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Abstract: Clear-sky detection (CSD) is of critical importance in solar energy applications and surface
radiative budget studies. Existing CSD methods are not sufficiently validated due to the lack of
high-temporal resolution and long-term CSD ground observations, especially at polluted sites.
Using five-year high resolution ground-based solar radiation data and visual inspected Total Sky
Imager (TSI) measurements at polluted Xianghe, a suburban site, this study validated 17 existing
CSD methods and developed a new CSD model based on a machine-learning algorithm (Random
Forest: RF). The propagation of systematic errors from input data to the calculated global horizontal
irradiance (GHI) is confirmed with Mean Absolute Error (MAE) increased by 99.7% (from 20.00 to
39.93 W·m−2). Through qualitative evaluation, the novel Bright-Sun method outperforms the other
traditional CSD methods at Xianghe site, with high accuracy score 0.73 and 0.92 under clear and
cloudy conditions, respectively. The RF CSD model developed by one-year irradiance and TSI data
shows more robust performance, with clear/cloudy-sky accuracy score of 0.78/0.88. Overall, the
Bright-Sun and RF CSD models perform satisfactorily at heavy polluted sites. Further analysis shows
the RF CSD model built with only GHI-related parameters can still achieve a mean accuracy score of
0.81, which indicates RF CSD models have the potential in dealing with sites only providing GHI
observations.

Keywords: clear sky detection; surface irradiance; random forest; total sky imager; bright-sun

1. Introduction

Surface irradiance is vital in many different fields such as agriculture, atmospheric
science, building design and engineering [1]. Clouds are a major modulator of surface
irradiance causing dramatic difference from a clear-sky counterpart, based on which clear-
sky detection (CSD) methods on 1 min irradiance time series are developed (i.e., Gueymard
et al. [2] and references therein). These CSD methods typically adopt global horizontal
irradiance (GHI), and sometimes direct normal irradiance (DNI) or diffuse horizontal
irradiance (DHI) [3–5] to build linear classifiers in nature across the boundary of cloudy
and clear skies. Thus, they seem to be impossible to obtain good discrimination results
under complex conditions. Many criteria for the magnitude and temporal variability of
surface irradiance are used for cloud screening. Nevertheless, such methods, especially
the thresholds they used, are mostly suitable for a specific climate and then lack spatial
generalization [6]. Recently, Bright et al. [7] proposed a novel and globally applicable
CSD method (Bright-Sun), which does not suffer limitations of existing CSD methods (i.e.,
inability at high zenith angle, and over-conservative or over-relaxed criteria). However,
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the lack of high-temporal-resolution and long-term CSD ground observations, especially at
sites with cloudless but hazy skies, limits the validation of existing CSD methods [2]. For
instance, the validation of Bright-Sun only uses manual labelling of clear-sky curves from
five BSRN sites as reference solutions. The selected five climate zones are a tropical region
with high rainfall, an island of considerable solar variability due to heavy cloudiness, the
South Pole with consistently high solar zenith angles, Sioux Falls which is often used in
previous CSD models (humid subtropical) and a desert climate with often high natural
aerosols; no corresponding study of the polluted suburban area exists, however.

Machine learning (ML) has recently made great progress in theoretical development
and practical applications of earth sciences (e.g., crop disease detection, air pollution
estimation, and precipitation forecasting) [8,9]. By learning the relationship between inputs
and outputs, a flexible model can be built. ML has been applied in CSD problems by
using remote sensing products [10,11]. For instance, Gorooh et al. [12] built a deep neural
network cloud-type classification model to estimate cloud types; Moreno-Tejera et al. [13]
used k-medoids algorithm on DNI data to classify sky states as 11 types (e.g., totally clear,
partly clear, etc.); Kang and Tam [14] deployed a markov model to discriminate daily sky
conditions (e.g., sunny for almost the entire day, and sunny but the sky conditions vary for
part of the day, etc.); Lee et al. [15] adopted the support vector machine (SVM) to classify
radiance profiles as coming from clear sky, water clouds, and ice clouds. These previous
studies have shown great potential of ML in identifying periods of clear and cloudy skies.
However, comprehensive study on the development and validation of ML based CSD
methods is still lacking.

