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Abstract: Land cover classification from very high-resolution (VHR) remote sensing images is a
challenging task due to the complexity of geography scenes and the varying shape and size of ground
targets. It is difficult to utilize the spectral data directly, or to use traditional multi-scale feature
extraction methods, to improve VHR remote sensing image classification results. To address the
problem, we proposed a multi-modality and multi-scale attention fusion network for land cover
classification from VHR remote sensing images. First, based on the encoding-decoding network,
we designed a multi-modality fusion module that can simultaneously fuse more useful features
and avoid redundant features. This addresses the problem of low classification accuracy for some
objects caused by the weak ability of feature representation from single modality data. Second, a
novel multi-scale spatial context enhancement module was introduced to improve feature fusion,
which solves the problem of a large-scale variation of objects in remote sensing images, and captures
long-range spatial relationships between objects. The proposed network and comparative networks
were evaluated on two public datasets—the Vaihingen and the Potsdam datasets. It was observed
that the proposed network achieves better classification results, with a mean F1-score of 88.6% for the
Vaihingen dataset and 92.3% for the Potsdam dataset. Experimental results show that our model is
superior to the state-of-the-art network models.

Keywords: land cover classification; multi-modality data fusion; deep learning; multi-scale spatial
contextual information

1. Introduction

Because VHR remote sensing images can provide more details of ground targets, they
have been widely used for land cover classification and recognition under complex scenes.
During land cover classification, it is a challenge to assign all pixels in remote sensing
images to different semantic categories. In contrast to single target recognition, in land
cover classification, multiple targets in the image scene can be recognized at the same
time, and the spatial distribution of ground targets cam also counted. Therefore, VHR
(very high-resolution) remote sensing images have been extensively applied for building
recognition [1], road extraction [2], change detection [3], urban engineering [4], etc.

In recent years, with the rapid development of deep learning techniques [5], con-
volutional neural networks (CNNs) [6] can provide hierarchical feature representation
and learn deep semantic features, which are important and useful for improving model
performance. Therefore, CNNs have achieved significant success in the field of computer
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vision, including target detection [7], image segmentation [8], image classification [9], and
visual reconstruction [10]. Benefitting from the rapid development of CNN, researchers
have devised with a large number of improved CNN models for image segmentation, such
as FCN [11], SegNet [12], U-Net [13], PSPNet [14], DeepLab v1–v3 [15–17], and CPNet [18].
Because land cover classification can be considered to be an image semantic segmentation
task, these popular segmentation networks can also be used for land cover classification.

VHR remote sensing images completely capture the ground details and help to accu-
rately analyze the objects in the scene. However, two problems exist in the application of
VHR remote sensing images to land cover classification:

• The VHR remote sensing images usually contain large complex scenes and a large
number of spectral features can be easily confused; thus, it is arduous for CNN to ob-
tain sufficient features only from spectral data. For example, in Figure 1, segmentation
models are often confused by factors such as shadows and occlusion.

• Simple multi-scale extraction modules can no longer adapt to complex VHR remote
sensing images, because the scale information of ground targets is quite different.

Figure 1. The top row is the spectral image of VHR remote sensing images, and the bottom row is the corresponding DSM
image. The first two columns are buildings and roads in shadows. The latter two columns are trees and low vegetation
with extremely similar spectral characteristics. The digital surface model avoids the interference of shadow, occlusion, and
other factors.

It is crucial to improve the accuracy of land cover classification to solve these two prob-
lems. In this regard, there is significant potential for the utilization of different modalities’
image features. Fortunately, the features of geographic information, such as digital surface
models (DSMs), can well avoid this type of interference [19], which is also demonstrated
in Figure 1. To address the first problem, we effectively fuse DSM features and spectral
features in our proposed model to promote the accuracy of some targets. In addition,
spatial relationship modeling provides additional important information, which can be
used to simulate the semantic similarity of uncertain local receptive fields [20]. Refs. [21,22]
prove the capture spatial dependence can significantly improve the performance of the
semantic labeling of VHR images. Thus, it is of great significance to introduce the spatial
relationship between pixels to complement multi-scale features. To address the second
problem, we capture the long-range dependencies in the learning process to model the
spatial relationship between pixels and introduce this spatial relationship into multi-scale
feature extraction to enhance the precision of the results.

