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Abstract: To detect rotated objects in remote sensing images, researchers have proposed a series
of arbitrary-oriented object detection methods, which place multiple anchors with different angles,
scales, and aspect ratios on the images. However, a major difference between remote sensing images
and natural images is the small probability of overlap between objects in the same category, so the
anchor-based design can introduce much redundancy during the detection process. In this paper, we
convert the detection problem to a center point prediction problem, where the pre-defined anchors
can be discarded. By directly predicting the center point, orientation, and corresponding height and
width of the object, our methods can simplify the design of the model and reduce the computations
related to anchors. In order to further fuse the multi-level features and get accurate object centers, a
deformable feature pyramid network is proposed, to detect objects under complex backgrounds and
various orientations of rotated objects. Experiments and analysis on two remote sensing datasets,
DOTA and HRSC2016, demonstrate the effectiveness of our approach. Our best model, equipped
with Deformable-FPN, achieved 74.75% mAP on DOTA and 96.59% on HRSC2016 with a single-stage
model, single-scale training, and testing. By detecting arbitrarily oriented objects from their centers,
the proposed model performs competitively against oriented anchor-based methods.

Keywords: object detection; remote sensing image; anchor free; oriented bounding boxes; deformable
convolution

1. Introduction

With the development of modern remote sensing technology, a large number of remote
sensing images with higher spatial resolution and richer content have been produced [1–4].
Object detection in remote sensing images has broad application prospects in many fields,
such as environmental monitoring [5–7], disaster control [8,9], infrared detection [10,11],
and the military. Benefiting from deep convolutional neural networks, considerable results
have been achieved for the object detection task in natural images. However, due to the
complex background, variable object scales, arbitrary orientations and shooting angles,
object detection in aerial images is still a hot topic in the field of computer vision [12–16].

Compared with natural image datasets [17,18], remote sensing image detection mainly
faces the following differences and challenges (Illustrated in Figure 1):

1. Low overlap and Densely arranged. Remote sensing images are usually captured by
satellite, radar, and so on, from a vertical view. Unlike object detection for natural
images, where overlap between objects is typically present, the rotated objects in
remote sensing images have a low probability of overlapping each other, especially for
objects in the same category. Furthermore, objects usually appear in densely arranged
forms in some categories, such as ships and vehicles, which leads to difficulties for the
detector to distinguish between adjacent objects;

2. Arbitrary orientations. Objects usually appear in the image with various directions.
Compared to the widely used horizontal bounding boxes (HBBs) in natural image
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detection, oriented bounding boxes (OBBs) can better depict objects with arbitrary
orientations and aspect ratios than horizontal bounding boxes in remote sensing
images. This not only requires the detector to correctly locate and classify the object of
interest, but also to accurately predict its direction;

3. Complex background and Drastic scale changes. Compared to natural images, remote
sensing images have higher resolution, with more complex and variable backgrounds.
A lot of objects to be detected are easily submerged in the background, which requires
the detector to be effectively focused on areas of interest. Meanwhile, the scales of
objects vary drastically in remote sensing images; for example, some vehicles and
bridges are only within a few pixels, while soccer fields can comprise thousands of
pixels in aerial images.

Figure 1. Examples of Low overlap and Densely arranged (Left), Arbitrary orientations of objects
(Middle), and Drastic scale changes (Right) in remote sensing images.

The above difficulties make remote sensing image detection more challenging and
attractive, while requiring natural image object detection methods to be adapted to rotated
objects. However, most rotated object detectors place multiple anchors per location to get a
higher IoU between pre-set anchors and object bounding boxes. Dense anchors ensure the
performance of the rotation detectors while having a higher computational burden. Can
these anchors be discarded in the rotated object detection process, in order to improve the
computational efficiency and simplify the design of the model? We find that one major
difference between remote sensing images and natural images is the small probability of
overlap between objects having the same category. So, the large overlap between adjacent
objects per location is rare in this situation, especially when using oriented bounding boxes
to represent the rotated objects. Therefore, we hope the network could directly predict
the classification and regression information of the rotated object from the corresponding
position, such as an object center, which can improve the overall efficiency of the detector
and avoid the need for manual designs of the anchors. Meanwhile, the networks need
to have robust feature extraction capabilities for objects with drastic scale changes and
accurately predict the orientation of rotated objects.

To discard anchors in the detection process, we convert the rotation object detection
problem into a center point prediction problem. First, we represent an oriented object by
the center of its oriented bounding box. The network learns a center probability map to
localize the object’s center through use of a modulated focal loss. Then, inspired by [19], we
use the circular smooth label to learn the object’s direction, in order to accurately predict the
angle of an object and avoid regression errors due to angular periodicity at the boundary.
A parallel bounding-box height and width prediction branch is used to predict the object’s
size in a multi-task learning manner. Therefore, we can detect the oriented objects in an
anchor-free way.

Further, to accurately localize the object center under drastic scale changes and various
object orientations, a deformable feature pyramid network (Deformable-FPN) is proposed,
in order to further fuse the multi-level features. Specifically, deformable convolution [20,21]
is used to reduce the feature channels and project the features simultaneously. After
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mixing the adjacent-level features using an add operation, we perform another deformable
convolution to reduce the aliasing effect of the add operation. By constructing the FPN in a
deformable manner, the convolution kernel can be adaptively adjusted, according to the
scale and direction of the object. Experiments show that our Deformable-FPN can bring
significant improvements to detecting objects in remote sensing images, compared to FPN.