Inspired by aforementioned issues, the major aim of this study is validating existing
CSD methods by visual inspected Total Sky Imager (TSI) data at a heavy polluted suburban
site located on the North China Plain, Xianghe, and developing a ML CSD model with
the Random Forest (RF) algorithm by using surface solar irradiance data. This paper is
organized as follows: Section 2 describes the measurements and methods used in this study.
The Bright-Sun method validation and the RF CSD model development are presented
in Section 3, which is followed by the validation of all the CSD methods in Section 4. A
discussion is given in Section 5, and Section 6 summarizes the result.

2. Site, Data and Methods
2.1. Site and Data

Irradiance measurements from January 2005 to December 2009 are taken at Xianghe
(39.75◦N, 116.95◦E), a baseline surface radiation network (BSRN) site in the North China
Plain. The annual mean aerosol optical depth (AOD) at 550 nm is 0.63, and a large day-to-
day variation is observed (the standard deviation of 0.56) at Xianghe [16]. GHI is measured
by a Kipp and Zonen CM21 pyranometer. An Eppley NIP pyrheliometer and a B&W
pyranometer, installed on a solar tracker, measure DNI and DHI, respectively. The 1 min
measurements are quality controlled by using the BSRN recommended procedures and
uploaded to the BSRN data archive. The measurement uncertainties are about 6%, 3%, and
6% for GHI, DNI, and DHI, respectively [17].

TSI-440 is a full color sky camera that uses a solid-state charge-coupled device to take
images at a rate of one minute during daytime. A picture with 352 × 288 pixels of sky is
obtained by looking downward onto a hemispherical mirror. The intense beam irradiance
is blocked by a shadow-band that prevents flares and protects the imager optics. A red-
to-blue threshold is used to distinguish between clear and cloudy pixels from 24-bit JPEG
format images. The cloud cover is calculated as the number of cloudy pixels divided by the
total number of pixels within field of view of 160◦. TSI-based sky discrimination results are
further improved by manual inspection of raw TSI images to correct apparent errors, such
as TSI misclassification of thin cloud into clear and misclassification of heavy haze into
cloud. There are 307,995 clear samples and 441,810 cloudy samples in this study [18]. Each
1 min irradiance measurement is labeled with sky condition according to the corrected TSI
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measurements. Labeled data points of 0.75 million are used for CSD methods validation
and the RF CSD model development.

Several CSD methods consider the measured irradiance time series alongside the cor-
responding clear-sky irradiance estimates from a cloudless-sky irradiance model. All
1 min clear-sky GHI (GHIcs), DNI (DNIcs), and DHI (DHIcs) are calculated with the
high-performance REST2 model here [19]. Sun et al. [20] evaluated the performance of
75 cloudless-sky irradiance models against ground stations worldwide and found that the
REST2v5 model ranks 2nd globally. The REST-2 required inputs are solar zenith angle
(SZA), extraterrestrial irradiance (GHI0), site pressure, precipitable water vapor (PWV),
ozone amount, nitrogen dioxide amount, AOD at 550 nm, Ångström exponent (AE), and
surface albedo [19].

Generally, NASA’s Modern-ERA Retrospective Analysis for Research and Application,
version 2 (MERRA-2) reanalysis data are used to drive the REST2 model. Here, we compare
the inputs extracted from MERRA-2 against the Aerosol Robotic Network (AERONET) [21]
in Figure 1. Figure 1a shows the validation result of daily MERRA-2 AOD with AERONET
measurements at Xianghe. The coefficient of determination (R2) of 371 matched pairs is
0.59, and the Root Mean Square Error (RMSE) is 0.47. Meanwhile, the Mean Absolute Error
(MAE) is 0.27. MERRA-2 AOD is underestimated, with the slope of the linear regression
at 0.56, especially in heavy polluted conditions (AOD > 0.5). The result indicates that
the aerosol products in the MERRA-2 show large error at Xianghe [22]. In Figure 1b, we
found a good correlation of MERRA-2 and AERONET PWV with the values of R2, RMSE,
MAE of 0.97, 0.30 and 0.19. The slope of linear fit indicates a slight overestimation of
MERRA-2 reanalysis (1.06). According to the total 1006 matched pairs (Figure 1c), the R2

of AE achieved at 0.23, the RMSE is 0.31, and MAE is 0.25, respectively. Nonetheless, the
performance of AE is not as well as those of AOD and PWV. The linear regression shows
that the MERRA-2 AE is overestimated for low AE.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 15 
 

