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Abstract: Earth system science has changed rapidly due to global environmental changes and the
advent of Earth observation technology. Therefore, new tools are required to monitor, measure,
analyze, evaluate, and model Earth observation data. Google Earth (GE) was officially launched
by Google in 2005 as a ”geobrowser”, and Google Earth Engine (GEE) was released in 2010 as a
cloud computing platform with substantial computational capabilities. The use of these two tools
or platforms in various applications, particularly as used by the remote sensing community, has
developed rapidly. In this paper, we reviewed the applications and trends in the use of GE and GEE
by analyzing peer-reviewed articles, dating up to January 2021, in the Web of Science (WoS) core
collection using scientometric analysis (i.e., by using CiteSpace) and meta-analysis. We found the
following: (1) the number of articles describing the use of GE or GEE increased substantially from
two in 2006 to 530 in 2020. The number of GEE articles increased much faster than those concerned
with the use of GE. (2) Both GE and GEE were extensively used by the remote sensing community as
multidisciplinary tools. GE articles covered a broader range of research areas (e.g., biology, education,
disease and health, economic, and information science) and appeared in a broader range of journals
than those concerned with the use of GEE. (3) GE and GEE shared similar keywords (e.g., “land
cover”, “water”, “model”, “vegetation”, and “forest”), which indicates that their application is of
great importance in certain research areas. The main difference was that articles describing the use of
GE emphasized its use as a visual display platform, while those concerned with GEE placed more
emphasis on big data and time-series analysis. (4) Most applications of GE and GEE were undertaken
in countries, such as the United States, China, and the United Kingdom. (5) GEE is an important tool
for analysis, whereas GE is used as an auxiliary tool for visualization. Finally, in this paper, the merits
and limitations of GE and GEE, and recommendations for further improvements, are summarized
from an Earth system science perspective.

Keywords: Google Earth; Google Earth Engine; scientometric analysis; meta-analysis

1. Introduction

Global environmental change is one of the most critical challenges facing attempts
to achieve sustainable development. The concept of Earth system science was first pro-
posed by the Earth System Sciences Committee of NASA (National Aeronautics and Space
Administration) in the 1990s [1]. This interdisciplinary science emerged to address global
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environmental change in a way that was systematic and integrated. Yu and Gong [2]
identified three challenges facing traditional geographic information science (GIS): (1) the
3D global representation and visualization of geospatial data from local to global scales; (2)
the preprocessing and mining of geographic big data; and (3) spatial-temporal techniques
for research into geographic processes. There is an urgent need to make significant tech-
nological advances to solve global environmental problems [2]. In connection with this,
the use of Google Earth (GE) and Google Earth Engine (GEE) to analyze environmental
problems at global scales is becoming common.

Released in 2005 by Google, GE has become the most popular and successful virtual
globe tool and can effectively address the first challenge mentioned above [2]. Later,
similar products, such as NASA World Wind (released in 2004), Microsoft Virtual Earth
(released in 2005, now Bing Maps Platform), ESRI ArcGIS Explorer (released in 2006), and
Cesium (released in 2012), emerged [2,3]. The concept of Digital Earth (Virtual Earth) was
initially proposed by former U.S. vice president Al Gore in 1998 and was described as a
computer-generated three-dimensional virtual globe with visualization functions that was
easy to use, was interoperable, and could be used for modeling and simulation [4]. Among
the virtual globe tools described above, GE has proved to be the most popular and has
advantages in terms of visualization, ease of access to a wide range of geospatial data,
and a unified coordinate system; however, it still lacks extendibility [2]. In recent years,
GE was used for research on geomorphology [5–8], ecology [9–12], geology [13–16], the
atmosphere [17,18], disasters [19–25], social science [26], and urban studies [27–32], and
has served as an essential tool in studies of global environmental change. In addition, GE
was also widely used in education, especially in the teaching of geography, because of
its great ability to provide virtual visualizations of the Earth [33–35]. According to the
reviews by Yu and Gong [2], Goodchild [4], and Liang et al. [3], the advantages of GE can
be divided into six categories related to visualization and data exploration, data collection,
validation, data integration and interoperability, simulation, and ease of use. Although the
use of GE as a digital globe is thriving because it provides easy-to-use visualizations, GE
also has many limitations, including inconsistent image quality, a limited capability for
making quantitative measurements, a lack of analytical functionality, and the inability to
support precise global spatial simulations [2]. GE can effectively address the first of the
challenges described at the beginning of the Introduction, but not the other two.

Google Earth Engine (GEE) is a cloud computing platform that was launched by
Google in 2010 [36]. Since then, GEE has demonstrated its capacity to address the second
challenge listed at the beginning of this section. GEE enables cloud computation and is
an effective tool for carrying out the analysis of global geospatial big data. Other cloud
platforms that can be used for processing geospatial big data include Amazon Web Ser-
vices (AWS, released in 2006) and Microsoft Azure (released in 2010) [37]. Compared
with other cloud platforms, GEE supports more types of geospatial data (for example,
Sentinel and early Landsat data) and provide services free to all users, which is espe-
cially important in less developed countries. GEE is currently the most popular cloud
computing platform in Earth system science (see Section 4.1) and was extensively used to
process data related to a variety of fields concerned with environmental change, including
agriculture [38–42], water [43–47], land cover/land use [48–51], disasters [52–56], climate
change [57,58], soil [59–62], wetland [63–68], forest [69,70], and urbanization [71–74] as
well as other fields [37,75]. GEE provides users with publicly downloadable Earth obser-
vation data at the petabyte scale, advanced algorithms for analyzing geographic big data,
and an interactive programming environment. GEE also hosts long time-series of Earth
observation records and plays a vital role in environmental monitoring and analysis [36].
However, in contrast to GE, GEE can only display global geospatial data in two dimensions
and lacks the more advanced visualization capabilities of GE.