In summary, the main contributions of this paper are as follows:

1. We analyze that one major difference between remote sensing images and natural
images is the small probability of overlap between objects with the same category and,
based on the analysis, propose a center point-based arbitrary-oriented object detector
without pre-set anchors;

2. We design a deformable feature pyramid network to fuse the multi-level features for
rotated objects, which can get a better feature representation for accurately localizing
the object center;

3. We carry out experiments on two remote sensing benchmarks—the DOTA and
HRSC2016 datasets—to demonstrate the effectiveness of our approach. Specifically,
our center point-based arbitrary-oriented object detector achieves 74.75% mAP on
DOTA and 96.59% on HRSC2016 with a single-stage model, single-scale training, and
testing.

The remainder of this paper is organized as follows. Section 2 first describes the
related works. Section 3 provides a detailed description of the proposed method, including
center-point based arbitrary-oriented object detector and Deformable-FPN. The experiment
results and settings are provided in Section 4 and discussed in Section 5. Finally, Section 6
summarizes this paper and presents our conclusions.

2. Related Work
2.1. Object Detection in Natural Images

In recent years, horizontal object detection algorithms in natural image datasets, such
as MSCOCO [17] and PASCAL VOC [18], have achieved promising progress. We classify
them as follows:

Anchor-based Horizontal Object Detectors: Most region-based two-stage methods [22–26]
first generate category-agnostic region proposals from the original image, then use category-
specific classifiers and regressors to classify and localize the objects from the proposals.
Considering their efficiency, single-stage detectors have drawn more and more attention
from researchers. Single-stage methods perform bounding box (bbox) regression and
classification simultaneously, such as SSD [27], YOLO [28–30], RetinaNet [31], and so
on [32–35]. The above methods densely place a series of prior boxes (Anchors) with
different scales and aspect ratios on the image. Multiple anchors per location are needed
to cover the objects as much as possible, and classification and location refinement are
performed based on these pre-set anchors.

Anchor-free Horizontal Object Detectors: Researchers have also designed some com-
parable detectors without complex pre-set anchors, which are inspiring to the detection
process. CornerNet [36] detects an object bounding box as a pair of keypoints, demon-
strating the effectiveness of anchor-free object detection. Further, CenterNet [37] models
an object as a single point, then regresses the bbox parameters from this point. Based on
RetinaNet [31], FCOS [38] abandoned the pre-set anchors and directly predicts the distance
from a reference point to four bbox boundaries. All of these methods have achieved great
performance and have avoided the use of hyper-parameters related to anchor boxes, as
well as complicated calculations such as intersection over union (IoU) between bboxes
during training.

2.2. Object Detection in Remote Sensing Images

Object detection also has a wide range of applications in remote sensing images.
Reggiannini et al. [5] designed a sea surveillance system to detect and identify illegal
maritime traffic. Almulihi et al. [7] propose a statistical framework based on gamma
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distributions and demonstrate the effectiveness for oil spill detection in SAR images.
Zhang et al. [8] analyze the frequency properties of motions to detect living people in
disaster areas. In [10], a difference maximum loss function is used to guide the learning
directions of the networks for infrared and visible image object detection.

Based on the fact that rotation detectors are needed for remote sensing images, many
excellent rotated object detectors [19,39–46] have been developed from horizontal detection
methods. RRPN [39] sets rotating anchors to obtain better region proposals. R-DFPN [47]
propose a rotation dense feature pyramid network to solve the narrow width problems of
the ship, which can effectively detect ships in different scenes. Yang et al. [19] converted
an angle regression problem to a classification problem and handled the periodicity of the
angle by using circular smooth label (CSL). Due to the complex background, drastic scale
changes, and various object orientations problems, multi-stage rotation detectors [41–43]
have been widely used.

3. Method

In this section, we first introduce the overall architecture of our proposed center
point-based arbitrary-oriented object detector. Then, we detail how to localize the object’s
center and predict the corresponding angle and size. Finally, the detailed structure of
Deformable-FPN is introduced.

3.1. Overall Architecture

The overall architecture of our methods, based on [37], is illustrated in Figure 2.
ResNet [48] is used as our backbone, in order to extract multi-level feature maps (denoted
as C3, C4, C5). Then, these features are sent to deformable feature pyramid networks to
obtain a high-resolution, strong semantic feature map, P2, which is responsible for the
following detection task. Finally, four parallel sub-networks are used to predict the relevant
parameters of the oriented bounding boxes. Specifically, the Center Heatmap branch is used
to predict the center probability, for localizing the object’s center. A refined position of the
center is obtained from the Center offset branch. The Orientation branch is responsible for
predicting the object’s direction by using the Circular Smooth Label, and the corresponding
height and width are obtained from the Object size branch.

C5

C4

C3

…

Backbone Deform-FPNShape

H×W

H×W / 4

H×W / 8

H×W / 16

H×W / 32
Conv 3×3 Conv 1×1

Conv 3×3 Conv 1×1

Conv 3×3 Conv 1×1

Conv 3×3 Conv 1×1

Detection head

Transposed Conv

Deformable Conv

Deformable Conv + Transposed Conv
 

P2

Figure 2. Overall architecture of our proposed center-point based arbitrary-oriented object detector.
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3.2. Detecting Arbitrary-Oriented Object by Its Center Point
3.2.1. Center Point Localization

Let W and H be the width and height of the input image. We aim to let the network

predict a category-specific center point heatmap Ŷ ∈ [0, 1]
W
R ×

H
R×C, based on the features

extracted from the backbone, where R is the stride between the input and feature P2 (as
shown in Figure 2), and C is the number of object categories (C = 15 in DOTA, 1 in
HRSC2016). R was set to four, following [37]. The predicted value Ŷ = 1 denotes a detected
center point of the object, while Ŷ = 0 denotes background.

