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Abstract: Deep convolutional neural networks (DCNNs) have been used to achieve state-of-the-art
performance on land cover classification thanks to their outstanding nonlinear feature extraction abil-
ity. DCNNs are usually designed as an encoder–decoder architecture for the land cover classification
in very high-resolution (VHR) remote sensing images. The encoder captures semantic representation
by stacking convolution layers and shrinking image spatial resolution, while the decoder restores
the spatial information by an upsampling operation and combines it with different level features
through a summation or skip connection. However, there is still a semantic gap between different-
level features; a simple summation or skip connection will reduce the performance of land-cover
classification. To overcome this problem, we propose a novel end-to-end network named Dual Gate
Fusion Network (DGFNet) to restrain the impact of the semantic gap. In detail, the key of DGFNet
consists of two main components: Feature Enhancement Module (FEM) and Dual Gate Fusion
Module (DGFM). Firstly, the FEM combines local information with global contents and strengthens
the feature representation in the encoder. Secondly, the DGFM is proposed to reduce the semantic
gap between different level features, effectively fusing low-level spatial information and high-level
semantic information in the decoder. Extensive experiments conducted on the LandCover dataset
and the ISPRS Potsdam dataset proved the effectiveness of the proposed network. The DGFNet
achieves state-of-art performance 88.87% MIoU on the LandCover dataset and 72.25% MIoU on the
ISPRS Potsdam dataset.

Keywords: gated convolution; land cover classification; semantic segmentation; remote sensing images

1. Introduction

The rapid development of remote sensing sensors allows diverse access to very high-
resolution (VHR) remote sensing images. A pixel-based land cover classification, also
known as semantic segmentation, using very high spatial resolution images has significant
application value in land resource management [1,2], urban planning [3,4], change detec-
tion [5,6], and other fields. Since optical sensors reflect the spectral characteristics of the
ground target and show consistent features with the human visual system, optical remote
sensing has become the mainstream method of fine land cover mapping. However, the clear
and complex spatial structure features exceedingly increase the difficulty of land-cover
classification [7]. Typical land-cover classification methods can be roughly separated into
three categories: pixel-based classification methods, object-based classification methods,
and patch-based classification methods. For the pixel-based method, spectral information
provided by the high-resolution images shows prodigious variance for intra-class and the
similarity between different classes, leading to lower land-cover mapping accuracies [8].
Furthermore, VHR remote sensing images usually contain a few bands and the pixel-based
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classification method only considers the spectral information. It does not take count of the
spatial characteristics and the topological relationship of ground objects of original images,
making land-cover classification in VHR images more difficult. The object-based method
can be divided into two stages: object generation and object determination. Firstly, those
methods usually use feature extraction or clustering algorithms, such as simple linear itera-
tive clustering (SLIC) [9], to generate objects. Subsequently, utilizing the spatio-temporal
aggregation of multispectral data to determine the attribute of such objects is one of the
better choices. The patch-based method is usually proposed in combination with DC-
NNs, which can capture more robust features. Different from traditional feature-extraction
methods, such as SIFT [10], SURF [11], HOG [12], and ORB [13], which are expensive and
require a special design, deep convolutional neural networks (DCNNs) can extract features
automatically and have more outstanding feature expression abilities. In addition, DCNNs
have a stronger non-linear fitting ability, which is better than other classifiers, making
land-cover classification more accurate.

DCNN is a well-known model for feature learning, which can automatically learn
features of different levels from raw images by stacking convolutional layers and down-
sampling operators. In 2012, Krizhevsky et al. [14] proposed the AlexNet and won the
ILSVRC contest, which plays a significant role in deep learning. Since then, DCNNs
have seen an explosive development and have been applied to different tasks, such as
object detection [15–17], semantic segmentation [18–20], and image retrieval [21–23], etc.
For the semantic segmentation task, Long et al. [18] is a pioneer in building a complete
full convolutional network (FCN) to predict pixel-level labels in an end-to-end manner.
However, such architecture captures the semantic information by stacking convolution
layers through non-linearities and downsampling, reducing the spatial information of
original images. Considering this, U-Net [24] adopted the structure of skip connection
for feature fusion, which reuses the low-level features to retain the spatial detail to a cer-
tain extent. SegNet [25] recorded the corresponding max-pooling index in the process of
encoding. In the decoding stage, the recorded pooling index was used to improve the de-
coding performance. DANet [26] added two types of attention modules to the traditional
dilated FCN to simulate semantic interdependence in spatial and channel dimensions
separately. PSPNet [27] introduced a pyramid pooling module to aggregate the context
information based on different regions to mine the global context information and improve
the segmentation effect. HRNet [28] achieves strong semantic information and precise loca-
tion information through parallel multi-resolution branches and continuous information
interaction between different branches.

