better segmentation performance.
It uses an atrous spatial pyramid pooling (ASPP) module to aggregate the context in
different distances, which is achieved by a series of dilated convolutions with different
scales. These methods make progress in improving the accuracy of the segmentation in a
natural sense. However, these methods are suboptimal for remote sensing images since the
scenes in remote sensing applications are more complex than in natural scene applications,
and the background of the target may have numerous kinds of interference.

Moreover, CNN encodes an input image by a series of convolution operations and
learns suitable feature expressions for image recognition from an input image [32]. Each
convolutional layer in CNN utilizes a convolution kernel to process the input image or
the output of the previous layer. The feature maps at the deep layer in CNNs encode
rich high-level semantic information generated by multiple stages of spatial pooling and
convolution. However, it exhibits clear limitations that makes it hard to obtain the accurate
segmentation result by simply up-sampling the feature maps, losing much of the low-level
fine image structural details; it also further reduces the classification accuracy of pixels
at the boundary [27]. Previous methods [17,20] utilized feature maps in the deep layer to
obtain the final segmentation results, which fail to generate good predictions for pixels near
the object boundary. Thus, some methods [16,19,33] make use of the lower feature maps to
improve the semantic segmentation accuracy near the boundary region. The feature map
generated by the lower layer of CNN has poor semantic information but high resolution.
U-Net [16] adopts an encoder-decoder architecture to improve segmentation results. It
adds skip connections between the encoder and decoder, which can combine detailed
information and category information of different scale features. SegNet [15] also records
the pooling indices in the encoder and reuses them in the decoder to improve the resolution
of the result. However, the feature maps in neighboring layers have different channels as-
sociated with different targets and each channel has different semantic information. Simply
combining high-level feature maps and high-resolution feature maps will drown useful
information in massive amounts of useless information and cannot reach an informative
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high-level and high-resolution feature map [26]. There is a semantic gap between the
feature maps in the different layers, which may have a negative influence on the result.

To address the above problems and improve the segmentation accuracy of targets, we
propose a novel framework for remote sensing image segmentation, which is illustrated
in Figure 1. Inspired by [34], we adopt an adaptive context aggregating module to re-
weigh pixels in different channels with the weight vectors generated by the global context
information. We introduce matrix multiplication to generate the spatially-varying feature
weight factors, which are utilized as the parameters of a series of dilated depth-wise
convolutions with different dilation factors to capture information in multiple scales.
In this way, we integrate the contextual cues into the feature maps with predictable and
input-variant convolutions and the module re-weighs features at different spatial locations
automatically for fine semantic segmentation results. Furthermore, we introduce a channel
attention module to enhance the consistency of the feature maps.
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Figure 1. Overview of the proposed network for semantic segmentation of remote sensing images.

Moreover, in order to make better use of the multi-scale feature maps in CNNs, we
adopt a dual attention feature fusion module to fuse the feature maps in CNNs into
the different layers based on both channel and spatial attention mechanisms. Generally
speaking, our goal is to import extra low-level details in the object boundary, where it
is difficult to obtain accurate category labels for the pixels. As the feature maps in two
different levels of CNN layers may have the semantic gap, we utilize a matrix multiplication
mechanism to measure the relevance of two feature maps at both the channel and spatial
dimension, which is the basis of the weight vectors. As for the channel dimension, we
capture the channel dependencies between any two channels in the different layers and
update the lower channel features with the weight vector. For spatial attention, any two
positions in the different layers with similar features can contribute mutual improvement
regardless of their distance in spatial dimension. Finally, the outputs of these two attention
modules consist of the final output. This feature fusion module aims at reducing the
semantic gap for fine segmentation results. Overall, the contributions of this paper are
summarized as follows:

• In order to utilize global contextual cues, we integrate the contextual cues with the
spatially-varying feature weighing factors.

• To improve the classification accuracy of the pixel near the object boundary, we
propose a multi-scale feature fusion module based on the attention mechanism on
both the spatial and channel dimensions.

• To validate the effectiveness of our method, we conduct extensive experiments based
on the ISPRS 2D Semantic Labeling Vaihingen data [35] and GaoFen-2 data [36]. The re-
sults show that our method has led to significant improvements and demonstrate the
effectiveness and robustness of our method.

This article is organized as follows: Section 2 is about related work. In Section 3, we
introduce our semantic segmentation framework in detail. Section 4 presents the results of
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experiments. In Section 5, we analyze the results of the experiments and discuss future
work. Finally, we summarize the paper in Section 6.