 

the total number of pixels within field of view of 160°. TSI-based sky discrimination re-
sults are further improved by manual inspection of raw TSI images to correct apparent 
errors, such as TSI misclassification of thin cloud into clear and misclassification of heavy 
haze into cloud. There are 307,995 clear samples and 441,810 cloudy samples in this 
study[18]. Each 1 min irradiance measurement is labeled with sky condition according to 
the corrected TSI measurements. Labeled data points of 0.75 million are used for CSD 
methods validation and the RF CSD model development.  

Several CSD methods consider the measured irradiance time series alongside the cor-
responding clear-sky irradiance estimates from a cloudless-sky irradiance model. All 1 
min clear-sky GHI (GHIcs), DNI (DNIcs), and DHI (DHIcs) are calculated with the high-
performance REST2 model here [19]. Sun et al. [20] evaluated the performance of 75 cloud-
less-sky irradiance models against ground stations worldwide and found that the 
REST2v5 model ranks 2nd globally. The REST-2 required inputs are solar zenith angle 
(SZA), extraterrestrial irradiance (GHI0), site pressure, precipitable water vapor (PWV), 
ozone amount, nitrogen dioxide amount, AOD at 550 nm, Ångström exponent (AE), and 
surface albedo [19].  

Generally, NASA’s Modern-ERA Retrospective Analysis for Research and Applica-
tion, version 2 (MERRA-2) reanalysis data are used to drive the REST2 model. Here, we 
compare the inputs extracted from MERRA-2 against the Aerosol Robotic Network (AER-
ONET) [21] in Figure 1. Figure 1a shows the validation result of daily MERRA-2 AOD 
with AERONET measurements at Xianghe. The coefficient of determination (R2) of 371 
matched pairs is 0.59, and the Root Mean Square Error (RMSE) is 0.47. Meanwhile, the 
Mean Absolute Error (MAE) is 0.27. MERRA-2 AOD is underestimated, with the slope of 
the linear regression at 0.56, especially in heavy polluted conditions (AOD > 0.5). The re-
sult indicates that the aerosol products in the MERRA-2 show large error at Xianghe [22]. 
In Figure 1b, we found a good correlation of MERRA-2 and AERONET PWV with the 
values of R2, RMSE, MAE of 0.97, 0.30 and 0.19. The slope of linear fit indicates a slight 
overestimation of MERRA-2 reanalysis (1.06). According to the total 1006 matched pairs 
(Figure 1c), the R2 of AE achieved at 0.23, the RMSE is 0.31, and MAE is 0.25, respectively. 
Nonetheless, the performance of AE is not as well as those of AOD and PWV. The linear 
regression shows that the MERRA-2 AE is overestimated for low AE.  

  
Figure 1. Validation of MERRA-2 against daily AERONET during 2005–2009. (a) AOD, (b) PWV, 
and (c) AE. 

Figure 2 shows the comparison of calculated GHIcs with measured clear-sky GHI. 
The REST2-calculated GHIcs using AERONET data has a good agreement with measured 
clear-sky GHI with MAE of 20.00 W·m−2, and RMSE of 26.39 W·m−2 (Figure 2a), while 
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Figure 1. Validation of MERRA-2 against daily AERONET during 2005–2009. (a) AOD, (b) PWV, and
(c) AE.