In this study, we proposed a multi-modality and multi-scale attention fusion network,
namely MMAFNet, for land cover classification from VHR remote sensing images. The
contributions of this study are briefly summarized as follows:

• We designed a multi-modality fusion module to fuse richer features and avoid redun-
dant features of IRRG and nDSM images. This addresses the problem of low accuracy
of land cover classification from VHR remote sensing images caused by the weak
feature representation ability of single modality data.
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• We present a novel multi-scale spatial context enhancement module that considers the
advantages of both ASPP (Atrous Spatial Pyramid Pooling) and a non-local block to
improve image feature fusion, which successfully addresses the problem of a large
difference in target scale in VHR remote sensing images.

The remainder of the paper is organized as follows. Section 2 describes land cover
classification networks in remote sensing images and the recent advances. Section 3
explains our proposed network structure in detail. Section 4 presents the experiments,
and a thorough analysis and discussion of the results. Section 5 provides conclusions and
future prospects.

2. Related Work

In this section, the progress of remote sensing image land cover classification is
reviewed. We list some representative work transitioning from traditional methods to
deep learning methods. In addition, from the perspectives of multi-modality data fusion
and multi-scale feature extraction methods, we review the latest developments in remote
sensing image land cover classification in recent years.

2.1. Traditional Methods

In earlier studies of land cover classification, the structure of combining a feature
extractor and a classifier was commonly used by researchers [23,24]. The feature extractor
locally extracts spatial and texture features from the image, and then each pixel is allo-
cated by a classifier. For example, Tarabalka et al. [23] further merged the segmentation
map obtained by the watershed segmentation algorithm into the spectral-space classifier
to improve the classification accuracy. Fan et al. [24] proposed a single-point iterative
weighted classifier based on prior knowledge to guide unsupervised algorithms to obtain
the best clustering results. Other traditional methods, such as fuzzy c-means clustering
(FCM) [25], support vector machines (SVMs) [26], and neural networks [27], have been
applied to remote sensing image analysis. These methods improve the accuracy of the
land cover classification to a certain extent. However, a common disadvantage is that their
performance depends heavily on feature selection.

2.2. Popular Segmentation Networks

Driven by deep learning techniques, pixel-level segmentation has made significant
progress in the field of remote sensing images, because it can automatically learn high-level
semantic features from images in an end-to-end manner. Long et al. [11] first developed
a fully convolutional network (FCN) for image semantic segmentation. The FCN can
accept any size of input image, which ensures the robustness of the model. However, the
segmentation result of the FCN is not precise due to the loss of target edge information in
down-sampling.

To solve this problem, Badrinarayanan et al. [12] proposed the SegNet network using a
fully symmetric encoder-decoder structure. SegNet retains the index of the maximum value
during down-sampling and uses it to recover the edge position of the target. The U-Net
network proposed by Ronneberger et al. [13] also has a similar symmetric structure to that
of SegNet. U-Net fuses the corresponding features of the encoding and decoding stages to
refine the segmentation accuracy. Because these networks are relatively simple [28] and
do not consider the global context information, the segmentation accuracy still needs to
be improved.

Global context information refers to the relationship between the pixels and the
surrounding pixels, which improves the accuracy of the model in identifying semantic
categories. PSPNet [14] uses a pyramid pooling module to aggregate global context
information from different regions, but it is computationally inefficient. DeepLab v3+ [17]
incorporates the convolutions of various dilation rates and a global average pooling into
the network to obtain a multi-scale context feature. However, DeepLab v3+ cannot capture
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long-range dependencies in the learning process, and cannot reduce the interference in
complex scenes.

2.3. Multi-Modality Data Fusion

Compared with natural images, remote sensing images are more complicated. How-
ever, DSM features with rich geographic information can reduce the interference caused
by complex scenes. At present, the feature fusion of multispectral images and depth
images has become a research focus for enhanced feature representation of land cover
classification. Sherrah [29] proposed a network for independently extracting DSM features
and fine-tuning it on VHR remote sensing images. To further improve the efficiency of
fusing DSM information, Cao et al. [30] proposed a lightweight deep separable convolution
module to extract the features of depth images, and designed a variety of fusion strategies
to explore the best network structure.

However, simply superimposing the spectral and DSM images as the input of the
network does not make full use of the relationship between the multi-modality information,
and introduces redundant features in the training phase [31]. Therefore, a more reasonable
and effective fusion of multi-modality features acts a pivotal step in improving the accuracy
of land cover classification. There are two mainstream multimodal feature fusion methods.

In the first, RGB and DSM information is fused before feature extraction, and a variety
of attention mechanisms are introduced to establish the multi-modality feature association
in the learning stage. For instance, Liu et al. [32] used DenseNet [33] as the backbone
network and introduced a spatial and a channel attention module in the process of feature
extraction, which not only makes full use of the internal weight features of the image,
but also strengthens the information correlation within the image. However, the model
obtained by this method has high complexity, so it is difficult for the model to converge
during the training phase.