2. Related Work

In this section, we review works related to semantic segmentation on three different
aspects: FCN-based semantic segmentation, contextual cue extraction, and multi-scale
feature fusion.

2.1. Semantic Segmentation

Fully Convolutional Network (FCN) [25] based methods have made significant
progress in semantic segmentation, which first replaces the fully connected layer in the
traditional classification network by convolutional layer to get a segmentation result and it
achieves end-to-end training by adopting the output feature map to match the resolution
of the input image with up-sampling. However, the spatial resolution will be reduced due
to the use of the downsampling and pooling operation. To improve the resolution of the
output, researchers have adopted a variety of methods. Badrinarayanan et al. [15] utilize
the convolution and deconvolution layers to construct a symmetric auto-encoder architec-
ture, which maintains high-frequency details in the input image. Ronneberger et al. [16]
adopt an encoder-decoder architecture to improve segmentation results. In order to pre-
serve more detailed information, Chen et al. [18,20] adopt atrous spatial pyramid pooling
(ASPP) to expand the receptive fields and embed contextual cues, which consists of parallel
dilated convolutions with different dilated rates. However, some drawbacks, like the
grid effect, bring new challenges for improving the accuracy of the segmentation results.
Chen et al. [21] employ a new joint upsampling module to solve the above issue generated
with dilated convolution. Moreover, Zhao et al. [17] propose a pyramid pooling module
to collect the effective contextual prior, containing information of different levels. ASPP
module [18] has been utilized in many methods [37,38] to capture multi-scale contextual
cues from the final convolutional feature map. Lin et al. [39] and Ding et al. [40] obtain
context in different scales by fusing different feature maps.

Meanwhile, in remote sensing, researchers [41,42] are also inspired by the development
of segmentation in natural scenes. Wang et al. [43] present a gated convolutional neural
network to automatically select adaptive features when merging different-layer feature
maps. Panboonyuen et al. [27] introduce the global convolutional network to capture
different resolutions by extracting multi-scale features for better results on remotely sensed
images. Li et al. [44] present an auto encoder-based architecture of deep learning that
makes extensive use of residual learning and multiscaling for better semantic segmentation
of remote sensing images. Kang et al. [45] design the dense spatial pyramid pooling to
extract dense and multi-scale features simultaneously and use the focal loss to suppress
the impact of the error labels in ground truth.

2.2. Contextual Cues Modeling

Although FCN [25] based methods have made great progress in semantic segmenta-
tion, some new problems have emerged with the development of the research. A series
of convolution and down-sampling operations capture information with larger receptive
fields. However, they still cannot take advantage of the global or long-range contextual
cues effectively. Liu et al. [46] encode the global pooling feature, which is concatenated
with the original feature maps to integrate the global context. PSPNet [17] adopt a spatial
pyramid pooling module consist of a series of pooling operations to collect contextual cues
in different scales. Deeplab series [18,20] develop ASPP to obtain multi-scale contextual
cues by dilated convolutional layers with different dilation rates. Yang et al. [47] and
Bilinski et al. [48] encode contextual cues in a dense way. Huang et al. [28] propose a
network structure whose multiple branches with different atrous rates can share a single
kernel effectively. In order to increase the receptive field size, Peng et al. [33] directly
utilize a large filter to capture the contextual cues. Although, the above papers utilize
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various methods to capture the contextual cues, they treat all pixels in each sub-region
with uniform weight for feature aggregation, which cannot capture the information in each
channel with different weight vectors.

To solve this issue, some researchers try to aggregate the feature in an adaptive and
flexible way. He et al. [29] adopt an adaptive context module to estimate inter-pixel
affinity weights for feature aggregation. Zhang et al. [49] propose an aggregated co-
occurring feature (ACF) module to aggregate the co-occurrent context. Based on the ACF
module, Zhang et al. [50] propose the attentional class feature module to make different
pixels adaptively focus on different class centers to improve the semantic segmentation.
Zhao et al. [51] predict that the attention map will aggregate contextual cues for each pixel.
Fu et al. [52] propose the dual attention module consists of a position attention module and
channel attention module with the self-attention mechanism to aggregate features. These
methods show robustness to aggregate the contextual cues and encode the long-range
context, which is able to boost the segmentation performance.

2.3. Multi-Scale Feature Fusion

FCN-based methods utilize a series of convolution and pooling operations to obtain
semantic information of the target. However, it generates a new problem that successive
convolution and pooling operations lead to the reduction of the feature resolution and
the detail information, which influence the accuracy of the result. In order to solve this
issue, it is essential to make use of both high-level categorical semantic, and low-level
spatial details.