Figure 2 shows the comparison of calculated GHIcs with measured clear-sky GHI.
The REST2-calculated GHIcs using AERONET data has a good agreement with measured
clear-sky GHI with MAE of 20.00 W·m−2, and RMSE of 26.39 W·m−2 (Figure 2a), while
REST2-calculated GHIcs by MERRA-2 data performs as insufficiently as that by AERONET
(Figure 2b), evidenced by a higher MAE (33.93 W·m−2) and RMSE (43.94 W·m−2). The
results confirm the propagation of errors from input data to the calculated cloudless-sky
irradiance, which may also influence the judgement of “clear” periods in conventional CSD
methods [7]. Therefore, some required inputs, namely AOD at 550 nm, PWV, and AE are
extracted from AERONET, and others from MERRA-2 reanalysis.
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2.2. Conventional CSD Methods

The conventional CSD methods [1] can be separated into two broad categories accord-
ing to the data they adopt, i.e., CSDsky (the detection of clear-sky without any clouds in sky
dome) in which GHI and/or DHI are used, and CSDsun in which only DNI is used to detect
clear sky where the sun is not obscured by cloud. CSDsun is obviously less stringent than
CSDsky. Only CSDsky methods are used for comparison, since the aim of this study is to
detect clear skies with no cloud (cloudless sky). 17 CSDsky methods are briefly introduced,
whereas detailed information can be found in references [1,7].

Some of the quantities used by the CSDsky methods appear in Appendix A and
are explained as follows. Polo et al. [23] used a 2 × 2 matrix consisting of the ratio of
the covariance and standard deviation of GHI and GHIcs. Clear skies are determined if
the determinant of that matrix is lower than 0.005. The method was modified by Alia-
Martinez et al. [24] who introduced an iteration procedure to select potential clear-sky
GHI measurements. Clear skies require that Kc values exceed 0.80 [25], which tends to
misclassify passing intermittent clouds as clear skies [7]. Batlles et al. [26] suggested Kt < Ktt
and Kd > Kdt for the detection of clear skies. Perez et al. [27] detected clear periods with
ε > 6.2. Reno and Hansen [28] recommended the following tests: the absolute mean and
maximum differences in GHI and GHIcs are < 75 W·m−2; ∆L between GHI and GHIcs is
between −5 and 10; the standard deviation of change rate of GHI should be < 0.005; the
maximum difference between temporal variations of GHI and GHIcs is < 8 W·m−2. Ellis
et al. [29] optimized this method and made it applicable to GHI time series with varying
time steps (1–30 min). Ineichen [30] compared the magnitude and temporal variability of
DNI and GHI0 to detect clear skies. Kt’ < 0.65 is used for discrimination of clear sky [4].
This method was modified by adding three extra constraints: Kt < 0.82, the stability of Kt
within three hours < 0.01, and AOD < 0.5. Differences in the mean and maximum value,
the irradiance increment, the standard deviation and the maximum of irradiance increment
of GHI versus GHIcs as well as DNI versus DNIcs in a 10 min window are used in Inman
et al. [31]. Lefevre et al. [5] determined clear skies by Kd < 0.3 and the standard deviation
of Kt’ within 90 min < 0.02. Xie and Liu [32] derived cloud fraction from GHI and DNI
to identify clear sky with cloud fraction of zero. Long and Ackerman [33] suggested to
normalize GHI and DHI by clear sky counterparts that are functions of the cosine of SZA
(µ), i.e., (a × µb). Clear skies are detected if GHI and DHI measurements satisfy following
criteria: (1) GHI < 1250 × µ1.2 and GHI > 1000 × µ1.2 for SZA < 78.5◦, or GHI > 900 × µ1.2

for SZA > 78.5◦; (2) DHI < 150 × µ0.5; (3) GHI(t)-GHI(t-1) should fall within a specified µ-
dependent range of concomitant GHI0 difference; (4) the standard deviation of normalized
DHI differences between adjacent minutes within a 11 min window should be lower than
5. Garcia et al. [34] revised this method by introducing a function of parameter b to AOD.
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Zhang et al. [35] designed a CSDsky method based on incremental differences in both GHI
and GHIcs. The tolerance of absolute differences between the measured and clear-sky
increments within a 30 min period should be 0.1.