The second approach is an early fusion method in which spectral image features and
depth image features interact continuously in the encoding stage. For example, Audebert
et al. [34] used two deep networks to extract RGB and DSM image features, and proposed
an early fusion network structure. This network structure uses a residual connection
that provides feature weighting, and merges the spectral features and the depth features
together for the final up-sampling stage. The cost of this early fusion method is high, and
it involves numerous parameters in the model. However, due to its better performance,
many of the current networks use this parallel feature extraction structure as a reference.
Peng et al. [35] used the idea of dense connection to improve the early fusion strategy;
however, the fusion strategy focuses on the use of spectral features, resulting in a lower
efficiency of features fusion.

2.4. Multi-Scale Feature Extraction Methods

In the VHR remote sensing images, the target usually has a large difference in scale,
leading to performance degradation for the land cover classification task. To solve this
problem, at present multi-scale feature extraction is often achieved by superimposing
convolutions with different convolution kernel sizes. The effect of multi-scale feature fusion
is reduced due to the simple fusion design. In spite of this, image semantic segmentation
with multi-scale information can still improve the results. Moreover, the low segmentation
accuracy caused by the large difference in target scales can be upgraded by introducing
context information of different scales. Marmanis et al. [36] used pre-trained VGG-16 [37]
as the backbone network, and designed a multi-scale pixel-level segmentation architecture
fusing a fully convolutional network and transposed convolution. Yu et al. [38] proposed an
improved version of PSPNet and applied a pyramid parsing network to extract multi-scale
features from VHR remote sensing images. These methods can incorporate multi-scale
features, but they are computationally expensive and their accuracy is relatively low for
land cover classification.
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To further improve the classification accuracy, numerous researchers employed multi-
scale context features in networks [39–43]. For instance, Shang et al. [40] proposed an
adaptive method to capture multi-scale information. He et al. [42] proposed a multi-
scale attention refining module to enhance the representation ability of the feature map
extracted by the depth residual network. In addition, Zhao et al. [43] proposed a pyramid
attention module, which introduced the attention mechanism into the multi-scale module
for adaptive feature refinement. These methods [39–43] addressed the problem of the
excessive target scale difference, but did not introduce a long-range dependence when
capturing multi-scale information, and only paid attention to the channel relationship.

The multi-branch spatial-channel attention network proposed by Han et al. [22] and
the multi-attention network proposed by Li et al. [21] simultaneously consider the spatial
and channel relationship of feature maps. These works [21,22] prove that spatial and
channel dependence can improve the performance of the semantic labeling of VHR images.

3. Proposed Method

In this section, we first introduce the overall network of MMAFNet, and then recom-
mend the architecture of different modules for land cover classification.

3.1. Overall Architecture

MMAFNet mainly includes two parts, a multi-modality fusion module (MFM) based
on ResNet50 [44] and a multi-scale spatial context enhancement module (MSCEM); the
overall architecture is shown in Figure 2. MFM is used to extract and fuse multi-modality
data, and fully learn multi-modality features with an improved early fusion method.
MSCEM is used to extract multi-scale features and learn global context information by
introducing spatial relationships. The final segmentation result is achieved by performing
bilinear interpolation on the connected feature maps. In addition, the residual learning
strategy (RSC) is also used in our network.

Figure 2. The overall architecture of MMAFNet.

3.2. Multi-Modality Fusion Module

Large-scale complex scenes and ground details are often included in VHR remote
sensing images, and some areas have similar colors and textures. As shown in Figure 1,
roads under shadow interference or trees with similar spectral features and low vegetation
usually cause the features extracted by CNN to be misclassified. The feature of depth
image can help the network reduce the probability of error classification. However, most
of the semantic segmentation networks used for RGB-D cannot handle data from different
modalities in a balanced manner [45]. When dealing with DSM data, only a simple
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encoder is used for its feature extraction. The depth branch only deals with depth-related
information, whereas the spectral branch deals with a mixture of depth and spectral data.
Although DSM images are single-channel images, DSM information is not fully utilized in
this method for complex VHR remote sensing scenes.

To make full use of IRRG and DSM data, we propose a more balanced network
structure to process and fuse the information, as shown in Figure 3. MMAFNet uses a
pre-trained ResNet50 with image features extracted in the spectral and depth branches,
respectively. Each of the aforementioned branches provides a set of feature mappings at
each module stage, on top of which we introduce the third fusion branch. The branch is
used to process the fused data, and Figure 3a shows that the third branch takes the fusion
from the spectral and depth branches as the input before down-sampling.