We followed [36,37] to train the center prediction networks. Specifically, for each
object’s center (px, py) of class c, a ground-truth positive location ( p̃x, p̃y) = (b px

R c, b
py
R c) is

responsible for predicting it, and all other locations are negative. During training, equally
penalizing negative locations can severely degrade the performance of the network; this is
because, if a negative location is close to the corresponding ground-truth positive location,
it can still represent the center of the object within a certain error range. Thus, simply
dividing it as a negative sample will increase the difficulty of learning object centers. So,
we alleviated the penalty for negative locations within a radius of the positive location.
This radius, r, is determined by the object size in an adaptive manner: a pair of diagonal
points within the radius can generate a bounding box exceeding a certain Intersection over
Union (IoU) with the ground-truth box; the IoU threshold is set to 0.5 in this work. Finally,

the ground-truth heatmap Y ∈ [0, 1]
W
R ×

H
R×C used to reduce the penalty is generated as

follows: We split all ground truth center points into Y and pass them through the Gaussian
kernel Kxyc:

Kxyc = exp(−
(x− p̃x)2 + (y− p̃y)2

2σp2 ) (1)

σp = r/3. (2)

We use the element-wise maximum operation if two Gaussians of the same class over-
lap. The loss function for center point prediction is a variant of focal loss [31], formulized as:

Lcenter = −
1
N ∑

x,y,c

{
(1− Ŷ(x, y, c))αlog(Ŷ(x, y, c)) i f Y(x, y, c) = 1
(1−Y(x, y, c))βŶ(x, y, c)αlog(1− Ŷ(x, y, c)) otherwise,

(3)

where N is the total number of objects in the image, and α and β are the hyperparameters
controlling the contribution of each point (α = 2 and β = 4, by default, following [37]).

As the predicted Ŷ has a stride of R with the input image, the center point position
obtained by Ŷ will inevitably have quantization error. Thus, a Center offset branch was

introduced to eliminate this error. The model predicts ô ∈ [0, 1]
W
R ×

H
R×2, in order to refine

the object’s center. For each object’s center p = (px, py), smooth L1 loss [26] is used
during training:

Lo f f set =
1
N ∑

p
SmoothL1(ô p̃,

p
R
− b p

R
c). (4)

Then, combining Ŷ and ô, we can accurately locate the object’s center.

3.2.2. Angle Prediction for Oriented Objects

In this section, we first introduce the five-parameter long side-based representation
for oriented objects and analyze the angular boundary discontinuity problem. Then, we
detail the circular smooth label, in order to solve the boundary discontinuity problem and
predict the angles of oriented objects.

Representations for Oriented Objects. As we discussed in Section 1, the use of
oriented bounding boxes can better depict objects in remote sensing images. We use five-
parameter long side-based methods to represent the oriented objects. As shown in Figure 3,
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five parameters (Cx, Cy, h, w, θ) were used to represent an OBB, where h represents the
long side of the bounding box, the other side is referred to as w, and θ is the angle between
the long side and x-axis, with a 180◦ range. Compared to the HBB, OBB needs an extra
parameter, θ, to represent the direction information.

wi
dt
h

height

Figure 3. Five-parameter long side-based representation for oriented objects.

As there are generally various angles of an object in remote sensing images, accurately
predicting the direction is important, especially for objects with large aspect ratios. Due
to the periodicity of the angle, directly regressing the angle θ may lead to the boundary
discontinuity problem, resulting in a large loss value during training. As illustrated
in Figure 4, two oriented objects can have relatively similar directions while crossing
the angular boundary, resulting in a large difference between regression values. This
discontinuous boundary can interfere with the network’s learning of the object direction
and, thus, degrade the model’s performance.

he
ig
ht

he
ig
ht

width width

Figure 4. An example of discontinuous angular boundary based on the five-parameter long side
representation.

Circular Smooth Label. Following [19], we convert the angle regression problem into
a classification problem. As the five-parameter long side-based representation has 180◦

angle range, each 1◦ degree interval is referred to a category, which results in 180 categories
in total. Then, the one-hot angle label passes through a periodic function, followed by a
Gaussian function to smooth the label, formulized as:

CSL(x) =
{

g(x) θ − rcsl < x < θ + rcsl
0 otherwise,

(5)
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where g(x) is the Gaussian function, which satisfies g(x) = g(x + kT), k∈N, T = 180; and
rcsl is the radius of the Gaussian function, which controls the smoothing degree of the angle
label. For example, when rcsl = 0, the Gaussian function becomes to pulse function and
the CSL degrades into the one-hot label. We illustrate the CSL in Figure 5.

angular boundary

89 88 87
-90

-89
-88

0 1 2 3-1-2

……

Gaussian function

Figure 5. Visualization of the circular smooth label.