The method based on DCNNs is introduced into the remote sensing scene naturally.
Differing from natural images, the scale of VHR remote sensing images is much larger,
as well as the radiometric resolution of such images being much higher, which makes it
contain lots of complicated scenes. For example, there are many multi-scale surface objects
such as huge buildings and small cars. As for small-scale ground objects, with the decrease
in spatial resolution, its structural information may be lost, resulting in poor segmentation
effects. According to the characteristics of remote sensing images, some researchers have
established the network based on multi-scale feature fusion. Nogueira et al. [29] used
extended convolution [30–32] to enhance the context information of feature aggregation.
Li et al. [33] designed an additional branch that uses the boundary information of original
images as input to improve image segmentation. Marmanis et al. [34] combined multi-
scale features of different layers and used auxiliary data digital surface model (DSM)
data to improve land-cover classification accuracy. In [35], Wang et al. proposed a gated
convolutional neural network named GSN using the entropy of low-level features as a gate
to refine the high-level features. The core idea of the above research is to fuse different
level features directly. It is worth noting that low-level features in the shallow layers of
DCNN can provide more detailed structural information, and high-level features in the
deeper layers of DCNN contain more discriminative semantic information. Regardless of
differences in the semantic information, direct fusion will inevitably embed background
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noise of low-level features and thus affect the robustness of features, which may lead
to the loss of detailed spatial information. We consider the difference between different
level features as a semantic gap and propose an end-to-end network named the Dual Gate
Fusion neural Network (DGFNet). In detail, DGFNet consists of two main components:
Feature Enhancement Module (FEM) and Dual Gate Fusion Module (DGFM). The FEM
combines local information with global contents and strengthens the feature representation
in the encoder. Secondly, the DGFM is proposed to reduce the semantic gap between
different level features, effectively fusing low-level spatial information and high-level
semantic information in the decoder. In general, the main contributions of this paper can
be summarized as follows:

1. We propose a simple but efficient encoder–decoder segmentation network, which
effectively captures the global content and fuses different multi-level features, improv-
ing the performance of land-cover classification in VHR images.

2. We propose a novel feature enhancement module (FEM). It combines local infor-
mation and global context information, enhancing the representation of different
layer features.

3. A dual-gate fusion module (DGFM) with the gate mechanism is proposed, which pro-
motes the fusion of low-level spatial features and high-level semantic features effectively.

4. Exhaustive experiments are conducted to prove the effectiveness of the proposed net-
work. We also achieve the state-of-art performance of 88.87% MIoU on the LandCover
dataset and 72.25% MIoU on the ISPRS Potsdam dataset.

The remainder of this paper is organized as follows: related works are presented in
Section 2. In Section 3, we introduce the proposed DGFNet in details. Section 4 presents
the experimental details and experimental results to validate our approach, followed by
the conclusions in Section 5.

2. Related Work
2.1. DCNNs in Land-Cover Classification

Land-cover classification (also known as semantic segmentation) in VHR remote
sensing images is difficult due to the large scale of original images in such a pixel-level task,
which results in significant variation for intra-class and the similarity between different
classes (e.g., trees and low vegetation). Since Long et al. [18] first built a full convolutional
network (FCN) to achieve state-of-art performance in the pixel-level task, there has been a
considerable number of works focussing on land-cover classification. For example, Mou
and Zhu [36] proposed RiFCN, which recursively embedded different scale features into the
learning framework to achieve accurate boundary inference and land cover classification.
To increase the representation capacity of the framework such as FCN for land-cover
classification in high-resolution remote sensing images, they also designed a relation
module [37] to describe the relationships between observations in convolved images and
augmented feature representations. Liu et al. [38] improved the classification result by
integrating a spatial and channel relation-enhanced block with neural networks, which
increases the variety of receptive field sizes. Chen et al. [39] fused different layer features
of DCNN to restore the spatial resolution and improve the performance of land-cover
classification. Sun and Wang [40] used an additional digital surface model (DSM) to
restore the black spatial areas, such as shadows. They integrated the spectral information
of color images with the geometry information of DSM, which improve the accuracy of
land-cover classification. Diakogiannis et al. [41] proposed a novel DCNN architecture
named ResUNet-a, which uses a UNet encoder/decoder as their backbone, in combination
with residual connections, atrous convolutions, pyramid scene parsing pooling, and multi-
tasking inference. ResUNet-a inferred a series of tasks sequentially, including the boundary
of the objects, the distance transform of the segmentation mask, the segmentation mask,
and a colored reconstruction of the input. Each of the tasks were conditioned on the
inference of the previous ones, thus establishing a conditioned relationship between the
various missions, which improve the final performance of land-cover classification.
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The above work fully demonstrates the powerful feature extraction ability of DCNNs
in land cover classification. With the increase in spatial resolution, VHR remote sensing
images can capture more diverse scenes, which provide rich geometric information and
feature information, increasing the difficulty of land-cover classification and reducing the
classification accuracy of VHR images to certain extents. Due to the superior feature ability
of DCNNs, the model based on DCNNs can be applied to different complex scenes, includ-
ing VHR images. At present, the method based on DCNNs for land-cover classification in
VHR images has become one of the mainstream methods.