GE and GEE can be combined to use as a coupled platform for conducting Earth
system science studies and both are effective tools for addressing the challenges facing
traditional GIS that were proposed by Yu and Gong [2]. Although GE and GEE meet the
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needs of research on global environmental change to a certain extent, tools that can fully
address the challenges proposed by Yu and Gong [2] have yet to emerge, and the progress
of Earth system science still faces challenges. Analyzing these two effective Earth system
science tools is of significance to the development of tools that can address these challenges.
In this review, the similarities and differences between GE and GEE are systematically
examined using scientometric analysis (e.g., by using CiteSpace) and meta-analysis. This
analysis covers the development process, the publications and journals in which relevant
articles were published, application fields, and research focuses. The merits and limitations
of GEE and GE are identified and a comprehensive comparison with other similar tools is
made. Finally, we identify possible further tools for use in Earth system science. We hope
this review will promote the future development of GE and GEE, and provide innovative
ideas that will aid the development of improved tools for use in Earth system science.

2. Materials and Methods
2.1. Data Collection and Processing

We used “Google Earth” and “Google Earth Engine” as keywords to retrieve relevant
articles and review articles from the Web of Science (WoS) (https://www.webofscience.
com/, accessed on 31 May 2021) core collection, including the SCIE (Science Citation Index
Expanded) and SSCI (Social Sciences Citation Index), dated up to January 2021. After
screening, 1334 articles related to “Google Earth” and 565 articles related to “Google Earth
Engine” were obtained (see Supplementary Material).

2.2. Scientometric Analysis

Most of the analysis in this article is based on CiteSpace, a powerful bibliometric anal-
ysis software [76]. CiteSpace can analyze document co-citations, keyword co-occurrences,
and cooperative maps, thus enabling the exploration of knowledge base, structural frame-
works, and research frontiers in research that is based on GE and GEE. These types of
analyses can provide a basis for the subsequent application and development of GE
and GEE.

3. Scientometric Analysis
3.1. Statistical Characteristics

As shown in Figure 1, the number of published papers describing the use of GE and
GEE, and the number of times these papers were cited, have both increased significantly
in recent decades. In the case of GE, there were three main stages: stage one (2006–2008),
which was a period of slow development; stage two (2009–2015), which was a period of
rapid development; and stage three (since 2016), which is a period of proliferation. In
stage one–prior to 2008–the application of GE and related research developed slowly as
GE was not yet fully explored and its functions were limited. For example, many vital
functions (e.g., historical imagery and support for 3D imagery) were not introduced until
after 2008 (https://en.wikipedia.org/wiki/Google_Earth, accessed on 31 May 2021). Later,
GE gradually became more widely used: dozens of articles were published every year, and
the mean increase of citations increased to about 300 times per year. This trend of increased
use continued after 2016 and, in 2020, 231 papers on GE were published and there were
5115 citations.

GEE was launched in 2010; however, it was difficult to make use of GEE in scientific
research until 2015. As a result, there were few relevant publications or citations made dur-
ing the period of 2010–2015. After 2015, the number of publications and citations increased
exponentially due to the significantly improved interface, data cube, and programming
environment. In 2020, the number of GEE publications (299) exceeded the number related
to GE, indicating its great potential for use in scientific research.

https://www.webofscience.com/
https://www.webofscience.com/
https://en.wikipedia.org/wiki/Google_Earth
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Figure 1. Change in the number of publications and citations relevant to GE and GEE (dated up to
January 2021).

A total of 1334 articles describing the use of GE were published in 547 journals relating
to fields such as remote sensing, computer science, the environment, and GIS (Figure 2a).
The top ten journals were Remote Sensing (89), The International Journal of Remote Sensing
(35), Remote Sensing of Environment (30), Geomorphology (22), Computers and Geosciences
(19), The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
(19), The Journal of Maps (19), The Journal of Applied Remote Sensing (17), PloS One (17), and
Sustainability (16). The publications referencing GE spanned a broad spectrum of journals.
However, more than half of all journals (376) published just one article on GE, and only
22 journals published more than ten (Figure 2a). The journals that published papers on
GEE were mainly thematic. A total of 565 papers referencing GEE were published in
121 journals, and the top ten journals accounted for 62% of the total (Figure 2b. These top
ten journals were Remote Sensing (194), Remote Sensing of Environment (65), The ISPRS Journal
of Photogrammetry and Remote Sensing (18), The IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing (16), The International Journal of Applied Earth Observation and
Geoinformation (12), The International Journal of Remote Sensing (10), The ISPRS International
Journal of Geo-Information (10), Water (10), PloS One (9), and Sustainability (8). This meant
that the journals Remote Sensing and Remote Sensing of Environment accounted for 46% of
the total. Of the 121 journals, 68 published only one paper on GEE. Publications on GEE
were mostly about remote sensing, geo-information, and the environment. The GEE papers
were concentrated in a smaller number of journals than the GE papers, and six out of the
top ten journals were the same in both cases. Although the GE and GEE papers were
distributed among a wide range of journals, the actual number of articles posted in most of
these journals was small.
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Figure 2. Journals in which papers related to (a) GE and (b) GEE were published.