Considering clouds may impose negligible impact on GHI whilst significantly influenc-
ing DHI, Bright et al. [7] propose a CSD method (Bright-Sun) exhibits extra discretization
power by including analysis on DHI. The Bright-Sun CSD method consists of three stages:
firstly, the input clear-sky irradiance curve is optimized, secondly, a tri-component (GHI,
DNI and DHI) multi-criteria analysis is performed, and finally a duration filter is applied.
Through qualitative evaluation, the Bright-Sun method suffers less limitations of the ex-
isting CSD methods, and presents superior and more consistent global performance than
existing CSD methods in five distinct stations.

In total, 7 methods out of 17 conventional CSD methods, namely Batlles, Garcia,
Inceichen16, Lefevre, Long, Perez, and Bright-Sun utilize DHI components. Eight methods
(AliaMartinez, Ellis, Inman, Polo, Quesada, Reno, and Zhang) use GHIcs, two methods
adopt both GHIcs and DNIcs to detect cloudless conditions (Inman and Xie), and only
Bright-Sun uses both GHIcs and DHIcs.

2.3. Machine-Learning Methods

RF is an ensemble learning algorithm using the concept of bagging. It has similar
principle with existing CSD methods, which constructs a set of decision rules by thresholds
of predictor variables. RF receives a number of decision tree classifiers from sub-samples
of the data and combines them. It is advantageous to build classifiers as this reduces
the variance of the classification and avoids over-fitting. The accuracy is assessed by the
residual mean square of the out-of-bag data. The prediction process integrates the results
of all regression trees [36]. A critical feature of RF is that the feature importance can be
evaluated by the impurity, which may make the learning procedure simpler and faster.
Therefore, a RF model is developed to classify clear and cloudy skies.

3. Model Construction and Sensitivity Analysis

The RF CSD model is implemented on the Python platform using the Ensemble
module in the scikit-learn toolbox [37].

3.1. Choice of Input Features

As illustrated in Section 2.2, there are numbers of the quantities used by the CSDsky
methods to classify clear and cloudy skies. Though ML specializes in big data with multiply
features, huge consumption of computer resources should also be considered. Meanwhile,
accurate calculation of clear-sky irradiance needs many parameters; however, many ground
sites may provide only irradiance measurements due to the limited equipment. To select
the input feature with more generality and accelerate computing, µ and four GHI-related
features, including Kd, Kt, GHI difference in adjacent minutes (∆GHI), and the standard
deviation of GHI within 10 min period (Std10), are used to detect clear and cloudy skies. It
should be noted that DHI as an early warning signal for potential clouds is a good index to
classify sky conditions [7]. Therefore, we select Kd as an agent of DHI (Figure 3). Generally,
Kd and Kt are the sign of the influence of atmosphere and cloud on solar radiation, and
∆GHI and Std10 show the temporal variation of GHI. The histogram of input features
under clear and cloudy conditions in 2005 is shown in Figure 3. All the variables are
normalized to the range of 0–1 by Equation (1); x represents input features.

x′ =
x−min(x)

max(x)−min(x)
, (1)
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3.2. Model Construction

The flowchart of developing a RF CSD model in this study is shown in Figure 4. The
dataset is divided into two groups: the data in 2005 (one year) for training and 2006–2009
(four years) for testing. In our case, the number of training and testing records are 181,710
and 568,095, respectively. The grid search and 10-fold cross validation are applied in
hyperparameter optimization. The 10-fold cross validation splits total training dataset into
k (k = 10) consecutive folds, and each fold is then used once as a validation while the k
− 1 remaining folds form the training set. The model with optimal hyperparameters is
thereafter applied to the testing dataset to evaluate model performance. The thresholds,
intervals and optimums of hyperparameters for the RF model are shown in Table 1. The
performance metric used in this study is accuracy score, which is defined as the number of
correct predictions divides total predictions. The mean accuracy score in 10-fold validation
(‘best_score_’) of the optimal model is 0.81.

The RF CSD model also provides the importance of features. Compared to other
inputs, Kd, Kt and Std10 show relatively higher importance in an RF model, with the
magnitude of 0.38, 0.14, and 0.32, respectively (Table 2). After determining the optimal
hyperparameters, the optimal RF model is used to detect clear sky in the testing dataset.