2.2. Gate Mechanism in Neural Networks

Long short-term memory (LSTM) [42] is a famous framework for processing sequence
data. LSTM can selectively transmit the previous information to the current state by the
gate mechanism so LSTM can deal with the long-distance dependence problem effectively.
Recently, Dauphin et al. [43], as well as Gehring et al. [44] extend the definition of gate
mechanisms in conjunction with convolutional networks. They regard a convolutional
layer without a non-linear function, followed by a unit with a sigmoid function as a “gate”
unit. Li and Kameoka [45] used a gated CNN architecture instead of LSTM, which was
introduced to model word sequences for language modeling and was shown to outperform
LSTM language models trained in a similar setting. Subsequently, the gate mechanism is
applied to various computer vision tasks. Yang et al. [46] combined the gate mechanism
with hybrid connectivity for image classification to retain the capability of feature re-
exploitation to some extent, which improves the accuracy of classification. Yu et al. [47]
used gated convolution instead of partial convolution to obtain a better restoration effect
for image inpainting, as well as Chang et al. [48], who proposed 3D gated convolutions
to tackle the uncertainty of free-form masks for video inpainting. Rayatdoost et al. [49]
utilized the gate mechanism to fuse the features among different models for emotion
recognition from facial behaviors. Cao et al. [50] built a classification network with a linear
skip gated connection which can benefit information propagation for action recognition.
For aspect–category sentiment analysis (ACSA) and aspect–term sentiment analysis (ATSA)
tasks, Xue and Li [51] proposed an efficient convolutional neural network with gating
mechanisms to achieve state-of-art performance in related fields.

The mentioned research above verifies that the gate mechanism can promote the
fusion and transmission of feature information. For pixel-level land-cover classification
tasks, DCNNs usually adopt encoder–decoder architecture. The encoder captures semantic
representation by stacking convolution layers and shrinking image spatial resolution.
Furthermore, the decoder restores the spatial information by an upsampling operation and
combines it with different level features through summation or skip connection. Due to
the semantic gap between different level features, simple addition and skip-connection
operations can not fully fuse the feature maps of different levels. Considering the character
of the gate mechanism, we use the gate mechanism instead of the summation and skip-
connection operation to integrate different level features. In short, embedding the gate
mechanism in neural networks is a simple and effective method for feature learning
and fusion.

3. Methods

With the increase in remote sensing image resolution, the distinct and complex spatial
structure characteristics of remote sensing images become more visible. DCNNs capture
the semantic representations with global contents by stacking convolution layers through
non-linearities and downsampling. That operation reduces the spatial information of
original images, which may affect the land-cover classification accuracy vastly. At present,
the existing methods cannot recover the lost spatial information well. Therefore, the archi-
tecture based on DCNNs still needs to be improved in the decoder through an effective
fusion approach.
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In this paper, we will introduce the overall framework of DGFNet as shown in Figure 1,
firstly. Then, two main modules in the DGFNet, including FEM and DGFM, are described
in detail after the overall framework.

Figure 1. Overall framework about the proposed DGFNet, which consists of three parts: one-stream feature extractor,
feature enhancement module (FEM) and dual gate fusion module (DGFM).

3.1. Overall Framwork

Our overall segmentation model is shown in Figure 1. We adapt the encoder–decoder
architecture proposed in FCN [18] as the semantic segmentation framework. The encoder
is composed of a one-stream feature extractor and feature enhancement module. In the
encoder stage, we use ResNet-50 [52] combined with an atrous spatial pyramid pooling
(ASPP) module proposed in [30], which consists of different rate-dilated convolution, as the
feature extractor to obtain different-level feature maps. Following the feature extractor, we
design the FEM to combine the local information with global contents, making the extracted
feature more robust. In the decoder stage, we propose a dual gate fusion module (DGFM)
to fuse the low-level (shallow-layers) features and high-level (deeper-layers) features,
making the information fusion more sufficient, which is beneficial to the recovery of spatial
details in the decoding phase. The details about the FEM and DGFM are described in the
subsequent subsection.
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3.2. Feature Enhancement Module

The semantic segmentation problem could be divided into the pixel-wise classification
as well as location tasks [53], where the classification task requires global contents by stack-
ing small-sized convolution kernels, while the location task needs large-sized convolution
kernels. The requirement of the convolution kernel size is contradictory. DCNNs stack the
small kernel size convolution through downsampling to obtain the global context, which
reduces the spatial resolution of original images. Inspired by the SE module proposed
in [54], we design the FEM to combine the local information with the global context, in-
stead of using large-sized convolution kernels. Differing from the SE module, we define
the context aggregation for the input feature maps, making the representation of global
context more plain. As shown in Figure 2, the FEM consists of two substructures: channel
regulation structure (Figure 2a) and context aggregation structure (Figure 2b). We model
the channel structure as a simple residual layout, whose main purpose is to regulate the
channel of different level feature maps from the feature extractor. More specifically, we
define the regulated feature map as V, calculated as:

V = WU +R(WU) (1)

where W is the parameters of a linear transformation, U is a coarse feature map, and
R(·) is the residual branch. We observed that Equation (1) is similar to the formula of
image sharpening so that the channel regulation structure can help enhance the spatial
information to a certain extent. Following the channel regulation structure, we designed
the context aggregation structure to combine global contents with the local information.
Let X ∈ RC×H×W be the feature map of one input instance, where C is the channel of
feature maps, xi ∈ RN is the i th channel of the feature map X and flat into a vector,
N = H ×W is the number of positions in the feature map, y ∈ RC×1×1 and Z ∈ RC×H×W

denote intermediate variable, and the output of the context aggregation structure can be
formulated as:

yi = G
(

N

∑
j=1

eWkxj

∑N
m=1 eWkxm

xj

)
(2)

zi = xi ⊕H(Wly)i (3)

where G(·) is the global average pooling (GAP) operation, can be defined as:

G(xi) =
1
N

N

∑
j=1

xi(j) (4)

⊕ is broadcast element-wise product operator, H(·) is ReLU function and a batch-
normal operator, and Wk and Wl are the parameters of linear transformation. Based on

Equation (2), the formula eWk xj

∑N
m=1 eWk xm indicates the weight of each position in the feature

map, so we can obtain the context information through ∑N
j=1

eWk xj

∑N
m=1 eWk xm xj. Finally, the final

output zi combines the global context yi with the local information xi to strengthen the
representation of different level features. Compared to using large-sized convolution
kernels to capture the global contents, the context aggregation structure needs fewer
parameters and computing resources. When the input features X ∈ RC×H×W , the number
of parameters is C2× H×W through using large size kernels to cover the full feature maps
and C× (S + 2) (S << C) for making use of the context aggregation structure.



Remote Sens. 2021, 13, 3755 7 of 20

(a) channel regulation structure

(b) context aggregation structure

Figure 2. The Feature Enhancement Module (FEM) consists of two substructures: (a) channel regulation structure and
(b) context aggregation structure.

3.3. Dual Gate Fusion Module

As is well known, high-level (deeper layers) features contain more discriminative
information. Utilizing the rich discriminative information of high-level features can identify
the category of objects (including the background) more accurately. Low-level (shallow
layers) features contain more spatial information which can help to restore spatial details
better. Most DCNNs directly fuse those different-level features using simple element-wise
addition, e.g., FCN [18], or skip connection, e.g., U-Net [24]. As there exists a semantic
gap between shallow layer features and deeper layer features, direct fusion will inevitably
embed the background noise of deeper layer features. Considering that information
is transferred from high-level features to low-level features in the decoding stage, we
designed a dual-gate fusion module to combine the high-level semantic information with
low-level spatial structural information, which makes the information fusion more effective.
As shown in Figure 3, Xl , Xh represent the low-level features, and for high-level features,
the “position gate” pt can be defined as:

pt = σ
(
WpXl + bp

)
(5)

where Wp, bp are the weights and bias of a linear transformation, and σ is the sigmoid
function which ensures the “position gate” pt between 0 and 1. The gate1 “position gate”
pt indicates how important each spatial position is at the high-level features through the
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low-level features. To make full use of the discriminant information of high-level features,
we define gate2 “filter gate” ft as:

ft = σ
(

W f [pt ⊗ Xh + Xl ] + b f

)
(6)

The same as Wp and bp, W f and b f are the weights and bias of a linear transformation, σ
is the sigmoid function, and⊗ is broadcast element-wise multiplication operator. The “filter
gate” ft decides how to refine the low-level features and suppresses the background noise
of low-level features to a certain extent through high-level features. Finally, the output
feature Xo can be expressed as:

Xo = pt ⊗ Xh + (1− pt)⊗ tanh(Xl ⊗ ft) (7)

Based on Equation (7), we use “position gate” pt to refine high-level features Xh and
use “filter gate” ft to update the low-level feature Xl . For doing so, we make the different
scales feature mutual constraint, which promotes the integration between low-level spatial
features and high-level semantic features.

Figure 3. Dual Gate Fusion Module.

4. Experiment
4.1. Dataset Description

LandCover Dataset: the dataset proposed in [55] contains 41 tiles of RGB images cov-
ering the whole of Poland, which can be grouped into four common land-cover categories:
building, woodland, water, and background. In detail, the dataset contains 33 tiles with res-
olution 25 cm (9000× 9500 pixels) and 8 tiles with resolution 50 cm (ca. 4200 × 4700 pixels),
which gives 176.76 km2 and 39.51 km2, respectively, and 216.27 km2 overall. In [55], those
images are partitioned into non-overlapping patches by a grid with a size of 512 × 512,
so that we can obtain 10,674 patches. Among all these patches, 7470 patches are available
for training, 1602 patches for validation, and 1602 patches for testing. Examples of the
LandCover dataset are shown in Figure 4.