Unet [16] adopt an encoder-decoder architecture with skip connections to combine
categorial semantic and spatial details in different scale feature maps. Lin et al. [53] adopt
the same architecture as Unet [16] with predictions from each level of the feature pyramid.
Lin et al. [19] propose a multi-path refinement network to exploit features at multiple
levels of abstraction for high-resolution semantic segmentation. Panboonyuen et al. [27]
extract multi-scale features from different stages of the network and fuse these features
for better results. Wang et al. [43] adopt a gate mechanism to integrate the feature maps
more effectively. In order to take advantage of the redundancy in the label space of
semantic segmentation, while Tian et al. [54] propose a data-dependent upsampling to
replace the bilinear one. He et al. [55] propose a dynamic multi-scale network to adaptively
capture and fuse multi-scale contents for predicting pixel-level semantic labels. Li et al. [26]
propose a new architecture to selectively fuse features from multiple levels using gates in a
fully connected way. Yu et al. [56] adopt an encoder-decoder architecture containing new
modules to select the more discriminative features and make the bilateral features of the
boundary distinguishable with deep semantic boundary supervision.

3. Methods

In this section, we first present a general framework of our network and then introduce
the adaptive context aggregating module (ACAM) and the dual attention feature fusion
module (DAFFM). Finally, we describe how to aggregate them together for further refinement.

3.1. Overview

Given the context of remote sensing, objects are diverse on scales, lighting, and views.
High-resolution remote sensing of images involves complex scenes where objects in the
same category can be diverse in appearance and features. Meanwhile, different semantic
categories may have similar features. Since a series of convolution operations can lead
to a local receptive field, the features corresponding to the pixels with the same label
may differ significantly, which brings additional difficulties for accurate classification at
the pixel-level.

Feature re-weighing has proven to be an efficient approach to capture semantic con-
texts at different distances according to the channel-wise weight factors from the global
contextual cues. However, there is the limitation that the weight vector is shared by all spa-
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tial locations of the 2D feature map. Actually, feature maps of each channel have different
contextual cues. We cannot make full use of these differences by a single weight vector [34].
Thus, it is not a suitable choice to use a globally-shared weight to re-weigh different spatial
locations belonging to objects of different categories. Therefore, it is necessary to aggregate
the contextual cues for better segmentation according to two principles: (1) learning the
feature weight factors from the global context and (2) capturing different locations’ unique
characteristics in a spatially-varying way. To achieve this goal, we propose the ACAM to
obtain the channel-wise vectors to re-weigh the 2D feature maps within the global context.

The top layers in CNNs encode rich global category semantics. However, local spatial
details are missing [57–60]. On the contrary, the lower-level feature maps capture rich
spatial details. However, the lower-level feature layers fail to encode global semantic cues
due to limited discriminative ability [19]. Therefore, it is essential to fuse the global semantic
cues and local spatial details. The authors of [16] address this issue by concatenating
different levels’ feature maps, whose improvement is limited by the large semantic gap.
Inspired by some successfully applied attention mechanisms [61–63], we introduce a feature
fusion module based on both position and channel attention to effectively combine the
feature maps at different scales.

As illustrated in Figure 1, we introduce the ACAM to capture multi-scale contextual
cues. On this basis, the DAFFM is utilized to fuse the multi-scale feature maps with both
spatial and channel attention mechanisms. We adopt a pre-trained residual network [13]
with the dilated strategy as the backbone. We replace the down-sampling operations
with dilated convolutions in the last two layers. Thus, the size of the final feature map
is 1/8 of the input images. It can retain more details without adding extra parameters.
The backbone encodes each remote scene image into a feature map of X ∈ Rc×h×w, where
h, w, c are the height, width, and feature channels of the feature map. First, we adopt the
ACAM to capture contextual cues in the top feature map X, then re-weigh the top feature
map by the spatially-varying weights generated by the global context. Then, we feed the
feature maps generated by the ACAM and the feature maps from the fourth layer of the
backbone CNN into the DAFFM to achieve a balanced fusion of features at different levels.
Finally, we obtain the segmentation result by concatenating the feature maps generated by
the DAFFM.

3.2. Adaptive Context Aggregating Module

The adaptive context aggregating module (ACAM) consists of three submodules:
channel re-weighing module, convolution kernels predicting module, and context-adaptive
capturing module.