M0 = I0 + D0, (1)

Figure 3. Multi-modality fusion module (MFM). (a) MFM-0. (b) MFM-n (n ∈ [1, 3]).

In the initial stage, we concatenate feature I0 from the IRRG data and feature D0 from
the DSM data to obtain the feature map M0 of the third branch, denoted by Equation (1),
where + denotes the concatnation.

Residual learning is performed through a convolutional block that utilizes the sum
of the feature maps of the other two encoders up to stage MFM-3. Before combining the
feature maps, we introduce a module based on channel attention (MCA) that reorganizes
the feature maps from both encoders and allocates resources rationally. By obtaining the
appropriate weights and adding them together, our network can extract, reorganize, and
fuse the information of different modalities to provide useful information. The output
detail of MFM-0 is denoted by Equation (2).

F0 = Â(Conv(I0))⊕ Â(Conv(D0))⊕ Conv(M0), (2)

where ⊕ denotes pixel-level summation and Â denotes the module based on channel
attention. We introduce this module in detail in the next subsection.

The structure of MFM-n (n ∈ [1, 3]) is shown in Figure 3b, where three ResNets extract
features from three branches, and the ability of feature representation is stronger after
residual learning. These features are then fused using the same pattern as the MFM-0
phase. Notably, we drop the last down-sampling of the encoding stage. The output details
of MFM-n (n ∈ [1, 3]) are denoted by Equation (3).

Fn = Â(Res(In−1))⊕ Â(Res(Dn−1))⊕ Res(Fn−1), (3)

This fusion approach fully utilizes the information of different modalities and is more
suitable for land cover classification from VHR remote sensing images. The effectiveness
of this module has also been proven in ablation experiments.

Module based on channel attention: There is a large quantity of redundant information
in the fusion of multi-modality features, and this information is counterproductive to
distinguishing targets with high similarity in remote sensing images. In addition, incorrect
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classification results of the model occur because the targets are provided with similar
distribution patterns but different channel dimensions. In CNN, enhanced channel coding
is helpful for image classification tasks [46]. Therefore, to collect features selectively from
the spectral and depth branches, we propose a module based on channel attention in
the MFM to model the channel relationship, which can be used to enhance the feature
discrimination in the channel domain, so that we can further understand complex high-
resolution remote sensing scenes.

We regard the input feature map A = [a1 , a2 , . . . , ac] as a combination of channels
ai ∈ RH×W . First, we obtain a vector G ∈ R1×1×C and its kth element after performing
global average pooling (GAP).

Gk =
1

H ×W

H

∑
i

W

∑
j

Ak(i, j), (4)

The operation integrates the global information into the vector G. Then the vector
is transformed to Ĝ = O2(Activation(O1(G))), where O1 ∈ R1×1×C/2 and O2 ∈ R1×1×C.
These are two fully connected convolutional layers, and an Activation function is added
after O1, which creates a channel dependence on feature extraction. Further, Ĝ is activated
by the Sigmoid function σ(·), which is constrained to [0, 1]. Finally, A and Ĝ are multiplied
to obtain Â.

Â = σ(o2 (Activation(o1(GAP(A))
)
)⊗ A, (5)

ReLU remaps the original channels into new channels, adding nonlinear elements in
an adaptive form and making the network fit better. In the process of network learning,
the module suppresses useless features and recalibrates the weights on a more meaningful
feature map for further learning.

3.3. Multi-Scale Spatial Context Enhancement Module

For the task of land cover classification using VHR remote sensing images, first, the
proportions of targets are very different, thus requiring feature maps to capture multi-
scale information. Second, each target is geometrically related, which requires a non-
local idea [47]. Third, a large receptive field is needed for high-level semantic features.
It is not sufficient to stack four 3 × 3 convolutional layers. The spatial relationship is
introduced to obtain fine-grained context features. Therefore, we combine the advantages
of ASPP (Atrous Spatial Pyramid Pooling) and a non-local block, and propose a multi-
scale spatial context enhancement module (MSCEM) to replace the simple multi-scale
extraction module.

In the last stage of encoding, the multi-scale feature map is captured completely by
ASPP. Because we drop the last down-sampling, the atrous convolution of different atrous
rates is operated on the same feature map and fused with the output, and the fusion should
cover the whole feature maps. Thus, we combine the 3 × 3 convolutions with atrous rates
3, 6, and 9, and a regular 1 × 1 convolution for multi-scale information extraction. An
image average pooling is also attached to integrate global contextual information. Such a
combined operation has better efficiency and performance without increasing the number
of parameters.