ISPRS Potsdam Dataset: the ISPRS Potsdam dataset [56] consists of 38 tile aerial
images (6000 × 6000 pixels). Each image has a corresponding DSM with the same spa-
tial resolution of 5 cm. The dataset contains the six most common land-cover categories,
namely impervious surfaces (e.g., roads), buildings, low vegetation, tree, car, and clut-
ter/background. Among them, 24 patches are available for training, and the remaining 14
for testing. Those images are partitioned into non-overlapping patches by a grid with a size
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of 400 × 400, so we can obtain 5400 patches for training and 3150 for testing. In addition,
the image in the ISPRS Potsdam dataset has different channel compositions, including
IRRG, RGB, and RGBIR. In this paper, we only use the RGB channel for training and testing.
Examples of the ISPRS Potsdam dataset are shown in Figure 5.

Figure 4. The images and corresponding reference mask. Buildings are blue, woodlands are cyan,
water is red, and background is black.

Figure 5. The images and corresponding reference mask. Impervious surfaces are white, buildings
are blue, low vegetation is cyan, trees are green, cars are yellow, and background is red.

4.2. Implementation Settings
4.2.1. Parameter Setting

We employ pre-trained ResNet-50 as our backbone network of the DGFNet, imple-
mented in PyTorch. We use a standard stochastic gradient descent (SGD) optimizer with
0.9 momentum and weight decay 0.001. Data augmentation with random-Gaussian blur
and random-flipping operations are adopted on each iteration in the training phase. Our
learning rate is scheduled by poly, starting with 7× 10−3 for the LandCover dataset and
5× 10−3 for the ISPRS Potsdam dataset. All the comparative experiments are trained with
a batch size of 20 for the LandCover dataset and a batch size of 16 for the ISPRS Potsdam
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dataset. We retrain all models by using one NVIDIA A100 GPU and 500 epochs for both
datasets. For the loss function, we only use cross-entropy loss, which can be defined as:

CE = −
K

∑
c=1

tclog(pc) (8)

where tc is a one-hot vector, and pc indicates the probability that the prediction sample
belongs to class c.

4.2.2. Evaluation Metrics

To assess the quantitative performance, four mainstream metrics for semantic seg-
mentation are used, including pixel accuracy (PA) and mean pixel accuracy (MPA), mean
intersection over union (MIoU), and frequency weighted intersection over union (FWIoU).
Suppose there are K different land type classes. Let mij be the number of pixels belonging
to class i predicted to belong to class j, mi = ∑K

j=1 mij is the total number of pixels belonging

to class i, and ni = ∑K
j=1 mji is the total number of pixels predicted to class j. Those metrics

can be defined as:

PA =
∑K

i=1 mii

∑K
i=1 mi

(9)

MPA =
1
K

K

∑
i=1

mii
mi

(10)

MIoU =
1
K

k

∑
i=1

mii
mi + ni −mii

(11)

FWIoU =
1

∑K
i=1 mi

(
K

∑
i=1

mii
mi + ni −mii

mi

)
(12)

where the MIoU, FWIoU, MPA, and PA can describe the global land-cover classification
performance. For example, the PA with 0.1% improvement indicates that millions of
samples identified correctly for a pixel-level task. In addition, the MIoU, FWIoU, and MPA
can avoid land-cover classification bias because of the imbalance of different classes on the
LandCover and ISPRS Potsdam datasets. In addition to the mainstream metrics, we use
the classical metrics, consisting of precision (P), recall (R), and F1, as the auxiliary metrics
to evaluate classification results.The P, R, and F1 can be defined as:

P =
1
K

K

∑
i=1

TPi
TPi + FPi

(13)

R =
1
K

K

∑
i=1

TPi
TPi + FNi

(14)

F1-score = 2 ∗ P ∗ R
P + R

(15)

where TP is the true positive, FP is the false positive, TN is the true negative, FN is the
false negative, and the index i indicates that the sample belongs to class i.

4.3. Model Analysis
4.3.1. Influence of Different Modules on Classification

To verify the effectiveness of the proposed FEM and DGFM, we conducted a series
of ablation experiments on the LandCover dataset. In the ablation experiment, we used
1 × 1 convolution combined with SE [54] instead of FEM and a simple addition operation
instead of DGFM as our baseline. As the numerical result shown in Table 1, when we used
the FEM instead of 1 × 1 convolution and SE alone, the MIoU and MPA increase by 1.97
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and 1.48 percentage points, respectively. It shows that FEM can combine local information
and global features effectively to some extent. When we utilized DGFM instead of the
addition operation, the MIoU increases by 2.55 percentage points, and the other metrics
also have different degrees of improvement, which means the effectiveness of the proposed
DGFM. It indicates that the DGFM is helpful to fuse the low-level spatial feature and
high-level semantic feature to some extend. Finally, we integrate the FEM and DGFM into
the baseline, the MIoU has an obvious increase of 3.15 percentage points. More specifically,
from the per-class IoU results shown in Table 2, the IoU of category “buildings” has a
8.54 percentage points improvement. Compared to other categories, the size of category
“buildings” is small in the VHR remote sensing images, which means that our DGFNet can
get global contents to correctly detect small objects.