First, we utilize the channel re-weighing module based on channel attention to enhance
the consistency of the feature maps in the top layer. We will illustrate the details of the
re-weighing module in Section 3.4.

In order to control the computation cost and maintain the spatial information, we uti-
lize matrix multiplication to predict the convolution kernels. The input feature map is first
transformed into the query feature map Q ∈ Rc×h×w and the key feature map K ∈ Rc×h×w,
respectively, which is implemented by 1 × 1 convolutions to reduce the computation.

To aggregate the global spatial information, we first reshape the feature map K and Q
into K1 ∈ Rc×n and Q1 ∈ Rc×n where n = h× w. Then, we transpose feature map Q1 for
performing a matrix multiplication with feature map K1 to generate the feature map W as
illustrated in Equation (1):

W = Q>K, (1)

where W ∈ RC×C. The element in the feature maps W, represents the overall spatial
distribution of each channel in the feature map K. The result measures the similarity of
the spatial distribution between the feature maps Q and K. In this way, the global spatial
information of each channel is concentrated into the feature map W. Then, we expand
the dimension of W and obtain the feature map W1 ∈ R1×C×C. After that, we reduce the
channels of W1 to s by 1 × 1 convolutions and compress its dimension to obtain the feature
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map W2 ∈ RC×9. Then, we obtain the predicted feature map from W2 as the convolution
kernel by reshaping the batch normalization operation.

Then, in order to re-weigh each pixel of the input feature maps, we adopt depth-
wise convolution with the predicted convolution kernels to generate the spatially-varying
weight map. Thus, each channel of the predicted kernel is utilized to re-weigh one channel
of the input feature map. In this way, the weight vector is independent with each other
and the contextual cues can be aggregated according to its spatial information. Moreover,
we denote the original kernels S ∈ Rc×3×3 with dilation rate 1 as S1 and obtain S2, S3 with
different dilation rates 2 and 3 to expand the receptive field without introducing extra
parameters and computations.

As shown in Figure 2, we perform depth-wise convolution on the input feature map
with convolution kernels S1, S2 and S3, independently and use the sigmoid function to
generate the weight feature maps R1 ∈ Rc×h×w, R2 ∈ Rc×h×w and R3 ∈ Rc×h×w, which is
added to generate the final weight feature map R ∈ Rc×h×w,

R = R1 ⊕ R2 ⊕ R3, (2)

where ⊕ represents the element-wise addition.
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Figure 2. Overview of the proposed ACAM. To make better use of the contextual cues, we introduce ACAM to aggregate
the contextual cues adaptively. Different from current context aggregating methods, the ACAM generates the weight vectors
according to the global context cues of all feature channels. Moreover, the dilated depth-wise convolutions with different
dilation factors are introduced to capture contextual cues. In this way, we integrate the contextual cues adaptively for
better performance.

Finally, we obtain the output feature map O ∈ Rc×h×w by performing the element-wise
multiplication between R and the input feature map X as shown in Equation (3),

O = X� R, (3)

where � donates the element-wise multiplication. Since the scenes in remote sensing
applications are more complicated, and the categories of targets are richer compared with
the natural scene, the contextual cues in the background of the target varies. Thus, we
utilize more channels in the feature map Q to explore more complex relationships between
the different channels.

3.3. Dual Attention Feature Fusion Module

The feature maps in deeper layers of CNNs encode richer semantic cues but with
smaller spatial resolution. On the contrary, the spatial resolution of the lower feature maps
is larger, but local spatial details are lack. Although the existing multi-scale feature fusion
mechanism is a reasonable solution, the improvement is limited by the large semantic gap
among the multi-level features.
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To effectively combine the multi-scale feature maps, we propose the dual attention
feature fusion module (DAFFM), as illustrated in Figure 3, which is based on both spatial
and channel attention mechanisms. Given the deeper-level feature map A and the lower-
level feature map B, where A is generated by the ACAM, we first re-weigh the lower feature
map by the module illustrated in Figure 4 and utilize the 1 × 1 convolution to compress the
channels to generate the feature map B1 ∈ Rc×h×w, where c, h and w represent the height,
width, and channels of the feature map.
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Figure 3. Overview of the proposed DAFFM. In order to make better use of multi-scale feature maps, we adopt the
feature fusion module DAFFM based on spatial attention and channel attention mechanism to fuse the detail and semantic
information for better segmentation results at the boundary. Benefiting from the detail and semantic information aggregating
based on attention mechanisms, the semantic gap between different layers is reduced. In this way, we utilize the multi-scale
feature maps more effectively.
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Figure 4. Overview of the implied channel attention module. The CAM utilizes a global average pooling layer and sigmoid
function to generate the weight vectors. In this way, we re-weigh feature maps to improve the consistency of different
channels for better segmentation results.