GE had a wider impact than GEE in terms of the interdisciplinary nature of appli-
cations and users. The most influential journals that published only GE papers included
Geomorphology, The International Journal of Health Geographics, Cryosphere, and Transportation
Research Record. These journals focus on the expression of land surface morphology, as
well as social and economic information, fields in which GE has a number of considerable
advantages over GEE due to its 3D presentation of geographic information.

The main areas of research related to the GE and GEE papers were obtained from
the WoS website using subject categories (Figure 3). The WoS schema is comprised
of 252 subject areas, such as science, social sciences, and arts and humanities (https:
//incites.help.clarivate.com/Content/Research-Areas/research-areas.htm, accessed on
31 May 2021). The GE publications found related to 102 different disciplines (Figure 3a).
The research areas with more than 100 related articles were in environmental sciences and
ecology (415), remote sensing (295), geology (294), engineering (180), physical geography
(162), imaging science and photographic technology (156), and water resources (108). These
seven categories accounted for 62% of the total (Figure 3a). In relation to the 102 disciplines,
48 research areas were found one or two times, and 66 were found fewer than ten times.
The number of research disciplines covered by the GEE publications were far fewer. The
565 papers on GEE covered only 35 of the WoS disciplines and were concentrated in fewer
disciplines than the GE papers. The research areas with more than 100 publications were
environmental sciences and ecology (365), remote sensing (363), and imaging science and
photographic technology (129). These three research areas alone accounted for 70% of the
total (Figure 3b). It is noteworthy that the top seven research disciplines for GE and GEE
were the same, which indicates that GE and GEE have similar application domains.

The published GE and GEE articles were related to similar research areas. However,
GE was found to have applications in a more extensive range of research areas than GEE.
For example, the GE publications were concentrated in the fields of biology, education,
disease and health, economics, and information science, whereas there was almost no
application of GEE in these research areas.

https://incites.help.clarivate.com/Content/Research-Areas/research-areas.htm
https://incites.help.clarivate.com/Content/Research-Areas/research-areas.htm
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Figure 3. Research disciplines in which (a) GE and (b) GEE were applied.

3.2. Knowledge Base Analysis

A total of 1334 articles referencing GE and 565 articles referencing GEE were exported
from the core WoS collection and analyzed using the CiteSpace bibliometric software [76].
We conducted a literature co-citation analysis, co-occurrence keyword analysis, and coop-
erative mapping analysis [76]. The knowledge base, subject structure, research focus, and
cooperative relationships of the published GE and GEE papers were explored in-depth to
provide a foundation for the application of GE and GEE in the future.

Based on the co-citation analysis of the cited papers, we carried out an analysis of the
relationship between the cited references related to the application of GE and GEE [76]. A
total of six GE clusters were identified, and these included papers on ship detection, the
virtual globe, the mapping of land conversion, Earth’s lithosphere, glacial geomorphology,
and Google Earth. A total of ten GEE clusters were identified, and these included papers
related to tidal flats, Landsat time series, land surface temperature, wetlands, the recursive
hierarchical segmentation method (RHSEG), central Asia, land-use change, nighttime
lights, the NDVI, and yield estimation. The clustering results suggested that GE was
widely applied as a virtual Earth in studies on ship detection [77–83], land-conversion
mapping [84–86], glacial geomorphology [6,87–91], and the Earth’s lithosphere [92].

The use of GE is preferred when simple observations of the land surface are made;
e.g., the Keyhole Markup Language (KML) has significantly improved the visualization
capability of GE. The KML became an Open Geospatial Consortium (OGC) standard in
2008, making GE more interoperable and applicable to a wider range of geospatial data
sets [2]. GEE is used to analyze surface conditions and to perform more in-depth processing
of geographic big data. Although GEE does not have an advantage in terms of visualization,
GEE can process substantial amounts of geospatial data as it supports a range of image
processing algorithms, can process geospatial data on a large scale, and can be used for the
segmentation of remote sensing imagery as well as the analysis of surface conditions.

3.3. Subject Structure Analysis

Based on the analysis of keywords conducted on the literature related to GE (Figure 4a),
it was found that “high resolution” (referring to spatial resolution) had the highest fre-
quency, with 1039 occurrences. GE provides free, easy, and stable high-spatial resolution
satellite data of the whole globe. These data have good horizontal positional accuracy [93],
but improvements to the consistency of the image quality are still required [2]. From
Figure 4a, it can be seen that the keywords with a large number of occurrences (larger areas
in the figure) included “model”, “land cover”, “change detection”, “region”, “assessment”,
“field”, “overall accuracy”, “estimated”, and “visualization”; these occur 743, 431, 412,
377, 356, 332, 307, 259, and 258 times, respectively. It can be observed from the keywords
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that 3D modeling based on the data provided by GE is one of the main ways in which GE
was applied. That is, GE was the primary data provider for various land-cover observa-
tions. In addition, GE also served as a platform for displaying a wide range of geographic
information, including information on water, forests, urban and other land cover types,
vegetation indices, sample data, and other derived products. Sphere visualization is one of
GE’s most distinctive techniques and enables GE to display heterogeneous data sets for
use in academic communication. Thus, Earth system scientists can use GE as a tool to more
easily conduct Earth system science research from a global perspective.