Table 1. Numerical comparisons with ablation experiments on the LandCover testing set. Baseline
represents that DGFNet uses conv 1 × 1 combined with SE instead of FEM and uses simple addition
operator instead of DGFM.

Method FEM DGFM MIoU (%) FWIoU (%) MPA (%) PA (%)

Baseline

× × 85.72 91.89 91.41 95.75
X × 87.69 92.54 92.89 96.10
× X 88.27 92.89 92.63 96.30
X X 88.87 94.02 93.28 96.41

Table 2. Per-class IoU results with ablation experiments on LandCover testing set. Baseline represents
that DGFNet uses conv 1 × 1 combined with SE instead of FEM and uses simple addition operator
instead of DGFM.

Method FEM DGFM Build. (%) Wood. (%) Water (%) Back. (%) MIoU (%)

Baseline

× × 67.18 90.33 92.19 93.17 85.72
X × 71.69 90.96 93.22 93.71 87.69
× X 73.94 91.35 93.82 94.00 88.27
X X 75.72 91.56 94.03 94.16 88.87

4.3.2. Influence of Different Training Size on Classification

In addition to the ablation experiment about the proposed feature enhancement mod-
ule (FEM) and dual gate fusion module (DGFM), we also conduct a series of experiments
using different image sizes as the input to train DGFNet and test on the LandCover test
set. As shown in Table 3, we crop the image size into 3 × 288 × 288, 3 × 320 × 320,
3 × 352 × 352, and 3 × 384 × 384 to train DGFNet, respectively. It is observed that we
achieve the best results when we crop the training image size into 3 × 384 × 384 to train
the DGFNet. The classification results improve with the increase in training image size
to a certain extent. Owing to the feature enhancement module, the DGFNet can capture
more global contexts with the increase in training image size to improve the performance
of land-cover classification.

Table 3. Classification results of the Landcover test set. The bold numbers represent the best score.

Method Size MIoU (%) FWIoU (%) MPA (%) PA (%)

DGFNet

3 × 288 × 288 87.89 92.86 92.51 96.27
3 × 320 × 320 88.55 93.00 93.04 96.36
3 × 352 × 352 88.40 92.99 93.16 96.35
3 × 384 × 384 88.87 94.02 93.28 96.41
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4.4. Comparisons with Other Networks
4.4.1. Comparison of LandCover Dataset

To show the effectiveness of DGFNet, the proposed method is compared with the
state-of-the-art methods, as listed in Table 4. The neural network DANet [26], PSPNet [27],
FCN [18], and deeplabv3+ [32] are using pre-trained ResNet-50 as their backbone, DenseA-
SPP [57] takes DenseNet [58] as its and all of them are implemented with the PyTorch
framework. In addition, our method was compared with other published research on the
same dataset recently, such as DFFAN [59] and MFANet [60]. As the results of Table 4 show,
our DGFNet outperforms other methods in terms of the MIoU, FWIoU, MPA, and PA.
Specifically, comparisons with DANet, DGFNet has an increase of 13.09, 5.41, 10.18, and 2.54
percentage points in MIoU, FWIoU, MPA, and PA, respectively. Comparing to MFANet,
our model also has an increase of 2.42, 4.13, 1.19, and 0.91 percentage points in those
four metrics, separately. This result validates the effectiveness of the FEM and DGFM in
our network.

Table 4. Numerical comparisons with state-of-the-art methods on LandCover testing set. (Bold
numbers represent the best score for the testing set).

Method MIoU (%) FWIoU (%) MPA (%) PA (%)

DAnet [26] 75.78 88.61 83.10 93.87
PSPNet [27] 80.69 90.54 86.79 95.00
FCN-8s [18] 83.64 91.35 89.29 95.46
HRNet [28] 84.08 91.20 89.43 95.38

Deeplabv3+ [32] 84.99 91.89 90.66 95.75
DenseASPP [57] 85.02 91.56 91.10 95.56

U-Net [24] 85.65 91.70 90.83 95.66
SegNet [25] 85.69 92.02 90.96 95.82

DFFAN [59] (report) 84.81 89.21 90.64 -
MFANet [60] (report) 86.45 89.89 92.09 95.50

