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Abstract: A huge amount of remote sensing data is acquired each day, which is transferred to image
processing centers and/or to customers. Due to different limitations, compression has to be applied
on-board and/or on-the-ground. This Special Issue collects 15 papers dealing with remote sensing
data compression, introducing solutions for both lossless and lossy compression, analyzing the
impact of compression on different processes, investigating the suitability of neural networks for
compression, and researching on low complexity hardware and software approaches to deliver
competitive coding performance.
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1. Overview of the Issue: Remote Sensing Data Compression

Announcing this Special Issue, the following was considered. First, a huge amount
of data is acquired each day by different remote sensing systems and these data must be
transferred to image processing centers, stored, and delivered to customers. Due to various
restrictions, data compression is strongly desired or necessary. Second, there is a wide
diversity of methods that can be used, requirements to compression and their priority,
types, and properties of images to be processed, practical implementation aspects, etc. Our
intention was to collect papers focused on advances in lossless and lossy compression,
multi- and hyperspectral image compression, radar image compression, applications of
remote sensing data compression; compression standards, practical implementation of
image compression techniques, data compression hardware and software, impact of data
compression on solving classification and identifications tasks.

As a result of our work as guest editors, 21 submissions have been received from
which 6 have been rejected. The accepted publications cover a wide variety of questions.

Five papers relate to lossless and near lossless methods with application to multi- and
hyperspectral data.

The paper “Analysis of Variable-Length Codes for Integer Encoding in Hyperspec-
tral Data Compression with the k2-Raster Compact Data Structure” by Chow, K., Tza-
marias, D.E.O., Hernández-Cabronero, M., Blanes, I., Serra-Sagristà, J. [1], examines various
variable-length encoders that provide integer encoding to hyperspectral scene data within
a k2-raster compact data structure. This structure leads to a compression ratio similar to
that produced by some classical compression techniques while also providing direct access
for query to its data elements without requiring any decompression. The selection of the
integer encoder is critical for a competitive performance (compression ratio and access
time). Different integer encoders, such as Rice, Simple9, Simple16, PForDelta codes, and
DACs are investigated. Further, a method to determine an appropriate k value for building
a competitive k2-raster compact data structure is discussed.
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The paper “Using Predictive and Differential Methods with K2-Raster Compact Data
Structure for Hyperspectral Image Lossless Compression” by Chow, K., Tzamarias, D.E.O.,
Blanes, I., Serra-Sagristà, J. [2] extends the previous paper by proposing a lossless coder
for real-time processing and compression of hyperspectral images. After applying either
a predictor or a differential encoder by exploiting the close similarity between neigh-
boring bands, it uses the k2-raster compact data structure to further reduce the bit rate.
Experiments show that using k2-raster alone already achieves much lower rates (up to
55% reduction), and with preprocessing, the rates are further reduced (up to 64%). Fi-
nally, experimental results show that prediction produces higher rates reduction than
differential encoding.

The paper “Compression of Hyperspectral Scenes through Integer-to-Integer Spectral
Graph Transforms“ by Tzamarias, D.E.O., Chow, K., Blanes, I., Serra-Sagristà, J. [3] exploits
the redundancies found between consecutive spectral components and within components
themselves through the use of spectral graph filterbanks, such as the GraphBior transform.
Such graph based filterbank transforms do not yield integer coefficients, making them
appropriate only for lossy image compression schemes. In the paper, two integer-to-integer
transforms are introduced for the purpose of the lossless compression, and its performance
as a spatial transform is assessed.

The paper “Performance Impact of Parameter Tuning on the CCSDS-123.0-B-2 Low-
Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compres-
sion Standard” by Blanes, I., Kiely, A., Hernández-Cabronero, M., Serra-Sagristà, J. [4]
studies the performance impact related to different parameter choices for the new CCSDS-
123.0-B-2 Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral
Image Compression standard. This standard supersedes CCSDS-123.0-B-1 and extends it
by incorporating a new near-lossless compression capability, as well as other new features.
Experimental results include data from 16 different instruments with varying detector
types, image dimensions, number of spectral bands, bit depth, level of noise, level of
calibration, and other image characteristics. Guidelines are provided on how to adjust the
parameters in relation to their coding performance impact.