According to the analysis of keywords in the literature on GEE (Figure 4b), it was
found that “remote sensing”, “regions”, and “Landsat satellite” appeared most frequently,
for a total of203, 197, and 189 times, respectively. GEE was used to collect various types of
open-source geographic information, including remote sensing data, data on land-surface
conditions, and other relevant derived products that are freely accessible to users. However,
there are several limitations on the use of datasets in GEE: e.g., the data sets stored in GEE
are not comprehensive (for example, complex SAR is not included), and there is a limit to
the amount of user-uploaded data that can be stored. From Figure 4b, it is evident that the
most frequently occurring keywords include “water”, “high resolution”, “management”,
“random forest”, “algorithm”, “cloud platform”, and “model”, which appear 174, 165, 154,
134, 129, 126 and 124 times, respectively. The machine-learning algorithms in GEE allow
for convenient data processing and information extraction. However, there are still some
types of image-processing algorithms that are not supported by GEE, such as Gaussian
and Laplacian filters, edge-detection methods, and frequency domain algorithms [36]. Due
to the advantages that GEE has in processing geographic big data, the use of GEE makes it
simpler and more efficient to obtain annual regional geographical information [37]. The
GEE keywords were found to be different from those found for GE and included words
related to large-scale or global research and regional temporality (keywords: “time series”,
“annual”, “period”, “regions”, and “large scale”). GEE has wider applications in climate
and the environment than GE; however, many keywords–such as “land cover”, “water”,
“model”, “vegetation”, and “forest”–commonly occurred in relation to both.

Figure 4. Keywords related to (a) GE and (b) GEE.

Based on the three stages that were discussed in relation to Figure 1, we divided the
occurrence frequencies shown in Figure 5a into three stages for analysis. During stage
one (2006–2008), although the application of GE was then still in its infancy, many of the
keywords used were consistent with future applications and included “Google Earth”,
“GIS”, “model”, “Landsat”, “climate”, “China”, “time series”, and “remote sensing”.
These keywords had a relatively high frequency, or betweenness centrality. In stage two
(2009–2015), the application of GE entered a period of stable development. Again, many
keywords that appeared during this period determined the primary research direction, and
included “classification”, “land cover change”, “MODIS”, “change detection”, “accuracy”,
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“pattern”, “image classification”, “forest”, and “cover”. These keywords represented the
main applications of GE during this period. In stage three (since 2016), the application
of GE has boomed, and many new keywords were used. Among these new keywords,
the ones that appeared most frequently were “CNN”, “neural network”, “soil”, “deep
learning”, and “Sentinel”, which reflects the use of high-resolution images and artificial
intelligence during this period.

Figure 5. Co-occurrence keywords were used in relation to (a) GE and (b) GEE. The size of the
node represents the frequency of the occurrence of the keyword, the connecting lines indicate the
co-occurrence relationships for the keyword, and a purple outer circle indicates that the node is a key
node (betweenness centrality > 0.1).

GEE was released later than GE, which means that it was some time before applications
of GEE appeared in the literature; since then, however, the number of appearances has
increased rapidly. Papers describing the application of GEE began to appear in 2015
(Figure 5b), and, since then, many keywords have appeared, including “GEE”, “Landsat”,
“land cover change”, “classification”, “cover”, “image classification”, “area”, “forest”,
“map”, “cloud computing”, “time series”, “remote sensing”, “MODIS”, “vegetation”,
“China”, “algorithm”, “climate”, “random forest”, “Sentinel”, and “dynamics”. Many
similar keywords were used in relation to GEE and GE, especially in studies of land
cover/land use, such as those on vegetation, water, soil, and rivers and lakes, as well as in
studies on classification methods (e.g., machine learning). The main difference was that
GEE applications focused more on time series, cloud computing, and geographic big data.
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3.4. Research Contribution Analysis

Tables 1 and 2 show the top ten key papers on GE and GEE applications that were
obtained using the burst detection tool in the CiteSpace software. The burst detection tool
identifies literature that makes an outstanding contribution to a particular research area.
Terms such as strength, begin, and end of papers are also obtained using burst detection
tool. The strength of the burst represents the importance of the study, while the start and
end years represent the range of its influence [76].