Firstly, we fuse the feature map based on the attention mechanisms on spatial dimen-
sions. We reshape A and B1 to P ∈ Rc×n and Q ∈ Rc×n, where n = h × w represents
the number of pixels in each feature map. After that, we apply the matrix multiplica-
tion between P and Q and utilize a softmax layer to calculate the spatial attention map
S ∈ Rn×n,

sji =
exp(Pi ·Qj)

∑N
i=1 exp(Pi ·Qj)

, (4)

where sji measures the relevance of pixels between i-th position in the lower feature map
and j-th position in the higher feature map.

It can be inferred from Equation (4) that each position of the final feature O ∈ Rc×h×w

is a weighted sum of the features across all positions of the deeper-level features. As the
final feature map is generated by the deeper-level feature map, the high-level semantic is
well preserved in the outputs.
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Then we transpose the feature map Q to V ∈ Rc×n for performing a matrix multiplica-
tion with the spatial attention map S and reshape the output to generate the feature map
L ∈ Rc×h×w. Finally, we utilize an element-wise sum operation between A and L to obtain
the final output M ∈ Rc×h×w as follows:

Mj = α
N

∑
i=1

(sjiVi) + Aj, (5)

where α is initialized as 0 and gradually learns to assign a reasonable weight factor and Vi
represents the pixels of the i-th position in the lower feature map and Aj represents the j-th
channel of the deeper-level feature map.

On the other hand, we reshape the B into U ∈ Rc×n and then perform a matrix
multiplication between U and V. Then, we utilize a softmax layer to obtain the channel-
wise attention map R ∈ Rc×c, where c is the number of the channels:

rji =
exp(Ui ·Vj)

∑C
i=1 exp Ui ·Vj

, (6)

where rji measures the i-th channel’s impact on the j-th channel. Then we perform a matrix
multiplication between the transpose of R and Q to generate the feature map K ∈ Rc×h×w.
Then we multiply the results by a scale parameter β and perform an element-wise sum
operation with A to obtain the final output N ∈ Rc×h×w,

Nj = β
C

∑
i=1

(rjiQi) + Aj, (7)

where β gradually learns a weight from 0. Aj represents the j-th channel of the A and Qi
represents the i-th channel of the Q. We can learn from Equation (7) that each channel of
the final output is a weighted sum of the features Q. It models the relevance of different
channels in feature maps and helps to boost feature fusion. Finally, we obtain the final
fusion result O ∈ Rc×h×w by concatenating M and N.

In summary, we utilize matrix multiplication to measure the relevance between feature
maps with different scales in both spatial and channel dimensions, which is utilized as
the guidance of the fusion operation. In this way, we improve the semantic segmentation
accuracy in the boundary and reduce the negative influence of the semantic gap for
feature fusion.

3.4. Channel-Wise Feature Re-Weighing

Generally, each channel of the feature map can be regarded as a class-specific response.
In order to enhance the consistency of the feature maps in each layer, we utilize the
channel attention module (CAM) to change the weights of the features in each channel,
as illustrated in Figure 4. We first employ a global average pooling layer to squeeze the
spatial information and then utilize the sigmoid function to generate the weight vectors,
which are finally combined with the input feature maps by an element-wise multiplication
operation to generate the output feature map. The overall information is integrated into the
weight vectors and strengths the feature maps, which are more relevant to the ground-truth.

3.5. Implementation Details

Our implementation is based on Pytorch [64]. For better training results, we adopt
the pre-trained ResNet model [13] to initialize the backbone CNN and initialize the other
layer with normal distribution. Moreover, we replace the down-sampling operations with
dilated convolutions in the last two layers, and the hyperparameters of training epochs,
batch-size, initial learning rate are set to 200, 6 and 0.005.
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Many public datasets have been published to advance semantic segmentation in
remote sensing. We select two widely used datasets to evaluate our proposed method:
ISPRS 2D Semantic Labeling Vaihingen data [35] and GaoFen-2 dataset [36].