Table 1. Parameters setting to determine the optimal hyperparameters for the RF model.

Hyperparameter Threshold Interval Optimum

max_depth 10–110 20 10
max_features ‘log2’, ‘sqrt’ - ‘sqrt’

min_samples_split 2–20 2 12
n_estimators 10–210 20 150

Table 2. The importance of inputs for the RF CSD model.

Features Importance

µ 0.09
Kd 0.38
Kt 0.14

∆GHI 0.06
Std10 0.32
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Figure 4. The flowchart in RF CSD model training and testing.

4. Results

The performance of 17 CSDsky methods (including Bright-Sun) and the RF CSD model
is presented in Figure 5. Regarding to the conventional CSDsky methods except Bright-Sun,
higher clear-sky accuracy score often associates with lower cloudy-sky accuracy score,
and vice versa. For instance, Quesada works very well to detect clear skies (almost all
clear skies are properly detected) while the performance of detection of cloudy skies is
barely satisfactory (cloudy accuracy score is only about 0.2). This is associated with loose
criteria of these methods for detecting clear skies which misclassifies cloudy samples into
clear skies (16 January 2009 in Figure 6). On the other hand, Long and Perez adopt very
strict criteria for clear sky detection, which naturally excludes most clear sky samples (the
clear-sky accuracy score < 0.1), but a high cloudy-sky accuracy score (~1.0) is achieved. In
Figure 6, aforementioned methods cannot detect any clear-sky samples for the measure-
ments, even on 14 January 2009, a perfect clear and clean day. Almost all conventional
CSDsky methods agree that the 14 January 2009 are cloudless and 24 March 2009 are cloudy
at morning (Figure 6). However, some methods cannot detect polluted clear-sky effectively.
For instance, Garcia performs well under clean conditions (14 January 2009 in Figure 6);
however, it has bad performance under polluted conditions (15 January 2009 in Figure 6).
It seems difficult for these conventional methods to achieve good performance under both
clear and cloudy skies, especially at heavy polluted sites such as Xianghe.

In qualitative analysis, Bright-Sun provides the best performance among the 17 CSDsky
methods, whose accuracy score are 0.73 (clear-sky) and 0.92 (cloudy-sky), respectively. The
accuracy score of Bright-Sun is higher than those of methods with relatively high accuracy
score under both clear and cloudy conditions, i.e., Ineichen06 (0.70 and 0.85), Inman (0.69
and 0.89), and Lefevre (0.67 and 0.84). Admittedly, Bright-Sun is conservative in detecting
polluted clear skies and prone to misdiagnosis of clear periods as cloudy (15 January 2009 in
Figure 5), whereas the RF CSD model mislabels clear periods when clouds are undeniably
and unequivocally present (16 January 2009 in Figure 5). The mean accuracy score of the
RF CSD model (0.84) is about equal to that of Bright-Sun (0.84). Considering the relatively
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approximate clear- and cloudy-sky accuracy score (0.78 and 0.88), the RF CSD model is
more “balanced” compared to Bright-Sun.

Figure 7 evaluates the frequency distribution of visual inspected CSD results (clear
and cloudy) and accuracy score of Bright-Sun and RF CSD models under different AOD
backgrounds. The clear-sky accuracy score of Bright-Sun decreases (from 0.85 to 0.60) with
the increase of AOD (from 0 < AOD ≤ 0.2 to 0.5 < AOD), while the cloudy-sky accuracy
score is generally high (about 0.9), and slightly increases (from 0.90 to 0.93) with the increase
of AOD. Although Bright-Sun has a relatively low clear-sky accuracy score (0.6) under
heavy polluted conditions, it is still a reliable CSD method with a high mean accuracy score
in polluted areas.