The loss function for the CSL is not the commonly used Softmax Cross-Entropy loss; as
we use a smooth label, Sigmoid Binary Cross-Entropy is used to train the angle prediction

network. Specifically, the model predicts θ̂ ∈ [0, 1]
W
R ×

H
R×180 for an input image, and the

loss function is:
LCSL =

1
N ∑

p
BCE(θ̂ p̃, θp), (6)

where θp is the circular smooth label for object p in the image.

3.2.3. Prediction of Object Size

We have that (Cx, Cy, h, w, θ) represents the OBBs, using the center location and di-
rection of each object obtained in Sections 3.2.1–3.2.2. The rest (i.e., the long side h and
short side w) are predicted through the Object size branch shown in Figure 2. The model
outputs Ŝ ∈ R

W
R ×

H
R×2 for the object size. For each object p, with corresponding size label

sp = (hp, wp), smooth L1 loss is used:

Lsize =
1
N ∑

p
SmoothL1(Ŝp̃, ln(

sp

R
)). (7)

Note that the smooth L1 loss used in this paper is (δ = 1
9 by default):

SmoothL1(x) =
{ 1

2δ x2 i f |x| < δ

x− δ
2 otherwise.

(8)

The overall training objective for our arbitrary-oriented object detector is:

L = Lcenter + λangleLCSL + λsizeLsize + λo f f setLo f f set, (9)

where λangle, λsize, and λo f f set are used to balance the weighting between different tasks.
In this paper, λangle, λsize, and λo f f set are set to 0.5, 1, and 1, respectively.
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3.3. Feature Enhancement by Deformable FPN

We aim to better localize the object’s center and corresponding direction by building a
pyramidal feature hierarchy on the network’s output features. The feature maps extracted
by the backbone are referred to as C3, C4, and C5, shown in Figure 2. These feature maps
have different spatial resolutions and large semantic gaps. Low-resolution maps have
strong semantic information, which has great representational capacity for object detection,
especially for large objects (e.g., Soccer fields) in aerial images, while high resolution maps
have relatively low-level features but can provide more detailed information, which is
very important for detecting small objects. Due to the various orientations and large scale
differences of objects in remote sensing images, the standard FPN [25] used to fuse these
feature maps may not work well in this situation. The standard convolution kernel appears
in a regular rectangular manner, which has the characteristic of translation invariance.
Meanwhile, the resolutions of these feature maps differ, and the semantic information of
objects is not strictly aligned to these feature maps. Therefore, using standard convolution
to project these features before the add operation may harm the representation ability of
oriented objects, which is essential to accurately localize the object’s center and direction.
However, Deformable convolution (DConv) can learn the position of convolution kernels
adaptively, which can better project the features of oriented objects in the feature pyramid
network. We detail the structure of Deformable FPN in the following, and demonstrate its
effectiveness in Section 4.

3.3.1. Structure of Deformable FPN

To verify the effectiveness of our method, we introduce three kinds of necks, including
our Deformable FPN, to process backbone features to P2, which are subsequently sent
to the detection head. Figure 6 shows detailed architectures of the three necks, using
ResNet50 [48] as a backbone. A direct Top-down pathway is constructed without building
the feature pyramid structure (Figure 6) but, instead, using deformable convolutions, as
originally used by [37] for ResNet. Our proposed Deformable FPN is shown in Figure 6,
while a commonly used FPN structure is shown in Figure 6. We keep the same channels
of features in each stage, which are 256, 128, and 64 for features with stride 16, 8, and
4, respectively.

C5

P2

DConv 3×3

TConv

DConv 3×3

TConv

DConv 3×3

TConv

Conv 1×1

C4

C3

Conv 1×1

Conv 1×1

Nearest
Interpolation

Conv 3×3

Nearest
Interpolation

Conv 3×3

Nearest
Interpolation

Conv 3×3

P2

C5 DConv 3×3

C4

C3

DConv 3×3

DConv 3×3

TConv

DConv 3×3

TConv

DConv 3×3

TConv

P2

(a) (b) (c)

Figure 6. Different kinds of necks to process the backbone features: (a) A direct Top-down pathway
without the feature pyramid structure; (b) our proposed Deformable FPN; and (c) standard FPN.
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• Direct Top-down pathway As shown in Figure 6, we only use the backbone feature
C5 from the last stage of ResNet to generate P2. A direct Top-down pathway was
used, without constructing a feature pyramid structure on it. Deformable convolution
is used to change the channels, and transposed convolution is used to up-sample the
feature map. We refer to this Direct Top-down Structure as DTS, for simplicity.

• Deformable FPN Directly using C5 to generate P2 for oriented object detection may
result in the loss of some detailed information, which is essential for small object
detection and the accurate localization of object centers. As the feature C5 has a
relatively large stride (of 32) and a large receptive field in the input image, we construct
the Deformable FPN as follows: we use DConv 3 × 3 to reduce the channels and
project the backbone features C3, C4, and C5. Transposed convolution is used to
up-sample the spatial resolution of features by a factor of two. Then, the up-sampled
feature map is merged with the projected feature from the backbone of same resolution,
by using an element-wise add operation. After merging the features from the adjacent
stage, another deformable convolution is used to further align the merged feature and
reduce its channel simultaneously. We illustrate this process in Figure 6b.