The ISPRS 2D Semantic Labeling Vaihingen data [35] is provided by the International
Society for Photogrammetry and Remote Sensing, which consists of 33 high-resolution true
orthophoto tiles and corresponding digital surface models, as well as ground-truth labels,
and we adopt the DSM band channel to perform our experiments. The labels are classified
into 6 categories: impervious surfaces, building, low vegetation, tree, car and clutter. We
select 11 tiles for the training dataset and 5 tiles are used as the validation set. The rest
of the tiles are used for testing the performance of the method. Based on the 33 tiles, we
perform experiments on the whole 6 categories.

Comparing with ISPRS 2D Semantic Labeling Vaihingen data [35], GaoFen-2 dataset [36]
is more challenging, which contains 500 satellite images collected from GaoFen-2 satel-
lite over different geographic locations in China. It contains 500 labeled images of size
512× 512, which have a large intra-class difference and small inter-class diversities. Thus,
the GaoFen-2 [36] is more convincing to test the effectiveness and robustness of our method.
The GaoFen-2 [36] is split into 400 training and 100 validation images with annotation con-
taining 9 categories: road, building, tree, grass, bare land, water, transportation, impervious
surfaces and others.

In order to evaluate the performance of our method, we utilize overall pixel accuracy
(OA) and mean intersection over union (mIOU) as the metrics. The OA represents the
accuracy of all pixels for all categories. The mIOU means the intersection of prediction and
target divided by the union, which is the main criterion for evaluating the performance of
each method [17,52].

4. Experimental Results

In this section, to evaluate the proposed method, we carry out comprehensive experi-
ments and evaluate the performance of our method qualitatively and quantitatively.

4.1. Ablation Study for Each Module

We employ the ACAM and DAFFM for better segmentation results. To verify the
performance of the two modules and help us to understand them better, we benchmark
the whole modules based on the above two datasets. The experiment results are shown in
Tables 1 and 2.

Table 1. Evaluation of land cover classification accuracy on ISPRS 2D Semantic Labeling Vaihingen
data [35].

Methods OA (%) mIOU (%)

Baseline 86.66 68.02
Baseline + ACAM 86.44 68.75
Baseline + DAFFM 87.17 69.86

Baseline + DAFFM + ACAM 87.01 70.51

Table 2. Evaluation of land cover classification accuracy on GaoFen-2 dataset [36].

Methods OA (%) mIOU (%)

Baseline 79.36 53.94
Baseline + ACAM 78.50 52.18
Baseline + DAFFM 79.85 55.08

Baseline + DAFFM + ACAM 80.91 56.98
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4.1.1. Baseline

The baseline has similar architectures like U-net, which are used to evaluate the
effectiveness of other components, and it only fuses the feature maps in the last two layers
by concatenating the feature maps directly. Baselines achieve mIOU of 68.02% on ISPRS
2D Semantic Labeling Vaihingen data [35] and 53.94% on GaoFen-2 dataset [36].

4.1.2. Adaptive Context Aggregating Module

Compared with the baseline, we introduce the ACAM to capture the contextual cues
in the last layer. As shown in Tables 1 and 2, ACAM obtains mIOU of 68.75% on ISPRS
2D Semantic Labeling Vaihingen data [35] and 52.18% on GaoFen-2 dataset [36]. It can be
inferred that ACAM improves the performance of the segmentation by capturing context
with adaptive weight vectors.

4.1.3. Dual Attention Feature Fusion Module

A dual attention feature fusion module is introduced between the last two layers
based on the baseline for better fusion of muti-scale features. DAFFM obtains an mIOU of
69.86% on ISPRS 2D Semantic Labeling Vaihingen data [35] and 55.08% on GaoFen-2 [36],
outperforming the baseline by 1.84% and 1.14%, respectively. It is obvious that DAFFM
achieves better segmentation results with feature fusion based on the attention mechanism.
According to Tables 1 and 2, our feature fusion module is effective in aggregating multi-
scale features for better segmentation results.

4.1.4. Network with Full Architecture

We integrate the ACAM and DAFFM into the baseline to generate a network which
has full architecture of our method. Compared with the models mentioned above, our
method utilize the ACAM to capture multi-distance context adaptively and combine
the lower features by DAFFM for more accurate segmentation result. The two modules
adopted in our method improve the performance in dimensions of context and multi-
scale features, which improve the classification accuracy of pixels both in the internal
and boundary regions. The experimental results demonstrate the effectiveness of our
method which obtains the best performance with mIOU of 70.51% on ISPRS 2D Semantic
Labeling Vaihingen data [35] and 56.98% on GaoFen-2 [36] and boosts over 2.49% and
3.04%, respectively, compared with the baseline.