Applying a global contextual remote dependency strategy is crucial in the land cover
classification of multi-classified remote sensing images. To thoroughly utilize the spatial
information of multi-scale feature maps, we borrowed the idea of non-local block [48] after
the integration of multi-scale information. DSM data also provide geographical geometric
attributes for some classes in remote sensing images. Spatial relationships can enhance the
local properties of feature maps by aggregating dependencies on other pixel locations. For
targets with similar semantic features, the strategy of linking contexts clearly enhances the
intra-class feature relevance by combining global and local information, and increasing the
accuracy of the results of multi-category land cover classification tasks.
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As shown in Figure 4, the feature map is fused with multi-scale information through
the ASPP module and then downscaled to 256 channels using 1 × 1 convolution into the
non-local module. The multi-scale spatial context enhancement module not only extracts
and integrates multi-scale feature maps, but also improves and enhances intra-class features
by using the remote dependency of the spatial context, which effectively distinguishes
different semantic classes in remote sensing images.

Figure 4. Multi-scale spatial context enhancement module.

3.4. Residual Skip Connection Strategy

Segmentation networks based on encoder-decoder structures have become increas-
ingly popular in recent years. Because images undergoing constant down-sampling during
the feature extraction period lose a large amount of information, it is difficult to provide
feature mapping for the decoding stage. A conventional skip connection transfers the
low-resolution information at each stage in a duplicate manner to achieve image feature
preservation; however, this result generally makes the captured image features blurred.
Furthermore, the high-resolution image edge information is not included in the high-level
features from learning. To solve these problems, we supplement the skip connection with a
post-activation transpose convolution operation. This enhances the overall information of
the image in the skip connection and limits the edges of the object to be segmented in the
remote sensing image, thus achieving better performance.

As shown in Figure 5, the features of the (l − 1)th layer are passed to the (l + 1)th

layer through a skip connection, and its features are passed via down-sampling to the lth

layer and up-sampling to the (l + 1)th layer. Thus, the two operations are repeated. This
repetition of low-resolution information leads to the blurring of segmentation boundaries.
The conventional skip connection passes the high-resolution feature map directly without
any convolutional layer learning; thus, the final learned network model cannot effectively
map the high-resolution information. In our proposed residual skip connection strategy, we
recover the features of the lth layer to the same size as the (l − 1)th layer after a transposed
convolution learning, and extract the undersampled features of the (l − 1)th layer separately
from them for summation operations. Finally, this part of the features is learned again
using depth separable convolution and transmitted to the (l + 1)th layer after up-sampling.
This step not only controls the number of parameters but also allows the features to reach a
higher level. The detail of the residual skip connection strategy is shown in Equation (6).

fl+1 = DSC(Activation(Tconv( fl))⊕ fl−1), (6)

where fl denotes the feature of the lth layer. Tconv denotes the transposed convolu-
tion. Activation denotes the ReLU activation function. DSC denotes the depth separable
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convolution. ⊕ denotes the pixel-level sum operation. fl−1 denotes the feature of the
(l − 1)th layer without down-sampling, and fl+1 denotes the result after residual skip
connection processing.

Figure 5. The architecture of the residual skip connection.

For small targets of remote sensing images, such as cars, the target feature information
is lost with the decrease in resolution after down-sampling. The traditional skip connection
is not able to better comprehend the small target information in the small feature map, and
the residual skip connection operation passes the small target pool’s higher-level global
features to the decoder. For large targets, such as buildings, the approach operates in the
same manner, improving intra-class information while more effectively limiting edges.

4. Experimental Results and Analysis

To verify the effectiveness of MMAFNet, we used the Vaihingen and Potsdam datasets
from the ISPRS [49] to carry out land cover classification experiments. We used a quanti-
tative accuracy assessment method to evaluate the classification results based on overall
accuracy (OA) and F1-score. In addition, we compared the performance of the model with
those of remote sensing image land cover classification networks based on deep learning
in recent years. Furthermore, we designed ablation experiments to validate the capability
of MMAFNet.

4.1. Dataset Description

The datasets were provided by Commission III of the International Society for Pho-
togrammetry and Remote Sensing (ISPRS). The VHR true orthophoto (TOP) slices, DSMs,
and corresponding ground truth (GT) of two German urban regions are contained in
the dataset.

Thirty-eight images in Potsdam dataset [50] have three bands: near-infrared (IR), red
(R), and green (G). Moreover, the corresponding normalized DSM (nDSM) is also presented.
The image slices have a spatial resolution of 5 cm and are all 6000 × 6000 pixels in size.
Impervious surfaces, buildings, low vegetation, trees, cars, and clutter are marked on each
pixel in 24 images. Better segmentation performance can be obtained for IRRG images
compared to RGB images [51]. Therefore, to further improve the segmentation accuracy,
we used both IRRG and nDSM data types. Image serial numbers 5_12, 6_7, and 7_9 were
selected for validation; image serial numbers 5_10 and 6_8 were selected for predicting;
and the remaining images were selected for training.