Table 1 lists the cited papers that were found to correspond to the strongest citation
bursts in GE articles. This list consists of papers that were important to the promotion,
development and application of GE. In 2006, Butler [94] published a paper that described
a systematic evaluation of the GE platform. He stated that GE was changing the world
because it made the communication of spatial information between stakeholders and
government agencies feasible. GE’s data-sharing capability was an essential property for
global climate change studies. Potere [93] verified the horizontal positioning accuracy
of high-resolution GE imagery by selecting 436 control points in 109 cities worldwide.
The results obtained using GE imagery were found to be sufficiently accurate for most
urban research and the reliability of this imagery for use in subsequent applications
was verified. Yu and Gong [2] published the first review of GE in 2012; this review
examined the progress made in using GE, prospects for its use, and identified the merits
and limitations of GE when applied to Earth science. This review was instructive in terms
of the consideration of future applications of GE and the development of the virtual globe
platform. Other important papers discussed new types of global geographic data [95–98]
and image processing or accuracy assessment algorithms that had a significant impact on
the application of GE [99,100] and Earth system science. Chang et al. [101] built a dengue
surveillance system that was based on GE images and geographic information related to
the incidence of dengue fever. This proved to be a successful GE application.

Table 1. GE papers with the strongest citation bursts.

Article Author Year Strength Begin End

The web-wide world [94] Butler, D 2006 10.13 2008 2011

Google Earth as a virtual globe tool for Earth science
applications at the global scale: progress and

perspectives [2]
Yu, L 2012 9.92 2013 2017

Horizontal Positional Accuracy of Google Earth’s
High-Resolution Imagery Archive [93] Potere, D 2008 6.74 2009 2013

MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets [95] Friedl, MA 2010 6.14 2012 2015

Finer resolution observation and monitoring of global
land cover: first mapping results with Landsat TM

and ETM+ data [96]
Gong, P 2013 5.94 2015 2018

Deep Residual Learning for Image Recognition [99] He, KM 2016 5.64 2018 2021

High-Resolution Global Maps of 21st-Century Forest
Cover Change [97] Hansen, MC 2013 5.61 2014 2018

Good practices for estimating area and assessing
accuracy of land change [100] Olofsson, P 2014 5.2 2017 2019

Global land cover mapping at 30 m resolution: A
POK-based operational approach [98] Chen, J 2015 5.12 2017 2018

Combining Google Earth and GIS mapping
technologies in a dengue surveillance system for

developing countries [101]
Chang, AY 2009 4.8 2012 2014
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Table 2 lists the cited papers that were found to have the strongest citation bursts in
GEE articles. Three papers overlapped with the list of GE papers shown in Table 1. The
overlapped three papers (i.e., [96,97,100]) reported on progress in using global land-cover
products and other related findings, including the methods used for global product con-
struction and accuracy assessment. Although these three documents were more focused on
GE, in these studies, GE was only used as a data provider for assessment and display. In
contrast, GEE is a cloud computing platform that has the capacity to provide and process
geographic big data, and provides an excellent platform for carrying out global land cover
research [96,97,100]. Landsat data are a vital source of satellite imagery that is available
on GEE. Roy et al. [102] evaluated the capabilities of Landsat 8 data and identified new
opportunities for scientific research and applications using these data. This paper also
laid a solid foundation for the application of Landsat 8 remote sensing data in resource
management and global change studies using GEE. An important characteristic of GEE is
the availability of geographic big data. Wulder et al. [103] explained the role of free data in
promoting new scientific research, applications, and international collaboration on Earth
observation. GEE’s integration of a range of accessible geographic data (including Land-
sat [102], Sentinel [104], and MODIS [105] data) also promoted progress in Earth system
science. Studies on various image processing and geophysical dataset acquisition methods
became the main driving force behind the promotion of the application of GEE [106–109].

Table 2. GEE papers with the strongest citation bursts.

Article Author Year Strength Begin End

High-Resolution Global Maps of 21st-Century Forest
Cover Change [97] Hansen, MC 2013 24.13 2015 2018

Finer resolution observation and monitoring of global
land cover: first mapping results with Landsat TM and

ETM+ data [96]
Gong, P 2013 6.46 2016 2018

Good practices for estimating area and assessing accuracy
of land change [100] Olofsson, P 2014 5.36 2016 2019

Landsat-8: Science and product vision for terrestrial
global change research [102] Roy, DP 2014 5.06 2016 2019

Opening the archive: How free data has enabled the
science and monitoring promise of Landsat [103] Wulder, MA 2012 4.39 2016 2017

Object-based cloud and cloud shadow detection in
Landsat imagery [106] Zhu, Z 2012 4.39 2016 2017

Development of gridded surface meteorological data for
ecological applications and modelling [107]

Abatzoglou,
JT 2013 3.7 2015 2018

Automated Water Extraction Index: A new technique for
surface water mapping using Landsat imagery [108] Feyisa, GL 2014 3.65 2018 2019

Sentinel-2: ESA’s Optical High-Resolution Mission for
GMES Operational Services [104] Drusch, M 2012 3.09 2015 2017

Multitemporal settlement and population mapping from
Landsat using Google Earth Engine [109] Patel, NN 2015 2.75 2015 2017

3.5. Cooperation Network Analysis

At the institutional level, Chinese scientific institutions have dominated the application
of GE and GEE. The top ten scientific institutions in terms of the application of GE were
the Chinese Academy of Sciences (101), the University of Chinese Academy of Sciences
(39), Wuhan University (28), Beijing Normal University (17), Tsinghua University (13),
Ghent University (12), China University of Geosciences (11), Beihang University (11), the
University of California, Berkeley (10), and the Catholic University of Leuven (10). In terms
of the application of GEE, the top ten institutions were the Chinese Academy of Sciences
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(102), the University of Chinese Academy of Sciences (53), the United States Geological
Survey (23), Tsinghua University (20), Google Incorporated (18), the National Aeronautics
and Space Administration (17), Wuhan University (17), the University of Oklahoma (15),
the United States Forest Service (13), and the China University of Geosciences (12). The
number of published papers from Chinese scientific institutions was far greater than that
from institutions in other countries.