DGFNet (ours) 88.87 94.02 93.28 96.41

In Table 5, per-class IoU is computed to estimate the performance of recognizing
distinct objects. The result indicates that our network has a better ability to distinguish
objects with a small scale, such as buildings, because the feature enhancement module
can combine the local information with global contents, strengthening the feature rep-
resentation. From another perspective, our network can better distinguish the complex
background information owing to the existence of DGFM to some extent. The DGFM
makes different levels feature mutual constraint and promotes the integration between
low-level spatial information and high-level semantic information. In Table 6, we also
get the best performance about metrics P, R, and F1-score. Figures 6 and 7 show several
example effects of remote sensing images within different scenarios.As the more com-
plex scene in Figure 6, our prediction result (Figure 6g) is closest to the real land cover
classification result (Figure 6b). In more detail, as displayed in the first row and second
row of Figure 6, other methods mistakenly classify woodland as background. However,
our proposed model can distinguish each category correctly, which is largely due to the
designed feature enhancement module. The feature enhancement module (FEM) integrates
the local information and global information to enhance the representation ability of fea-
tures so it can recognize different objects very well. In addition, our model can restore the
spatial resolution more accurately, e.g., the boundary of water in the third row. Different
from Figure 6, the scene in Figure 7 is simple, but the spatial information is more clear,
which is convenient for us to observe the restoration of spatial structure of original images,
such as the boundary of woodland. Compared with other methods, our model can better
recover the spatial edge details of the object. For example, the comparison models, such as
deeplabv3+ and SegNet, cannot recover the edge information of woodland as shown in the
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first row of Figure 7 and the large area of woodland is misclassified as background in the
third row, which makes the boundary discontinuous. In contrast to the other method, our
DGFNet shows the most complete and accurate land-cover mapping results. This result
indicates that our network has an advantage in distinguishing complex scenes and has a
better recovery of spatial information. That is due to the dual gate fusion module reducing
the semantic gap between different levels, making the low-level spatial features and high-
level semantic features more effectively fused. Compared with other networks, we can get
more precise land-cover classification results, which verify the above conclusion again.

Table 5. Per-class IoU results with state-of-the-art methods on LandCover testing set.

Method Build. (%) Wood. (%) Water (%) Back. (%) mIoU (%)

DAnet [26] 37.74 87.12 87.90 90.37 75.78
PSPnet [27] 51.11 89.10 90.54 90.03 80.69
FCN-8s [18] 60.36 89.80 91.67 92.73 83.64
HRNet [28] 62.85 89.61 91.27 92.58 84.08

Deeplabv3+ [32] 64.12 90.39 92.30 93.16 84.99
DenseASPP [57] 64.90 90.02 92.32 92.82 85.02

U-Net [24] 67.34 90.04 92.20 93.02 85.65
SegNet [25] 66.43 90.50 92.57 93.26 85.69

DFFAN [59] (report) - - - - 84.81
MFANet [60] (report) 75.09 87.78 91.66 91.25 86.45

DGFNet (ours) 75.72 91.56 94.03 94.16 88.87

Table 6. Metrics P, R, F1-score with state-of-the-art methods on LandCover testing set.

Method P (%) R (%) F1-Score (%)

DAnet [26] 85.22 83.10 84.15
PSPnet [27] 89.77 86.62 88.17
FCN-8s [18] 91.74 89.29 90.50
HRNet [28] 92.42 89.43 90.90

Deeplabv3+ [32] 92.16 90.66 91.40
DenseASPP [57] 91.79 91.10 91.45

U-Net [24] 93.04 90.83 91.92
SegNet [25] 92.86 90.97 91.90

DGFNet (ours) 94.60 93.28 93.93

4.4.2. ISPRS Potsdam Dataset

To further illustrate the effectiveness of the proposed DGFNet, we also conducted
comparative experiments on the ISPRS Potsdam dataset. Compared with the LandCover
dataset, the scene in the ISPRS Potsdam dataset is more complex, which includes more
small targets, such as vehicles. As the experimental results showing in Table 7, our network
achieves the best results in terms of MIoU, FWIoU, MPA, and PA. Comparing to DANet,
our model has an increase of 12.04, 7.73, 10.08, and 5.16 percentage points in MIoU, FWIoU,
MPA, and PA, respectively. Compared with other state-of-art methods, the MIoU and MPA
using DGFNet increases at least 1.24 and 1.79 percentage points, and other metrics have
different degrees of improvement. For per-class IoU results, as shown in Figure 8, DGFNet
has a better capability to detect small objects, such as cars. The success of detecting small
targets is owed to the FEM, and can combine the local information with global content to
strengthen the representation of different level features. In Table 8, we also get the best
performance in terms of R and F1-score.
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Figure 6. Qualitative comparisons with complex scenes between our method and several comparison methods on LandCover
dataset. (a) Original image, (b) Ground Truth, (c) prediction map of deeplabv3+, (d) prediction map of SegeNet, (e) prediction
map of HRNet, (f) prediction map of DenseASPP, (g) prediction map of DGFNet (ours).

Figure 7. Qualitative comparisons with simple scenes between our method and several comparison methods on LandCover
dataset. (a) Original image, (b) Ground Truth, (c) prediction map of deeplabv3+, (d) prediction map of SegeNet, (e) prediction
map of HRNet, (f) prediction map of DenseASPP, (g) prediction map of DGFNet (ours).



Remote Sens. 2021, 13, 3755 15 of 20

Table 7. Numerical comparisons with state-of-the-art methods on ISPRS Potsdam testing set. (Bold
numbers represent the best score for the testing set).