• FPN A commonly used feature pyramid structure is shown in Figure 6c. Conv 1 × 1
is used to reduce the channel for C3, C4, and C5, and nearest neighbor interpolation is
used to up-sample the spatial resolution. Note that there are two differences from [25],
in order to align the architecture with our Deformable FPN. First, the feature channels
are reduced along with their spatial resolution. Specifically, the channels of features in
each stage are 256, 128, and 64 for features with a stride of 16, 8, and 4, respectively,
while [25] consistently set the channels to 256. Second, we added an extra Conv 3 × 3
after the added feature map, in order to further fuse them.

Comparing our Deformable FPN with DTS, we reuse the shallow, high-resolution
features of the backbone, which provide more detailed texture information to better localize
the object center and detect small objects, such as vehicles and bridges, in remote sensing
images. Compared with FPN, by using deformable convolution—which adaptively learns
the position of convolution kernels—it can better project the features of oriented objects.
Moreover, applying transposed convolution, rather than nearest neighbor interpolation, to
up-sample the features can help to better localize the centers.

3.3.2. Deformable Groups

As we use deformable convolution in the feature pyramid structure, we discuss how
larger Deformable groups in DConv can further enhance the representation power of the
network in this section.

The deformable convolution used in this paper is DCNv2 [21]. For a convolutional
kernel and K sampling locations, the deformable convolution operation can be formulized
as follows:

y(p) =
K

∑
k=1

ωk·x(p + pk + ∆pk )·∆mk , (10)

where x(p) and y(p) denote the feature at location p on input feature map x and output
feature map y, respectively; the pre-set convolution kernel location is denoted as pk and
ωk is the kernel weight; and ∆pk and ∆mk are the learnable kernel offset and scalar weight
based on input feature, respectively. Take a 3 × 3 deformable convolutional kernel as
an example: there are K = 9 sampling locations. For each location k, a two-dimensional
vector(∆pk ) is used to determine the offsets in the x- and y-axes, and a one-dimensional
tensor is used for the scalar weight (∆mk ). So, the network first predicts offset maps, which
have 3K channels based on the input features, then uses the predicted offsets to find K
convolution locations at each point p. Finally, Equation (10) is used to calculate the output
feature maps. We illustrate this process in Figure 7a.
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Conv

input feature

offset map

3K

Deformable convolution

output feature

input feature

(a)

Conv

… 3K

n

…

divide into n groups

…

output feature

(b)

n groups offset map

Deformable convolution

Figure 7. Illustration of 3 × 3 deformable convolution: (a) One deformable group; and (b) n
deformable groups.

Note that all channels in the input feature maps share one group of offsets when the
number of deformable groups is set to 1 (as shown in Figure 7a). Input features share these
common offsets to perform the deformable convolution. When the number of deformable
groups is n (n > 1), the networks first output n× 3K-channel offset maps, the input feature
(C channels) is divided into n groups, where each group of features has C/n channels,
and the corresponding 3K-channel offset maps are used to calculate the kernel offsets (as
shown in Figure 7b). Finally, the output feature will be obtained by deformable convolution
on the input feature. Different from the groups in the standard convolutional operation,
each channel in the output features will be calculated on the entire input features only,
with different kernel offsets. Increasing the number of deformable groups can enhance the
representation ability of DConv, as different groups of input channels use different kernel
offsets, and the network can generate a unique offset for each group of features, according
to the characteristics of the input features.

4. Experiments
4.1. Data Sets and Evaluation Metrics
4.1.1. DOTA

DOTA is a large-scale dataset for object detection in remote sensing images. The
images are collected from different sensors and platforms. There are 2806 images, with
scales from 800 × 800 to 4000 × 4000 pixels. The proportions of the training set, validation
set, and testing set in DOTA are 1

2 , 1
6 , and 1

3 , respectively. The DOTA dataset contains 15
common categories, with 188,282 instances in total. The full names (short names) for the
categories are: Plane (PL), Baseball diamond (BD), Bridge (BR), Ground track field (GTF),
Small vehicle (SV), Large vehicle (LV), Ship (SH), Tennis court (TC), Basketball court (BC),
Storage tank (ST), Soccer-ball field (SBF), Roundabout (RA), Harbor (HA), Swimming pool
(SP), and Helicopter (HC).
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4.1.2. HRSC2016

HRSC2016 is a dataset for ship detection in aerial images. The HRSC2016 dataset
contains images of two scenarios, including ships at sea and ships inshore at six famous
harbors. There are 436, 181, and 444 images for training, validation and testing, respec-
tively. The ground sample distances of images are between 2 m and 0.4 m, and the image
resolutions range from 300 × 300 to 1500 × 900.

4.1.3. Evaluation Metrics

The Mean Average Precision (mAP) is commonly used to evaluate the performance of
object detectors, where the AP is the area under the precision–recall curve for a specific
category, which ranges from [0, 1]. It is formulized as:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

mAP =
1
C

C

∑
c=1

∫
Pc(Rc)dRc, (13)

where C is the number of categories, and TP, FP, and FN represent the numbers of correctly
detected objects, incorrectly detected objects, and mis-detected objects, respectively.