At the national level, the number of publications was more concentrated. The top
five countries published 1022 GE papers (including duplicates), which accounted for
51.8% of the total number of published papers. The top five countries were the USA
(397), China (357), the United Kingdom (115), India (82), and Germany (71). The top five
countries published 526 GEE papers (including duplicates), which accounted for 57.9%
of the total number of published papers. The top five countries, in this case, were the
USA (229), China (203), the United Kingdom (43), Australia (31), and Canada (31). In
summary, the United States and China have dominated the application of GE and GEE, and
have published a considerable number of related papers, as compared to other countries.
According to Nature Index (https://www.natureindex.com/, accessed on 31 May 2021),
the United States and China have the largest number of scientific institutions (2637 and
1485, respectively) and published articles (29,207 and 19,084, respectively in 2020) in high-
quality peer-reviewed journals. These top-ranking countries produce high-quality research
output and participate in high-quality collaboration, which supports our results. Although
the United States is not as prominent in terms of the number of published papers at the
institutional level, it has many high-level scientific institutions and is important in terms of
the number of published papers at the national level.

4. Discussion
4.1. Important Virtual Globes and Remote Sensing Cloud Computing Platforms

Virtual globes were in development for a long time, and, here, we describe several of
the popular virtual globes that were first mentioned above. World Wind is a completely
open-source virtual globe that is different from GE in that it is a software development kit
(SDK) that provides a geographic rendering engine: users can build their own geospatial
applications to solve problems specific to their own domains (https://worldwind.arc.nasa.
gov/, accessed on 31 May 2021). Bing Maps (https://cn.bing.com/maps, accessed on 31
May 2021) and ArcGIS Explorer (https://www.esri.com/zh-cn/arcgis/products/arcgis-
explorer, accessed on 31 May 2021) are more akin to web-maps or map-browsers, and
mainly provide real-time navigation and positioning rather than 3D globe visualization. Ce-
sium and OpenWebGlobe are open-source 3D geospatial virtual globes based on JavaScript
and WebGL that support multiple scene modes (3D, 2.5D, and 2D). World Wind, Cesium,
and OpenWebGlobe are superior to GE in terms of multi-dimensional visualization and
extendibility, but do not have GE’s ease of use and stable high-spatial resolution images.
We used the same method used for GE and GEE articles to retrieve articles related to these
virtual globes and found that the number of articles was far less than for GE:World Wind
(18), Bing Maps (43), ArcGIS Explorer (3), Cesium (6) and OpenWebGlobe (0). The results
found by Yu and Gong [2] confirmed this.

Cloud computing has emerged as a popular research topic in recent years [110,111]. It
was widely applied to geospatial big data, and a large number of remote sensing cloud
computing platforms were launched. AWS is a comprehensive and widely adopted cloud
platform that was developed earlier than GEE and provides a large number of application
program interfaces (APIs) [36,112]. Microsoft Azure is a platform contemporary with GEE
that provides machine-learning services [36,37]. AWS and Microsoft Azure are both pay-
as-you-go platforms [36]. NASA Earth Exchange (NEX) works in a virtual environment to
ensure maximum ease-of-use and reproducibility [113]. GEE provides a larger number of
geospatial data sets than all of these platforms [112]. Although the API of GEE includes only
JavaScript and Python, it is able to meet the needs of most users [112]. Gomes et al. [114]
made detailed comparisons of other cloud computing platforms, such as Sentinel Hub

https://www.natureindex.com/
https://worldwind.arc.nasa.gov/
https://worldwind.arc.nasa.gov/
https://cn.bing.com/maps
https://www.esri.com/zh-cn/arcgis/products/arcgis-explorer
https://www.esri.com/zh-cn/arcgis/products/arcgis-explorer
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(SH), Open Data Cube (ODC), and OpenEO. They believed that GEE is an easy-to-use and
mature remote sensing cloud computing platform, and that the data abstraction, physical
infrastructure abstraction, processing scalability, and storage scalability provided by GEE
stand out as advantages over existing platforms. ODC is currently the best available
solution for geospatial big data and has significant advantages over GEE in terms of open
governance, infrastructure replicability, data access interoperability, and extendibility. Due
to the ease-of-use and maturity of GEE, it was used more widely in Earth system science
than other platforms (with the number of relevant articles retrieved from WoS being 14 for
AWS, 3 for Microsoft Azure, 34 for NASA Earth Exchange, 5 for SH, and 3 for ODC).

4.2. Correlation Analysis between Published GE and GEE Papers

Figure 6a shows the number of GE and GEE articles that were published in a range of
journals. As a peer-reviewed open-access academic journal focused on remote sensing and
other geographic disciplines (https://en.wikipedia.org/wiki/Remote_Sensing_(journal),
accessed on 31 May 2021), Remote Sensing has published the largest number of papers
overall. There are many other journals that have published GE and GEE papers in fields that
are related to remote sensing, including land-cover classification, agriculture management,
the atmosphere, and climate research. It can be seen, therefore, that GE and GEE are
important tools for remote sensing research.