Thirty-three images with an average size of 2500 × 2100 pixels and a spatial resolution
of 9 cm are included in the Vaihingen dataset [52]. Only 16 images in the dataset have GT,
and each image has the same band and label as those of the Potsdam dataset. Considering
the accuracy, we also used both IRRG and nDSM data types. We chose five images as the
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prediction set to evaluate our network, namely 11, 15, 28, 30, and 34. Three images were
used as the validation set, namely 7, 23, and 37, and the remaining images were used for
training. Figure 6 shows the sample images from these two datasets.

Figure 6. Sample images of Potsdam and Vaihingen datasets, digital surface models, and their
corresponding labels. (a) Potsdam TOP, (b) Potsdam DSM, and (c) Potsdam GT, (d) Vaihingen TOP,
(e) Vaihingen DSM, and (f) Vaihingen GT.

The original images from the dataset were required to be cropped to fit MMAFNet
input due to the limitation of GPU memory. Thus we cropped each image to a size of
256 × 256 pixels with 128 pixels of overlap, and the final predictions were stitched together.
To avoid over fitting, we use random flip and random rotation to augment the data. As a
result, the network is able to effectively prevent over fitting during training, and the final
model also has strong robustness.

4.2. Training Details

MMAFNet was built using the deep learning framework PyTorch. ResNet50 pre-
trained on ImageNet [53] was used as our backbone network. Our operating system
was Windows 10, the processor was an Intel(R) Xeon(R) CPU E51620 v4, and MMAFNet
was trained on two NVIDIA GeForce GTX 1080 GPUs with 8 GB of memory each. For
network training, the stochastic gradient descent (SGD) optimizer having a momentum of
0.9, weight decay of 0.004, and initial learning rate of 1 × 10−3 was used to optimize the
network. We used cross entropy as the loss function of the network, set the total epoch and
total batch size to 250 and 16, respectively, and multiplied by 0.98 at the end of each epoch.

4.3. Metrics

We adopted the OA and F1-score as our evaluation metrics to evaluate the performance
of the different methods; the major metrics are as follows:

F1 = 2× Precision× Recall
Precision + Recall

, (7)

OA =
TP

TP + TN + FP + FN
, (8)

where
Precision =

TP
TP + FP

, (9)

Recall =
TP

TP + FN
. (10)
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where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives.

4.4. Results and Analysis

In this section, we compare MMAFNet with popular networks used for remote sensing
images, such as DeepLab v3+ [17], DSMFNet [30], REMSNet [32], DP-DCN [35], and
MANet [40]. These networks can be divided into two types: those that introduce the
spatial relationships and those that do not introduce spatial relationships. Among these,
REMSNet introduces spatial relationships, and none of the other networks introduce spatial
relationships. Note that DeepLab v3+ does not use DSM images in terms of data usage.

4.4.1. Results on the Potsdam Dataset

In the experiments on the Potsdam dataset, we calculated the F1-score, mean F1-score,
and OA for each class. The results are indicated in Table 1, and the best results are shown
in bold.

Table 1. Experimental results on the Potsdam dataset (%). Best results are in bold.

Method Imp. Surf. Building Low Veg. Tree Car Mean F1 OA

DeepLab v3+ [17] 89.88 93.78 83.23 81.66 93.50 88.41 87.72
MANet [40] 91.33 95.91 85.88 87.01 91.46 90.32 89.19

DSMFNet [30] 93.03 95.75 86.33 86.46 94.88 91.29 90.36
DP-DCN [35] 92.53 95.36 87.21 86.32 95.42 91.37 90.45
REMSNet [32] 93.48 96.17 87.52 87.97 95.03 92.03 90.79

MMAFNet 93.61 96.26 87.87 88.65 95.32 92.34 91.04

We first evaluated the performance of MMAFNet on the Potsdam dataset. Table 1
shows the classification results. Our proposed network achieved a mean F1-score and OA
of 92.34% and 91.04%, respectively, thus outperforming other methods in all evaluation
metrics. The Potsdam dataset scenes are relatively complex, with trees and low vegetation
being more difficult to classify. Compared to DeepLab v3+, our method improved the
classification of trees by 7.0% and achieved a considerable improvement in the classification
of other categories. This also verifies that our MMAFNet can capture targets well at different
scales using global contextual spatial information, illustrating its feasibility for land cover
classification of VHR remote sensing images.