The clear accuracy score of the RF CSD model is higher than that of Bright-Sun under
clean conditions (0 < AOD ≤ 0.5) with over 0.91, and slightly lower than that of Bright-
Sun under heavy polluted conditions (0.5 < AOD) with only 0.57. Meanwhile the cloudy
accuracy score of RF CSD model increases significantly (from 0.60 to 0.91) with the increase
of AOD (from 0 < AOD ≤ 0.2 to 0.5 < AOD), which is lower than that of Bright-Sun. In
general, the RF CSD model can also be used to obtain high-accuracy CSD results.
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14 January 2009; (b) clear but polluted skies with AOD of 0.52 on 15 January 2009; (c) cloudy (cirrus)
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the eight upper rows show determined clear periods determined by the conventional CSDsky methods
(blue line) that overlap the GHI data (black line). The panels in the lower two rows demonstrate
Bright-Sun (green line), the RF CSD model (orange line), and TSI (red line) identified clear periods
overlapping the GHI data (black line).
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5. Discussion
5.1. Inuput Features

Since partial sites may only be equipped with GHI observations, we further studied
the performance of the RF CSD model when DHI is not considered as an input feature. The
optimal parameters and mean accuracy score of the RF CSD model without considering kd
are shown in Table 3. The mean accuracy score of the RF CSD model without kd (0.81) is
lower than that of the model with DHI-related parameters, but better than CSDsky methods
except Bright-Sun. The result shows that the RF CSD model can achieve over a 0.8 accuracy
score with only GHI components as inputs.

Table 3. Optimal hyperparameters and mean accuracy score of model developed without kd.

Max_Depth Max_Features Min_Samples_Split n_Estimators
Mean Accuracy

Score
on Testing Set

Inputs without
kd

10 ‘log2’ 12 190 0.81

5.2. Training Set Size

As shown in Figure 7, the accuracy score of RF CSD model has similar pattern with
the frequency distribution of AOD, which implies the sample size may be an important
factor for RF algorithm. For looking for the “least” training set size, it is useful to compare
the accuracy score of models trained by various length data with same testing set. We also
apply 10-fold cross validation to perform the hyperparameter optimization on 1-month
(January), 3-months (January to March), 6-months (January to June), and 9-months (January
to September) training set, and optimums are shown in Table 4. The mean accuracy score
of models on same testing set are quite close. The mean accuracy score increases slightly
from 0.83 to 0.84 between the model trained by 3 months data and the model trained by
1 year data. In other words, although the accuracy score increases along with the training
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set size, 3-month ground-truth CSD data is enough to develop a RF CSD model with
relatively high accuracy score.

Table 4. Optimal hyperparameters and mean accuracy score of models developed by different training set size.

max_depth max_features min_samples_split n_estimators Mean Accuracy Score
on Testing Set

1 Month 30 ‘log2’ 20 10 0.79
3 Months 10 ‘sqrt’ 16 10 0.83
6 Months 10 ‘sqrt’ 8 190 0.83
9 Months 10 ‘sqrt’ 16 10 0.83

5.3. Validation over SURFRAD Network

In order to check the validity of the RF CSD model at the other sites, here we select
1-year (2009) radiation and TSI data from two SURFRAD sites (Goodwin Creek, Mississippi
(GWN), and Penn. State Univ., Pennsylvania: PSU). The dataset in GWN and PSU is
divided into two groups: the data from January to March (3 months, same length as
Section 5.2) for training and from April to December (9 months) for testing. With the
exactly hyperparameter optimization strategies (grid search and 10-fold cross validation),
optimal models of these two sites were obtained, separately. Table 5 provides a compilation
of RF CSD models trained and tested using data from GWN and PSU. It consists of four
classes: true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN). TP means that the models correctly identify a state as clear, whereas TN means that a
state is correctly identified as cloudy. FP refer to a clear sky misclassified as cloudy sky and
FN is a state identified as clear by the RF CSD model while it is actually cloudy.

Table 5. Confusion matrix scores obtained with ML CSD models in testing dataset at GWN and PSU.

TP TN FP FN Mean Accuracy Score

GWN 662 11,831 776 755 0.89
PSU 715 64,684 1271 2000 0.97

The high mean accuracy score is achieved at both GWN and PSU (0.89 and 0.97).
Therefore, training a RF CSD model is considered effective in CSD problems.