Figure 6. Numbers of published GE and GEE papers shown by (a) journal and (b) research area.

Figure 6b shows the number of GE and GEE papers related to different research areas
that were published. The research areas in which GE and GEE were applied frequently
include environmental sciences and ecology, remote sensing, imaging science, photographic
technology, geology, engineering, and physical geography. Although general patterns in
the application of GE and GEE can be seen from these common research areas, the specific
ways in which GE and GEE are applied are not clear.

We selected 14 papers describing studies in which both GE and GEE were used from
WoS to analyze the relationship between how GE and GEE are used (Table 3). We found
that, in most of these studies, GE was used to verify the accuracy of the processed results.

https://en.wikipedia.org/wiki/Remote_Sensing_(journal)
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This is because GE provides imagery with a high-spatial resolution and thus can be used to
examine the ground surface quickly, accurately, and efficiently. GEE was mainly used as
the primary data provider and image processing platform. GEE was the most important
tool in many of these studies, with GE being used as an auxiliary tool. The lack of GIS
analysis functions limits the application of GE, and this deficiency can be significantly
compensated for by using GEE. Thus, the combination of GE and GEE can significantly aid
geospatial data collection and analysis.

Table 3. Articles describing studies in which both GE and GEE were used.

Article Title Author Year of
Publication GE Application GEE Application

Mapping global urban boundaries from the global artificial
impervious area (GAIA) data [115] Li, X 2020 Data validation Image-processing platform

Nation-scale mapping of coastal aquaculture ponds with
Sentinel-1 SAR data using Google Earth Engine [116] Sun, Z 2020 Data validation Image- processing platform

Remote sensing estimation of catchment-scale reservoir
water impoundment in the upper Yellow River and

implications for river discharge alteration [117]
Deng, X 2020 Primary data sources

(visual interpretation) Primary data sources

Incorporating synthetic aperture radar and optical images to
investigate the annual dynamics of anthropogenic

impervious surface at a large scale [118]
Lin, Y 2020 Data validation Image- processing platform

Mapping coastal wetlands of China using time-series
Landsat images in 2018 and Google Earth Engine [119] Wang, X 2020 Data validation Image- processing platform

Spatial detection of alpine treeline ecotones in the Western
United States [120] Wei, C 2020 Data validation Image- processing platform

Rapid generation of global forest cover map using Landsat
based on the forest ecological zones [121] Zhang, X 2020 Data validation Image- processing platform

The migration of training samples towards dynamic global
land cover mapping [122] Huang, H 2020 Data validation Image- processing platform

Detecting forest disturbance and recovery in Primorsky
Krai, Russia, using annual Landsat time series and

multi-source land cover products [123]
Hu, Y 2020 Data validation Image- processing platform

From woody cover to woody canopies: how Sentinel-1 and
Sentinel-2 data advance the mapping of woody plants in

savannas [124]
Zhang, W 2019 Training samples Image- processing platform

Automating offshore infrastructure extractions using
synthetic aperture radar and Google Earth Engine [125] Wong, B A 2019 Data validation Image- processing platform

Long-term surface water dynamics analysis based on
Landsat imagery and the Google Earth Engine Platform: a

case study in the middle Yangtze river basin [43]
Wang, C 2018 Data validation Image- processing platform

Landsat-based classification in the cloud: an opportunity for
a paradigm shift in land cover monitoring [50] Azzari, G 2017 Data validation Image- processing platform

Mapping the dynamics of eastern redcedar encroachment
into grasslands during 1984–2010 through PALSAR and

time series Landsat images [126]
Wang, J 2017 Data validation Image- processing platform

4.3. Merits and Limitations of GEE and GE

The potential of both GE and GEE for use in studies of global environmental change
was demonstrated soon after their appearance [59,109,127,128]. Although GE and GEE are
both products of Google Inc., almost all of the functions on these two platforms are freely
available (although GE also has premium versions of PRO and Enterprise with additional
functions that are designed to meet particular user needs). The advantages of GE lay in
its ability to visualize global scenes, whereas its computational and analytical capacities
are limited. For example, although it can be considered to be a virtual Earth, GE cannot
simulate social and environmental phenomena through modeling and simulation, and has
not fully satisfied Gore’s vision of what a virtual Earth should be. This deficiency can be
compensated for by GEE due to the advantages that GEE has in terms of data collection,
analysis, and modeling, thus extending the ways in which GE and GEE are applied in
global environmental change studies. However, it should be noted that the geospatial data
and algorithms available in GEE do not cover a wide range. It is still a challenge to model
complex geographic processes, and the issues commonly encountered in the use of cloud
platforms, such as the network transmission rate, computing power allocation problems,
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and storage limitations, also exist in GEE. In addition, GE and GEE are both commercial
products, and the security of individual, institutional, and national data remains a concern.