The paper “High-Performance Lossless Compression of Hyperspectral Remote Sens-
ing Scenes Based on Spectral Decorrelation” by Hernández-Cabronero, M., Portell, J.,
Blanes, I., Serra-Sagristà, J. [5] investigates the most advantageous compression–complexity
trade-off in hyperspectral image (HSI) compression. Compression performance and execu-
tion time results are obtained for a set of 47 HSI scenes produced by 14 different sensors
in real remote sensing missions. Assuming only a limited amount of energy is available,
obtained data suggest that the FAPEC algorithm yields the best trade-off. When compared
to the CCSDS 123.0-B-2 standard, FAPEC is 5.0 times faster and its compressed data rates
are on average within 16% of the CCSDS standard. In scenarios where energy constraints
can be relaxed, CCSDS 123.0-B-2 yields the best average compression results.

There are three papers that deal with compression impact on classification and seg-
mentation.

The paper “Lossy Compression of Multichannel Remote Sensing Images with Quality
Control” by Lukin, V., Vasilyeva, I., Krivenko, S., Li F., Abramov, S., Rubel, O., Vozel, B.,
Chehdi, K., and Egiazarian, K. [6] studies a dependence between classification accuracy of
maximum likelihood and neural network classifiers that have been applied to three-channel
images and visual quality of compressed images. It is demonstrated that the classification
accuracy starts to decrease faster when image quality due to increasing compression
ratio reaches a distortion visibility threshold. In addition, classification accuracy depends
essentially on the training methodology: training carried out for lossy compressed data
seems preferable over training on undistorted data.

The paper “Lossy Compression of Multispectral Satellite Images with Application to
Crop Thematic Mapping: A HEVC Comparative Study” by Miloš Radosavljević, Branko
Brkljač, Predrag Lugonja, Vladimir Crnojević, Željen Trpovski, Zixiang Xiong, and Dejan
Vukobratović [7] provides a comprehensive analysis of the HEVC still-image intra coding
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while applied to multispectral satellite images acquired by the Landsat-8′s OLI and Sentinel-
2′s multispectral instrument. In the specific context of a crop classification application,
HEVC’s intra coding is shown to maintain approximately the same classification accuracy
of a random forest pixel-based classifier for CR up to 150:1 while it is only up to 70:1 with
JPEG 2000. It also achieves a better trade-off between compression gain and image quality,
both visually and in terms of PSNR values, as compared to standard JPEG 2000.

The paper “Spectral Imagery Tensor Decomposition for Semantic Segmentation of
Remote Sensing Data through Fully Convolutional Networks” by Josué López, Deni Torres,
Stewart Santos, and Clement Atzberger [8] suggests a whole framework, called HOOI-FCN,
to perform compression of an input RS-image followed by semantic classification. A Tucker
decomposition-based mapping with preservation of the features of the classes of interest
transforms the input third-order tensor into a core tensor with the same spatial resolution
but a lower number of bands. This is done by means of the higher order orthogonal iteration
(HOOI) algorithm. A fully convolutional network (FCN) is next considered to classify the
core tensor at the pixel level. HOOI-FCN is shown to achieve high performance metrics
competitive with some RS-multispectral images semantic segmentation state-of-the-art
methods on Sentinel-2 images while significantly reducing computational complexity and
processing time.

Lossy compression of data for unmanned aerial vehicle (UAV) is also attracting interest,
as witnessed by two papers.

The paper “Real-Time Hyperspectral Data Transmission for UAV-Based Acquisition
Platforms” by Melián, J.M., Jiménez, A., Díaz, M., Morales, A., Horstrand, P., Guerra, R.,
López, S., and López, J.F. [9] focuses on rapid compression of hyperspectral data prior to
their transmission using two different NVIDIA boards—the Jetson Xavier NX and the Jetson
Nano. The obtained results show the possibility of achieving real-time performance if the
Jetson Xavier NX is used for all the configurations that could be applied in real missions.