4.2. Implementation Details
4.2.1. Image Pre-Processing

The images in the DOTA dataset always have a high resolution. Directly training on
the original high-resolution images does not reconcile with the hardware, due to limited
GPU memory. Therefore, we cropped the images into sub-images of size 1024 × 1024, with
an overlap of 256 pixels, and obtained 14,560 labeled images for training. We introduce
two methods for testing in this paper. In the first method, we crop the testing images using
the same size as used in the training stage (1024 × 1024 pixels) and, after inference on all
sub-images, the final detection results are obtained by splicing all sub-image results. This
method is commonly used for inference on the test images in the DOTA dataset; however, it
may generate some false results at the cutting edge, leading to poor performance especially
for some categories with large sizes (e.g., Ground field track and Soccer field). The second
method involves cropping the testing images with a relatively high resolution (3200 pixels i
this paper) during inference. We simply padded the images if the size of the original image
is smaller than the crop size. By cropping the testing images at a relatively high resolution,
a large number of images will not be cut and, so, the model can detect objects based on the
complete instance, thus obtaining a more accurate evaluation result. Note that the only
difference between the two methods is the crop size used for testing.

For the HRSC2016 dataset, we resized the long side of images to 640 pixels and kept
the same aspect ratio as the original images. Thus, the short side of each image was
different and smaller than 640 pixels. Then, we uniformly padded the resized images to
640 × 640 pixels, both for training and testing.

4.2.2. Experimental Settings

All experiments were implemented in PyTorch. ImageNet [49]-pretrained ResNets
were used as our default backbone. We used the Adam [50] optimizer to optimize the
overall networks for 140 epochs. We set a batch size of 12 for DOTA and 32 for HRSC2016.
The initial learning rates were 1.25× 10−4 and 2× 10−4 for DOTA and HRSC2016, with
the learning rate dropped by 10 × at 100 and 130 epochs. We used a single-scale training
strategy with input resolution of 1024 for DOTA and 640 for HRSC2016, as mentioned
before, and the stride R was set to 4. The Gaussian radii rcsl for CSL were set to 4 and 6 for
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DOTA and HRSC2016, respectively. Our data augmentation methods included random
horizontal and vertical flipping, random graying, and random rotation. We did not use
multi-scale training and testing augmentations in our experiments.

4.3. Results
4.3.1. Effectiveness of Deformable FPN

Due to the wide variety of object scales, orientations and shapes, we chose DOTA as
our main dataset for validation. We implemented a standard feature pyramid network
(FPN), a direct Top-down structure (DTS), and our proposed Deformable FPN (De-FPN) as
necks to process features from the ResNet50 backbone.

Results are shown in Table 1. We give the average precision of each category and total
mAP. HRT denotes the high resolution testing discussed in Section 4.2.1. The building
detector from FPN achieved 69.68% mAP, which is already a good performance for the
DOTA dataset. However, the direct Top-down structure had 1.2% higher mAP than the
FPN structure. Note that the DTS does not build a feature hierarchical structure inside
the network, but had a better performance than FPN, indicating that the deformable
convolution can better project features for rotating objects. Furthermore, the interpolation
operation used to up-sample the features may harm the representation power for predicting
object centers exactly.

Our Deformable FPN achieved a remarkable improvement of 1.23% higher mAP,
compared with DTS, which indicates that Deformable FPN can better fuse the multi-level
features and help the detector to accurately localize the rotating objects. Compared with
FPN, the advantages of building a feature hierarchical structure in our way are evident.
The improvement of up to 2.43% higher mAP was obtained through use of deformable
convolution and transposed convolution within the FPN structure. Further, by using
original high-resolution images during testing, our detector could obtain a more accurate
evaluation result. Specifically, the high-resolution test boosted the mAP by 1.79%, 2.39%,
and 1.65% for FPN, DTS, and De-FPN, respectively.

Table 1. Three kinds of necks are used to build arbitrary-oriented object detectors: Feature pyramid network (FPN), direct
Top-down structure (DTS), and Deformable FPN(De-FPN). HRT denotes using High-Resolution crop during Testing. All
models use ImageNet-pretrained ResNet50 as a backbone.

Neck HRT PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

FPN 88.36 78.03 45.35 57.90 76.52 78.24 85.12 90.63 78.89 82.23 39.04 61.21 62.56 70.64 50.50 69.68
DTS 88.79 82.99 42.75 59.31 76.53 77.15 85.17 90.76 79.84 82.27 49.59 59.68 63.98 68.15 56.28 70.88

De-FPN 88.73 80.71 46.36 67.10 78.16 80.51 86.32 90.67 79.84 81.66 45.91 63.66 66.89 71.22 53.87 72.11

FPN
√

89.15 78.98 47.07 59.17 76.78 79.14 86.89 90.80 79.51 83.67 46.60 60.83 66.81 72.77 53.84 71.47
DTS

√
89.70 84.72 45.00 67.62 76.64 78.23 86.60 90.78 79.66 83.59 54.91 59.84 67.08 70.29 64.32 73.27

De-FPN
√

89.47 81.96 46.89 70.72 77.01 81.44 87.32 90.81 80.06 83.68 46.27 63.55 73.62 72.91 60.62 73.76

4.3.2. Results on DOTA

We compared our results with other state-of-the-art methods in the DOTA dataset.
We used ResNet50, ResNet101, and ResNet152 as backbones to construct our Arbitrary-
oriented anchor-free based object detector, denoted as CenterRot. The results are shown
in Table 2. The DOTA dataset contains complex scenes, wherein object scales change
drastically. Two-stage methods are commonly used in DOTA, in order to handle the
imbalance between foregrounds and backgrounds in these complex scenes, such as ROI
Transformer [42] and CAD-Net [51], which have achieved 69.59% and 69.90% mAP, re-
spectively, when using ResNet101 as a backbone. Meanwhile, extremely large and small
objects can appear in one image (as shown in Figure 1), such that multi-scale training and
testing technologies are used to obtain a better performance, such as FADet [52], which
obtained 73.28% mAP using ResNet101, and MFIAR-Net [53], which obtained 73.49% mAP
using ResNet152 as the backbone. However, multi-scale settings need to infer one image
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multiple times at different sizes and merge all results after testing, which leads to a larger
computational burden during inference.