Method MIoU (%) FWIoU (%) MPA (%) PA (%)

DAnet [26] 60.21 70.23 71.31 82.25
PSPnet [27] 67.73 74.71 77.77 85.31
FCN-8s [18] 68.30 74.97 78.31 85.46
HRNet [28] 67.52 73.82 77.48 84.71

Deeplabv3+ [32] 70.34 76.24 79.84 86.28
SegNet [25] 70.36 76.17 79.55 86.23

DenseASPP [57] 71.01 77.33 79.58 87.05

DGFNet (ours) 72.25 77.96 81.37 87.41

Figure 8. Per-class IoU results with related mthods on ISPRS Potsdam testing set.

Table 8. Metrics P, R, F1-score with state-of-the-art methods on the Potsdam testing set.

Method P (%) R (%) F1-Socre (%)

DAnet [26] 77.10 71.31 74.09
PSPnet [27] 82.20 77.76 79.93
FCN-8s [18] 82.10 78.31 80.16
HRNet [28] 82.17 77.48 79.75

Deeplabv3+ [32] 83.77 79.84 81.76
SegNet [25] 83.97 79.55 81.71

DenseASPP [57] 85.58 79.58 82.48

DGFNet (ours) 85.12 81.37 83.20

Figure 9 shows the visualization results of three different scenarios on the test set.
In the first line, the scene is about objects with occlusion, such as some low vegetation
being disturbed by shadows. SegNet cannot distinguish the low vegetation in the shadow
area, while deeplabv3+, HRNet, and DenseASPP can only discriminate a part of low
vegetation. DGFNet can completely recognize the low vegetation in the whole shadow
area. The second scenario is focused on small objects. As shown in the second line of



Remote Sens. 2021, 13, 3755 16 of 20

Figure 9, other models miss detecting the small car, while DGFNet has a better capability
to detect the category “car”. The success of detecting small objects represents that the FEM
in DGFNet can effectively combine local information with global content to enhance the
ability to identify small targets. The last scenario is the case of different objects with the
same spectrum. As shown in the third line, the building targets and roads are similar in
outward appearance, which means a slight bias between the different classes. In this case,
other models have worse performance, resulting in lots of misjudgment. However, our
DGFNet can distinguish the different categories correctly and restore the spatial details
completely. For example, our model can recover the boundary of building better as shown
in the third row of Figure 9. It indicates that the DGFM can suppress the semantic gap from
different scales and fuse the low-level features and the high-level features effectively.

Figure 9. Qualitative comparisons between our method and several comparison methods on LandCover dataset. (a) Original
image, (b) Ground Truth, (c) prediction map of deeplabv3+, (d) prediction map of SegeNet, (e) prediction map of HRNet, (f)
prediction map of DenseASPP, (g) prediction map of DGFNet (ours).

4.4.3. Model Size and Efficiency Analysis

To analyze the size and efficiency of the proposed model, we calculate the number
of trainable parameters and the average inference time of a single image based on the
land-cover dataset. The size of all network input images is 3 × 320 × 320. As shown in
Table 9, the parameter of our network is equivalent to DANet, but the MIoU is increased
by 13.09 percentage points. At the same time, compared with other models, our network
also achieved the best performance in terms of MIoU. However, the mean inference time of
a single image is higher than the other model and only lower than the DenseASPP model.
That is because we adopt the DGFM in the decoding stage, and the DGFM promotes
the fusion of low-level spatial features and high-level semantic features to improve the
accuracy of land-cover classification. On the other hand, it increases the inference time due
to the existence of multiple branches of DGFM. On the premise of ensuring the accuracy of
land cover classification, our future work will focus on designing a lightweight network
model to improve computational efficiency.
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Table 9. Model size and efficiency analysis on LandCover testing set, including parameters, inference
time, and MIoU.

Method Backbone Parameters (M) Time (ms) MIoU (%)

DAnet [26] ResNet 50 45.24 10.46 75.78
PSPnet [27] ResNet 50 50.85 12.58 80.69
FCN-8s [18] ResNet 50 22.81 11.83 83.64
HRNet [28] - 1.46 12.68 84.08

Deeplabv3+ [32] ResNet 50 38.48 9.83 85.02
U-Net [24] - 32.93 6.05 85.69
SegNet [25] ResNet 50 28.08 7.35 84.99

DenseASPP [57] DenseNet 201 20.47 22.91 85.65

DGFNet (ours) ResNet 50 44.53 15.94 88.87

5. Conclusions

In this paper, a simple but efficient segmentation network named DGFNet is proposed
for land-cover classification in VHR remote sensing images. The proposed DGFNet contains
two novel modules: FEM and DGFM. The FEM can combine local information with
global contents, strengthening the representation ability of feature maps in the encoder.
The DGFM with the gate mechanism makes the different level features restrain each other,
which promotes the fusion of multi-scale features and the restoration of spatial structure
information. With those well-motivated modules, the DGFNet can capture more robust
features by combining the local information and integrating multi-scale features, improving
the performance of land-cover classification in VHR images. Exhaustive experiments prove
the effectiveness of the proposed DGFNet. We also achieve the state-of-art performance of
88.87% MIoU on the LandCover dataset and 72.25% MIoU on the ISPRS Potsdam dataset.
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