The paper “FPGA-Based On-Board Hyperspectral Imaging Compression: Benchmark-
ing Performance and Energy Efficiency against GPU Implementations” by Julián Caba,
María Díaz, Jesús Barba, Raúl Guerra, Jose A. de la Torre, and Sebastián López [10] pro-
poses a highly optimized implementation using integer arithmetic of the lossy compression
algorithm for hyperspectral image systems. The purpose is to comply with the high-frame
requirement imposed by a UAV-based sensing platform. The single-core version of the
FPGA-based solution onto a heterogeneous Zynq-7000 SoC chip allows setting the baseline
scenario of compressed hyperspectral image blocks at 200 FPS, using a small number
of FPGA resources and low power consumption. Moreover, it is shown that a multi-
core FPGA-based version can reach the same level of performance as the most efficient
embedded GPU-based implementations.

Two papers concern neural network use in image compression.
The paper “Reduced-Complexity End-to-End Variational Autoencoder for on Board

Satellite Image Compression” by de Oliveira, V.A., Chabert, M., Oberlin, T., Poulliat, C.,
Bruno, M., Latry, C., Carlavan, M., Henrot, S., Falzon, F., and Camarero, R. [11] concentrates
on design of a complexity-reduced variational autoencoder with attempt to meet the
constraints dealing with board satellite compression, time, and memory complexities. A
simplified entropy model that preserves the adaptability to the input image is proposed.
It is shown that the designed complexity-reduced autoencoder provides a better rate-
distortion trade-off compared to the Consultative Committee for Space Data Systems
standard CCSDS 122.0-B.

The paper “Spectral–Spatial Feature Partitioned Extraction Based on CNN for Mul-
tispectral Image Compression” by Kong, F., Hu, K., Li, Y., Li, D., and Zhao, S. [12] puts
forward a multispectral image compression framework that is fully based on a convolu-
tional neural network (CNN). The novelty concerns the feature extraction module, divided
into spectral and spatial parallel parts. The testing is carried out for datasets acquired by
Landsat-8 and WorldView-3 satellites. A better performance is shown in comparison to
JPEG 2000, 3D-SPIHT and ResConv, another CNN-based algorithm.
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Compression acceleration is also addressed in the paper “An FPGA Accelerator
for Real-Time Lossy Compression of Hyperspectral Images” by Daniel Báscones, Carlos
González, and Daniel Mozos [13], which derives a custom FPGA implementation of the
costliest part (tier 1 coder within JPEG2000) of the JYPEC algorithm, a lossy hyperspectral
compression algorithm that combines PCA and JPEG2000. The main goal is to accelerate it
significantly to bring the full algorithm execution time down as much as possible and even
below the real-time constraint. An average acceleration of 3.6 is verified when the FPGA
accelerated algorithm is applied to six hyperspectral images, four from the Spectrir library
and two from the CCSDS 123 dataset.

Finally, two papers are devoted to compressive sensing.
The paper “Compressive Underwater Sonar Imaging with Synthetic Aperture Pro-

cessing” by Choi, H., Yang, H., and Seong, W. [14] deals with synthetic aperture sonars
(SAS) in underwater imaging. SAS imaging algorithms that employ compressive sensing
are considered and verified through simulation and experimental data. A better resolution
compared to the ω-k algorithms with minimal performance degradation by side lobes
are demonstrated in simulations. Experimental data show the method’s robustness with
respect to sensor loss.

The paper “A Task-Driven Invertible Projection Matrix Learning Algorithm for Hy-
perspectral Compressed Sensing” by Dai, S., Liu, W., Wang, Z., and Li, K. [15] proposes a
hyperspectral compressed sensing algorithm with low complexity and strong real-time
performance. It is based on a task-driven invertible projection matrix learning algorithm
aiming at solving the problems of long time-consuming and low reconstruction accuracy
of compressed sensing-based reconstruction algorithms. Experiments performed on Indian
Pine AVIRIS hyperspectral dataset show that, compared with the traditional compressed
sensing algorithm, the proposed compressed sensing algorithm has higher reconstruction
accuracy and improved real-time performance by more than a hundred times, thus leading
to great application prospects in the field of hyperspectral image compression.

2. Conclusions

From the fifteen papers published in this Special Issue, we can state that compression
of remote sensing data is today an active research area with new direction appearing and
attracting attention of scientists engaged in the design of methods to meet customers’
expectations. We hope that the readers will enjoy this Special Issue.
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