Our CenterRot converts the oriented object detection problem to a center point lo-
calization problem. Based on the fact that remote sensing images have less probability
of overlap between objects with the same category, directly detecting the oriented object
from its center can lead to a comparable performance with oriented anchor-based methods.
Specifically, CenterRot achieved 73.76% and 74.00% mAP on the OBB task of DOTA, when
using ResNet50 and ResNet101 as the backbone, respectively. Due to the strong representa-
tion ability of our Deformable FPN for rotated objects , CenterRot, equipped with larger
deformable groups (n = 16 in Deformable FPN), achieved the best performance (74.75%
mAP) when using ResNet152 as the backbone, surpassing all published single-stage meth-
ods with single-scale training and testing. Detailed results for each category and method
are provided in Table 2.

Table 2. State-of-the-Art comparison with other methods in the oriented object detection task in the DOTA test set. AP for
each category and overall mAP on DOTA are provided (the best result is highlighted in bold), where MS denotes multi-scale
training and testing and * denotes that larger deformable groups (n = 16 in Deformable FPN) were used.

Method Backbone MS PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

SSD [27] VGG16 41.06 24.31 4.55 17.10 15.93 7.72 13.21 39.96 12.05 46.88 9.09 30.82 1.36 3.50 0.00 17.84
YOLOv2 [29] Darknet19 52.75 24.24 10.60 35.50 14.36 2.41 7.37 51.79 43.98 31.35 22.30 36.68 14.61 22.55 11.89 25.49

FR-H [22] ResNet50 49.74 64.22 9.38 56.66 19.18 14.17 9.51 61.61 65.47 57.52 51.36 49.41 20.80 45.84 24.38 39.95
FR-O [1] ResNet50 79.42 77.13 17.70 64.05 35.30 38.02 37.16 89.41 69.64 59.28 50.30 52.91 47.89 47.40 46.30 54.13

RetinaNet-
R [43] ResNet50 88.90 67.70 33.60 56.80 66.10 73.30 75.20 90.90 74.00 75.10 43.80 56.70 51.10 55.70 21.50 62.00

RetinaNet-
H [43] ResNet50 88.90 74.50 40.10 58.00 63.10 50.60 63.60 90.90 77.90 76.40 48.30 55.90 50.70 60.20 34.20 62.20

RSDet [54] ResNet50 89.30 82.70 47.70 63.90 66.80 62.00 67.30 90.80 85.30 82.40 62.30 62.40 65.70 68.60 64.60 70.80
CenterRot

(Ours) ResNet50 89.47 81.96 46.89 70.72 77.01 81.44 87.32 90.81 80.06 83.68 46.27 63.55 73.62 72.91 60.62 73.76

R-FCN [24] ResNet101 39.57 46.13 3.03 38.46 9.10 3.66 7.45 41.97 50.43 66.98 40.34 51.28 11.14 35.59 17.45 30.84
R-DFPN [47] ResNet101 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.10 51.32 35.88 57.94
R2CNN [55] ResNet101 80.94 65.67 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67
RRPN [39] ResNet101 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.84 53.08 51.94 53.58 61.01
ICN [41] ResNet101

√
81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20

ROI
Trans [42] ResNet101

√
88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.34 62.83 58.93 47.67 69.56

CAD-Net [51] ResNet101 87.80 82.40 49.40 73.50 71.10 63.50 76.70 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90
RSDet [54] ResNet101 89.80 82.90 48.60 65.20 69.50 70.10 70.20 90.50 85.60 83.40 62.50 63.90 65.60 67.20 68.00 72.20

BBAVectors [56] ResNet101
√

88.35 79.96 50.69 62.18 78.43 78.98 87.94 90.85 83.58 84.35 54.13 60.24 65.22 64.28 55.70 72.32
SCRDet [57] ResNet101

√
89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

SARD [58] ResNet101 89.93 84.11 54.19 72.04 68.41 61.18 66.00 90.82 87.79 86.59 65.65 64.04 66.68 68.84 68.03 72.95
GLS-Net [59] ResNet101 88.65 77.40 51.20 71.03 73.30 72.16 84.68 90.87 80.43 85.38 58.33 62.27 67.58 70.69 60.42 72.96

FADet [52] ResNet101
√

90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 65.42 74.17 69.69 64.86 73.28
CenterRot

(Ours) ResNet101 89.74 83.57 49.53 66.45 77.07 80.57 86.97 90.75 81.50 84.05 54.14 64.14 74.22 72.77 54.56 74.00

MFIAR-
Net [53] ResNet152

√
89.62 84.03 52.41 70.30 70.13 67.64 77.81 90.85 85.40 86.22 63.21 64.14 68.31 70.21 62.11 73.49

R3Det [43] ResNet152 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74
RSDet-

Refine [54] ResNet152 90.10 82.00 53.80 68.50 70.20 78.70 73.60 91.20 87.10 84.70 64.30 68.20 66.10 69.30 63.70 74.10