In order to show discrimination of each module directly, we visualize the comparison
results based on ISPRS 2D Semantic Labeling Vaihingen data [35] as illustrated in Figure 5.
It is shown that DAFFM obtains the better segmentation performance compared to the
baseline, which is consistent with our analysis mentioned above. On the other hand,
ACAM also achieves better performance on some small targets visually, compared to the
baseline, which contributes to aggregating the multi-scale contextual cues. By combining
the advantages of DAFFM and ACAM, our method obtains the best performance according
to the visual segmentation result.

According to the analysis in different aspects, the ACAM and DAFFM adopted in our
method improve the segmentation accuracy, respectively. Moreover, it is consistent and fea-
sible to combine both of them into the same architecture, which obtains more improvement,
and the DAFFM brings the most improvements in our method. We adopt two modules to
obtain better results in different dimensions, which is demonstrated in effectiveness based
on two datasets [65,66]. On the other hand, the quantitative and qualitative experiment
results further demonstrate the importance of the multi-scale contextual cues and features
in different scales for remote scene image segmentation.
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Figure 5. Visualization of the segmentation results for ablation study. From left to right, the input
image, the ground-truth segmentations, and the results from variants of our methods.

4.2. Comparing with State-of-the-Art Methods

In order to show the effectiveness of the proposed method, we further perform com-
parisons with state-of-the-art semantic segmentation methods on both ISPRS 2D Semantic
Labeling Vaihingen data [35] and GaoFen-2 [36] datasets. We select four popular methods,
PSPNet [17], DeeplabV3 [21], Unet [16] and DANet [52] for comparison. We choose the mIOU
of each category, overall accuracy and mIOU of all categories as the metrics to evaluate the
performance of each method and the mIOU is the main evaluation metric between different
categories, similar to [66]. Results based on ISPRS 2D Semantic Labeling Vaihingen data [35]
and GaoFen-2 [36] datasets are shown in Tables 3 and 4, respectively.

Table 3. Comparison with state-of-the-art methods on ISPRS 2D Semantic Labeling Vaihingen data [35].

Methods Imp.Surf. Background Tree Building Car Low Veg. OA (%) mIOU (%)

Unet [16] 74.83 22.68 72.67 79.33 51.91 59.36 83.27 60.13
PSPNet [17] 78.81 44.13 75.74 84.77 63.02 64.65 86.27 68.52

Deeplabv3 [21] 79.71 42.64 76.76 86.03 67.04 65.40 86.90 69.60
DANet [52] 76.89 43.95 74.98 81.59 56.83 64.33 85.22 66.43

Baseline 79.69 36.15 76.27 85.69 65.59 64.73 86.66 68.02
Baseline + ACAF 79.30 42.31 75.81 85.23 64.64 65.19 86.44 68.75

Baseline + DAFFM 80.99 43.78 76.27 86.90 66.05 65.15 87.17 69.86
Baseline + DAFFM + ACAM 80.11 47.95 76.24 86.57 66.64 65.56 87.01 70.51



Remote Sens. 2021, 13, 3715 13 of 18

Table 4. Comparison with state-of-the-art methods on the GaoFen-2 dataset [36].

Methods Road Building Tree Grass Bare Land Water Tran. Imp. Surf. Clutter OA (%) mIOU (%)

Unet [16] 38.48 81.54 67.13 60.41 61.85 39.28 46.00 0.0 0.0 73.54 43.85
PSPNet [17] 42.36 79.42 69.61 69.59 68.65 47.29 45.11 24.41 4.98 77.49 50.16

Deeplabv3 [21] 46.60 81.16 67.78 72.86 68.28 50.04 39.67 44.93 8.55 78.62 53.32
DANet [52] 43.07 80.66 66.46 67.54 66.26 47.52 41.55 49.64 4.22 76.42 51.88

Baseline 50.36 81.01 69.38 72.00 68.38 54.70 39.25 45.34 5.07 79.36 53.94
Baseline + ACAF 48.40 80.30 66.60 70.90 70.77 50.78 37.21 38.88 5.76 78.50 52.18

Baseline + DAFFM 47.39 81.16 68.76 72.14 76.09 52.50 39.78 46.16 11.72 79.85 55.08
Baseline + DAFFM + ACAM 51.80 82.21 69.18 73.11 76.50 53.87 41.90 48.75 15.53 80.91 56.98

As shown in Tables 3 and 4, DAFFM and ACAM have similar or better performance
compared with most of the state-of-the-art semantic segmentation methods and our method
achieves the best performance between all the state-of-the-art methods mentioned above
on both datasets [65,66]. The comparison between different methods mentioned above
further demonstrates the superiority of our method. We also visualize the segmentation
results of each method on both datasets [65,66] respectively as illustrated in Figures 6 and 7.
The comprehensive comparison mentioned above further demonstrates the effectiveness
and superiority of our method.