Figure 7 shows a comparison of the segmentation results of MMAFNet and other
comparative methods on the Potsdam dataset. The unlabeled original images show that
trees and low vegetation are so similar that we cannot use the human eyes to correctly
classify them in specific areas. DeepLab v3+, MANet, and DSMFNet are also not accurately
recognized. The primary reason for misclassification is that these networks do not introduce
spatial relationships to model long-range dependency. However, from the comparison
shown in the red dashed box, MMAFNet achieves the best segmentation results on the
classification of trees and low vegetation, which also validates the superior performance of
our network. In addition, for small targets such as cars, our segmentation performance is
also more refined than that of comparative methods, due to the residual skip connection
strategy that preserves the information of these small targets. Similarly, for large targets,
the correlation of intra-class attributes is enhanced to reduce misclassification.

Figure 8 shows the overall classification results of area 5_10 in the Potsdam dataset.
The regions and distribution patterns of different categories can be clearly identified. When
applied to confusing pixels, MMAFNet can result in higher accuracy. In particular, in the
classification of trees and low vegetation and the recognition of cars, our method achieves
an exceptional performance.
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Figure 7. Comparison of experimental results for five images in the Potsdam dataset.

Figure 8. The results of MMAFNet and other comparative methods on the Potsdam dataset.
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4.4.2. Results on the Vaihingen Dataset

In the experiments on the Vaihingen dataset, we calculated the F1-score, mean F1-score,
and OA for each class. The results are represented in Table 2, and the best results are shown
in bold.

Table 2. Experimental results on the Vaihingen dataset (%). Best results are in bold.

Method Imp. Surf. Building Low Veg. Tree Car Mean F1 OA

DeepLab v3+ [17] 87.67 93.95 79.17 86.26 80.34 85.48 87.22
MANet [40] 90.12 94.08 81.01 87.21 81.16 86.72 88.17

DP-DCN [35] 91.47 94.55 80.13 88.02 80.25 86.89 89.32
DSMFNet [30] 91.47 95.08 82.11 88.61 81.01 87.66 89.80
REMSNet [32] 92.01 95.67 82.35 89.73 81.26 88.20 90.08

MMAFNet 92.06 96.12 82.71 90.01 82.13 88.61 90.27

From the experimental results, it can be seen that the results of MMAFNet are bet-
ter than those of other methods. The mean F1-score and OA were 88.61% and 90.27%,
respectively, in the Vaihingen dataset. In particular, for cars, our proposed residual skip
connection strategy effectively preserves the information about small objects. We integrate
DSM data into the network, which improves the classification of other categories with aux-
iliary physical spatial height information, and validates that data fusion between different
modalities can help in land cover classification. The results show that our network has
a stronger capability in complex remote sensing scenes. The multi-scale spatial context
enhancement module effectively extracts and identifies features of targets at different scales.
Even when the targets occupy a small percentage of a region, and have strong similarity to
the surrounding labels, our network can still precisely segment them.

Figure 9 displays the land cover classification outcome of the whole image of the
Vaihingen prediction set using different methods. Although trees and low vegetation make
classification difficult because of their high similarity, the bounding box with red dashed
lines indicates that our proposed network can not only better distinguish high similarity
regions, but also retain all the information of small objects. For some factors such as lighting
and shadows, MMAFNet can also reduce disturbances to some extent. For example, in the
fourth row, trees occluded by shadow can also be correctly classified.

Figure 9. Experimental results of MMAFNet and other comparative methods for five images in the
Vaihingen dataset.
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Figure 10 shows the complete map of the region after predicting the small maps and
patching them together. From the final prediction maps, the segmentation maps of the ex-
perimental results for different models are very similar. However, it can be concluded from
the experimental evaluation metrics that our method has better segmentation performance.

Figure 10. The results of MMAFNet on the Vaihingen dataset are shown and compared.

4.4.3. Ablation Experiment

We decomposed and combined the proposed network modules and further validated
the effectiveness of the different modules using F1-scores and OA. The ablation experiments
were carried out using the Vaihingen dataset.

In Table 3, we present four comparative models, including Res50, Res50+MFM,
Res50+MSCEM, and Res50+RSC, to demonstrate the advantages of the proposed MMAFNet.

Table 3. Quantitative analysis of a single module ablation experiment on the Vaihingen dataset; the best result (%) is shown
in bold.