CenterRot *
(Ours) ResNet152 89.69 81.42 51.16 68.82 78.77 81.45 87.23 90.82 80.31 84.27 56.13 64.24 75.80 74.68 56.51 74.75

4.3.3. Results on HRSC2016

The HRSC2016 dataset has only one category—ship—where some of them have
large aspect ratios and various orientations. Therefore, it is still a challenge to detect
ships in this dataset. The results are shown in Table 3, from which it can be seen that
our CenterRot achieved state-of-the-art performance consistently, without the use of a
more complicated architecture, compared with the other methods. Specifically, CenterRot
achieved 90.20% and 96.59% for mAP 07 and 12, respectively, where mAP 07 denotes using
the 2007 evaluation metric, while mAP 12 denotes using the 2012 evaluation metric.
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Table 3. State-of-the-art comparison of HRSC2016. mAP 07(12) means using the 2007(2012) evaluation
metric.

Method Backbone mAP 07 mAP 12

RoI-Trans [42] ResNet101 86.20 -
RetinaNet-R [43] ResNet101 89.18 95.21

R3Det [43] ResNet101 89.26 96.01
R3Det-DCL [60] ResNet101 89.46 96.41

CenterRot (Ours) ResNet50 90.20 96.59

4.3.4. Visualization

The visualization results are presented using our CenterRot. The results for DOTA are
shown in Figure 8 and those for HRSC2016 are shown in Figure 9.

plane baseball diamond bridge

ground track filed

small vehicle 

large vehicle ship tennis court

basketball court

storage tanksoccer ball field

roundabout

harbor

swimming pool

helicopter

Figure 8. Visualization of detection results on DOTA.
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Figure 9. Visualization of detection results on HRSC2016.

5. Discussion

The proposed CenterRot achieved prominent performance in detecting rotated objects
for both of the DOTA and HRSC2016 datasets. Objects with the same category have a
lower probability of overlapping each other, so directly detecting rotated objects from
their center is effective and efficient. We selected several categories in order to further
analyze our method. As shown in Table 4, small vehicle, large vehicle, and ship were the
most common rotated objects in DOTA, which always appeared in a densely arranged
manner. Anchor-based methods operate by setting anchors with different angles, scales
and aspect ratios per location, in order to cover the rotated objects as much as possible.
However, it is impossible to assign appropriate anchors for each object, due to the various
orientations in this situation. Our methods performed well in these categories especially,
due to the fact that we converted the oriented bounding box regression problem into a
center point localization problem. Less overlap between objects means fewer collisions
between object centers, such that the networks can learn the positions of rotated objects
from their center easier. We also visualized some predicted center heatmaps, as shown
in Figure 10. Moreover, since the deformable FPN can better project features for rotated
objects and the use of CSL to predict the object direction, our methods still performed well
for objects with large aspect ratios, such as harbors and ships in HRSC2016.

Table 4. Comparison of selected categories in DOTA. All methods use ResNet152 as a backbone.

Method SV LV SH HA SBF RA

MFIAR-Net 70.13 67.64 77.81 68.31 63.21 64.14
R3Det 70.92 78.66 78.21 68.16 61.81 63.77

RSDet-Refine 70.20 78.70 73.60 66.10 64.30 68.20

CenterRot (Ours) 78.77 81.45 87.23 75.80 56.13 64.24

However, as we cut the original images, some large objects were incomplete during
training, such as the soccer ball field, which may confuse our detector when localizing
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the exact center, resulting in relatively poor performance in these categories. Due to this,
we use the five-parameter long side-based representation for oriented objects, which will
create some ambiguity when representing the square-like objects (objects with small aspect
ratio). So, the model will produce a large loss value when predicting the angle and size of
these objects and perform poorly in these categories, such as roundabout. Other oriented
representations, such as the five-parameter acute angle-based method [19], will avoid this
problem while suffering EoE problems. Therefore, it is still worth studying how to better
represent the rotated objects.

Future works will mainly involve improving the effectiveness and robustness of the
proposed methods in real-world applications. Different from the classical benchmark
datasets, the objects in input images can vary much more frequently and can be affected by
other conditions, such as angle of insolation. Moreover, as cloudy weather is very common,
the cloud can occlude some objects. The anchor-free rotated object detection problem in
such a circumstance is also worth studying.

Figure 10. Visualization of predicted center heatmaps for some categories.

6. Conclusions

In this paper, we found that objects within the same category tend to have less overlap
with each other in remote sensing images, and setting multiple anchors per location to
detect rotated objects may not be necessary. We proposed an anchor-free based arbitrary-
oriented object detector to detect the rotated objects from their centers and achieved great
performance without pre-set anchors, which avoids complex computations on anchors,
such as IoU. To accurately localize the object center under complex backgrounds and
the arbitrary orientations of rotated objects, we proposed a deformable feature pyramid
network to fuse the multi-level features and obtained a better feature representation for
detecting rotated objects. Experiments on DOTA showed that our Deformable FPN can
better project the features of rotated objects than standard FPN. Our CenterRot achieved a
state-of-the-art performance, with 74.75% mAP on DOTA and 96.59% on HRSC2016, with
a single-stage model, including single-scale training and testing. Extensive experiments
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demonstrated that detecting arbitrary-oriented objects from their centers is, indeed, an
effective baseline choice.
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