Input Image GT Baseline(BS) BS+ACAM BS+DAFFM DANet Deeplabv3 PSPNet Unet BS+DAFFM+ACAM

Impervious 

Surfaces
Background Tree Building Car

Low

Vegetation 

Impervious 

Surfaces
Background Tree Building Car

Low

Vegetation 

Input Image GT Baseline(BS) BS+ACAM BS+DAFFM DANet Deeplabv3 PSPNet Unet BS+DAFFM+ACAM

Impervious 

Surfaces
Background Tree Building Car

Low

Vegetation 

Figure 6. Visualization of the segmentation results for state-of-the-art methods based on ISPRS 2D Semantic Labeling Vaihingen
data [35]. From left to right, the input image, the ground-truth segmentation results, the results from our methods and the state-of-the-
art method.
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Figure 7. Visualization of the segmentation results for state-of-the-art method based on GaoFen-2 [36]. From left to right,
the input image, the ground-truth segmentation results, the results from our methods and the state-of-the-art method.

5. Discussion

Previous methods [18,20,33] utilize various strategies to capture contextual cues.
However, they treat all pixels with uniform weight for feature aggregation, which cannot
capture the information in each channel with different weight vectors. To solve this
issue, we integrate the contextual cues with the spatially-varying feature-weighting factor.
Contributing to the adaptive contextual cue aggregating, the context information in the
background of the objects can be aggregated by different weight vectors. Taking the second
and fourth rows of Figure 7 as examples, the impervious surfaces, roads and buildings have
a similar appearance. PSPNet [17] utilizes the spatial pyramid pooling module to aggregate
multi-scale context. However, it cannot aggregate context adaptively and selectively, which
leads to the wrong classification. Compared with PSPNet [17], Deeplabv3 [21] introduces
the ASPP module which obtains better segmentation result. However, it also cannot
achieve adaptive context aggregating, which leads to weakness in obtaining fine details
and completing the object shape. Compared with the above methods, our method further
alleviates this challenging issue by adaptive contextual cue aggregating. It is illustrated in
Figures 6 and 7 that our method obviously obtains fine segmentation result for some objects.

Feature fusing is an effective strategy to obtain accurate segmentation results. How-
ever, methods [16,21,53] extensively used to fuse multi-scale feature maps ignore the
differences between feature maps in different channels, which will limit the improvement
of segmentation performance. To solve this issue, we integrate the DAFFM to make better
use of the multi-scale feature maps, which fuses the feature maps in the different lay-
ers of CNNs based on both channel and spatial attention mechanisms. As illustrated in
Figures 6 and 7, Unet [16] fuses the features by concatenating features directly without
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distinguishing the difference and similarity of features and leads to the wrong prediction
in the boundary region of the object. On the contrary, our method has better performance
in the boundary region, which contributes to the effective feature fusion generated by
the DAFFM.

Compared with the other methods mentioned above, our method improved the
segmentation performance by context aggregating and feature fusion. It can be inferred that
adaptive context aggregating and feature fusion are feasible to achieve better segmentation
performance. Although our method achieved better performance in the experiment, it
has a more complex structure. With the development of remote sensing technology, there
will be more remote sensing images to be processed. Therefore, we believe that further
improving the trade-off between the complexity of structure and accuracy is possible for
future works that need more attention.

6. Conclusions

In this work, we presented a network for the challenging and meaningful task of
precise semantic segmentation of VHR remote sensing images, which adaptively aggregates
the contextual cues and flexibly fuses multi-scale feature maps based on spatial and channel
attention mechanisms. Specifically, we first introduced ACAM to capture the multi-scale
contextual cues of objects with adaptive weight vectors concentrating the global semantic
information. Moreover, we adopted DAFFM based on spatial attention and channel
attention mechanisms to explore the consistency of multi-scale features for better fusion
results. In this way, our method makes better predictions for pixels of objects in complex
remote scenes and improves the classification accuracy of pixels in the boundary of objects.
Finally, the extensive ablation experiments based on ISPRS 2D Semantic Labeling Vaihingen
data [35] and GaoFen-2 [36] data show that our method gives more precise segmentation
results and achieves a state-of-the-art performance.
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