6. Conclusions

This study developed a RF CSD model to detect clear skies using one-year minutely
surfaced irradiance data. The performance of the newly developed model is compared to
the existing CSDsky methods, especially the novel Bright-Sun method, at Xianghe, a heavy
polluted site in China. Major conclusions are as follows.

The propagation of systematically errors from input data (using MERRA-2 instead of
AERONET) to the calculated GHIcs is impressive with MAE increased by 99.7% (from 20.00
to 39.93 W·m−2). With most existing CSDsky methods it is difficult to obtain high accuracy
scores under both clear and cloudy conditions at heavily polluted sites such as Xianghe.
Some methods work very well under clear skies but not under cloudy conditions because
they adopt loose criteria for clear sky detection; for instance, Quesada’s clear-sky accuracy
score is almost 1, but the cloudy-sky accuracy score is only about 0.2. On the contrary, some
other methods, such as Long and Perez, tell a different story because very strict criteria are
adopted to detect clear skies, and their clear-sky accuracy score are under 0.1.

Bright-Sun provides better performance than the other 16 CSDsky methods, whose
accuracy score is 0.73 (clear-sky) and 0.92 (cloudy-sky). The Bright-Sun integrated many
concepts from the existing methods. It requires inputs of µ, GHI, DHI, GHIcs, DHIcs and the
local standard time (LST). Though the Bright-Sun model would perform optimization of
GHIcs and DHIcs on a day-by-day basis, the calculation of these two variables still requires
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relatively tedious data preparation, e.g., the number of required inputs of REST2 is nine.
The RF CSD model demonstrates similar mean accuracy scores as that of Bright-Sun (0.84),
but they are more “balanced” under clear and cloudy conditions.

The results in this study imply the applicability of the Bright-Sun CSD method in
polluted sites and the capacity of the ML technique to obtain reliable CSD results. Be-
sides, the RF CSD model built with a three-month training dataset and only GHI-related
information can still achieve a high accuracy score (0.83 and 0.81, respectively), which
is better than conventional CSDsky methods except Bright-Sun. Additionally, training a
RF CSD model at the other sites has been shown to be effective in solving CSD problems.
Nonetheless, cautions should be taken, since the ML model is subject to some limitations,
such as the requirement of a large number of samples (such as over three months in this
study). Application of the RF CSD model to other regions with different climatology still
needs further systematical tests.
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Appendix A

The 16 conventional CSD methods generally rely on a diversity of input parameters
derived from measurements (SZA, DNI, GHI, etc.) [2]. Here, we present several typical
parameters used in 16 methods.

(1) The clearness index (Kt) and its two modifications (Kt
′ and Ktt)

Kt =
GHI
GHI0

, (A1)

K′t =
Kt

1.031× exp
(
− 1.4
(0.9+ 9.4

m )
+ 0.1

) , (A2)

Ktt = −0.3262− 0.0032× (90− SZA) + 0.6842× log10(90− SZA), (A3)

where GHI0 is the extraterrestrial irradiance, and m means the relative optical airmass.
(2) the clear sky index Kc

Kc =
GHI

GHIcs
, (A4)

where GHIcs refers to clear sky GHI.

https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_aod_v3
https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_aod_v3
https://disc.gsfc.nasa.gov/datasets/M2T1NXAER_5.12.4/summary
https://gml.noaa.gov/aftp/data/radiation/surfrad/
https://gml.noaa.gov/aftp/data/radiation/surfrad/
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(3) The diffuse fraction Kd and its modification Kdt

Kd =
DHI
GHI

, (A5)

Kdt = 1.0827× Kd − 0.3893× log10(90− SZA), (A6)

(4) the line length (L) difference between measurement and clear sky counterpart

L =
n−1

∑
i=1

√
(GHIi+1 − GHIi)

2 + (ti+1 − ti)
2, (A7)

where i represents the index of single data point in a window that contains n data points.
(5) the sky clearness ε

ε = 1 + (
DNI
DHI

)/
(

1 + 1.041× SZA3
)

, (A8)

where SZA means the solar zenith angle.
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