Models Imp. Surf. Building Low Veg. Tree Car Mean F1 OA

Res50 86.94 89.67 75.83 84.42 77.40 82.85 84.98
Res50+MFM 88.15 93.84 76.49 86.48 78.02 84.60 86.66

Res50+MSCEM 88.79 93.09 79.79 85.55 80.38 85.52 87.35
Res50+RSC 90.11 92.97 80.24 86.04 81.14 86.10 87.82

Res50+MFM+MSCEM+RSC(MMAFNet) 92.06 96.12 82.71 90.01 82.13 88.61 90.27

The Res50 means a baseline that includes two pre-trained ResNet50, which extracts
features from different modalities and fuses these features after the last res block. The
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result comes from continuous up-sampling. In the feature extraction process, we did not
perform any interaction between different modalities. We chose this model as the baseline
for ablation experiments.

Res50 + MFM is a baseline that includes the multi-modality fusion module, which
verifies the effectiveness of the multi-modality fusion module. In the process of feature
extraction, the two ResNet50s use the attention mechanism to allocate feature resources
and continuously carry out information fusion. The third ResNet50 is introduced to handle
the fusion branch. In the decoding stage, continuous up-sampling is performed to obtain
the final segmentation map.

Res50 + MSCEM is a baseline that includes the multi-scale spatial context enhancement
module, which verifies the effectiveness of the multi-scale spatial context enhancement
module. In the encoding stage, the feature map obtained by the baseline is the input to
the multi-scale spatial context enhancement module and extracted the spatially enhanced
multi-scale information. The decoding stage is continuous up-sampling until we get
the output.

Res50 + RSC verifies the effectiveness of the residual skip connection strategy in
encoder-decoder feature fusion and information retention. Res50 uses the residual skip
connection strategy in up-sampling to get the the segmentation result.

Finally, MMAFNet integrated all the modules together, named Res50 + MFM +
MSCEM + RSC. All the results of the ablation experiment are shown in Table 3 and
Figure 11.

Figure 11. Comparison of ablation experiment results of different modules. The first row is a visual comparison between
the baseline and the result of adding the multi-modality fusion module. The second row shows that the results verify the
benefits of the multi-scale spatial context module. The third row shows the visualization results of the baseline using the
residual skip connection strategy.

The results in Table 3 show that the mean F1-score of Res50+MFM is 1.8% higher
than that of Res50, and the OA is 1.7% higher. The introduction of the multi-modality
fusion module proves that making full use of DSM features can significantly improve the
classification accuracy. As shown in the first row in Figure 11, the segmentation result
obtained by Res50+MFM is closer to the ground truth.

The mean F1-score and OA of Res50+MSCEM are 2.7% and 2.4% higher, respectively,
than those of Res50. The multi-scale spatial context enhancement module promotes the
performance of the baseline network, effectively captures the multi-scale information in the
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image, and reinforces the correlation between different classes. In addition, compared with
the second row in Figure 11, the complete classification of car proves that integrating long-
range dependencies into multi-scale features can reduce the interference from occlusion
and shadow.

The mean F1-score of Res50+RSC is 3.3% higher than that of Res50, and the OA is 2.8%
higher. Compared with the Res50 in Figure 11, the novel residual skip connection strategy
can preserve all features. The comparison of accuracy and vision demonstrates that the
residual skip connection strategy can successfully improve the classification results.

In addition, the results of the integration of all modules, i.e., MMAFNet, are 5.8% and
5.3% higher than the initial network model, based on the mean F1-score and OA, respec-
tively, verifying that MMAFNet can significantly promote the land cover classification
performance of VHR remote sensing images.

5. Conclusions

In this study, we devised a multi-modality and multi-scale attention fusion network
(MMAFNet) acting on the land cover classification of remote sensing images. MMAFNet
uses an encoder-decoder structure with ResNet50 as the backbone network. Three parallel
branches extract multi-modality data features, and a module based on channel attention is
introduced to integrate image information adaptively before each fusion. While adaptively
allocating resources, it reduces the redundant information in the image. The multi-scale
spatial context enhancement module is supplemented in the final stage of encoding to
extract and augment feature information, thus solving the problem of varying scales of
target objects in the land cover classification of remote sensing images. During the feature
fusion period between the encoder and the decoder, we use a residual skip connection
strategy, with enhanced intra-class attributes and restricted edge contours for larger targets.
For smaller targets, we retain all their information. The segmentation performance of
MMAFNet is more competitive because of the integration of these modules.

In addition, we validated the performance of MMAFNet on the Vaihingen and Pots-
dam datasets. The experiments showed that our method outperforms other methods,
and the ablation experiments further validated the capability of our proposed different
modules. In future work, we will strive to decrease the number of parameters of the model
and optimize the model for promoting the segmentation performance. We will also aim to
promote the practical application of deep learning in the land cover classification of VHR
remote sensing images.
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