GE is a data fusion platform that has visualization as its primary function (Table 4).
However, GE does not possess real-time modeling capabilities. Its use of the KML language
means that there is great potential for the use of GE in geospatial studies in the future.
The most significant limitation of GE is the lack of GIS analysis, which makes it difficult
to improve the data preprocessing and analysis. GE can serve as a virtual world or
“natural” earth; by using GE, users can observe global real-time changes or predict future
conditions [2]. These functions could be improved by combining GE with cloud-computing
technology. GE would then become a browser on which users would only need to initiate
a request before receiving the processed results from the server [4]. Yu and Gong [2]
envisioned that GE could generate artwork or statistical reports for use in scientific papers
and reports. The reconstruction of historical relics and cities based on 3D/4D visualization
techniques is also a trend. For some time now, studies were carried out on the application
of GE as a geography teaching tool [34,129]. It is possible that GE could be made into
an effective teaching tool by adding teaching content; GE would then greatly assist the
development of geospatial thinking.

Table 4. Merits and limitations of GEE and GE.

Google Earth Google Earth Engine

Merits

• Easy to use [2–4,130]
• Easy visualization and availability of 3D models

[2–4,130]
• Freely accessible data collections [2,3,130]
• Single coordinate system and KML, which help

with the establishment of a perspective view of
map/image layers and integration of multisource
data sets [2,3]

• Spherical visualization techniques are available
[2]

• Provides stable, high-spatial resolution global
satellite data with good horizontal positional
accuracy [2,93,130]

• Good extendibility, but somewhat lacking
compared to other virtual Earths [2,4]

• Freely accessible data collections [36,37,75]
• Capable of geospatial big data analysis based on

Google’s substantial computational capabilities
[36,37,75]

• Image-processing algorithms are supported
[36,37,75]

• JavaScript and Python API supported [36,37,75]
• Cloud platform: performance requirements for

the user’s computer are low [36]

Limitations

• Inconsistent image quality and inconsistent
radiometric distortion [2,130]

• Inadequate representation and tessellation of the
Earth’s surface [2]

• Privacy issues [130]
• Limited ability to display dynamic information

[4]
• Limited modeling and simulation ability [3,4]
• Lack of GIS functions [2–4,130]
• Lack of geospatial big data analysis capabilities

[3]

• Privacy issues in relation to private data [36]
• Limited upload and download speeds [36]
• Supported algorithms are not comprehensive

(e.g., deep learning algorithms are not available)
[36]

• Limited numbers of training samples and
validation samples for large scale classification
[36,131]

• SAR data (except Sentinel-1) and high-resolution
(except National Agriculture Imagery Program
(NAIP) and Planet Skysat) data are not
supported [36,37]

• Memory issues and storage limitations affect
computational abilities [36,37,75]

• Difficult to use; developing new tools is not easy
[36]

• Simulation of complex geographical processes
remains a challenge [132]

Compared with GE, GEE is a more advanced platform that has stronger cloud comput-
ing power (Table 4). Although GEE is not a virtual Earth, the technologies available in GEE
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can support the development and improvement of the virtual Earth. The main part of GEE
(the Earth Engine (EE) Code Editor) is a web-based interactive development environment
(IDE) for the Earth Engine JavaScript API, which develops complex geospatial workflows.
At present, GEE supports a web APP (EE Explorer), which has limited functionality. In
the future, it may be possible to develop an APP that is convenient for all users by, for
example, optimizing the visualization of GEE and adding more data interfaces that can
accept different types of geospatial data (such as geospatial data collected in real-time).
GEE runs calculations as scripts, which is not convenient for users carrying out complex
procedures or who require transitional data sets. It would be an improvement if users
could control more of the data processing and if there was an interface of modules that
could directly combine different tools. It is also important to increase the necessary data
and algorithms mentioned in Table 4.

5. Conclusions

In this review, the peer-reviewed literature on GE and GEE in the WoS core collec-
tion was analyzed using scientometric analysis and meta-analysis. We comprehensively
summarized the ways in which GE and GEE were applied, and the trends in these ap-
plications, as well as the differences and similarities in the way that the two tools were
used. In addition, the merits and limitations of GE and GEE were also discussed. Our
most significant findings, which will be of use to the wider remote sensing community,
include the following: (1) GE and GEE are multidisciplinary tools. Published papers on
GE have appeared in a wider range of journals covering a wider range of research areas
than GEE papers (Section 3.1). Compared to GEE, GE papers covered a broader range of
research areas, such as biology, education, disease and health, economics, and information
science. (2) Many similar keywords were used in GE and GEE papers (including “land
cover”, “water”, “model”, “vegetation”, and “forest”), which indicates that GE and GEE
are used in similar research areas (Section 3.3). The main difference is that GE is mainly
used as a visual display platform, whereas GEE is mainly used for big data and time-series
analysis. (3) Most of the applications of GE and GEE were concentrated in a small number
of countries, including the United States, China, and the United Kingdom (Section 3.5). As
far as current applications are concerned, GE is used more as an auxiliary tool in scientific
research owing to the lack of a GIS spatial analysis function. In contrast, its geographic
big data processing and cloud-computing capabilities make GEE an effective tool for the
remote sensing community (Section 4.3).

In summary, because of GE’s and GEE’s abilities to display or analyze global geospatial
data, they have obvious advantages in terms of global integration and dynamic research
(Section 3.3). Both platforms have their advantages and limitations (Section 4.3). Although
GE has a significant advantage in terms of visualization, ease-of-use, and interoperability,
it is limited by its lack of a GIS function, inconsistent image quality, and security issues.
GEE has a more comprehensive range of functions. It also has the capability to analyze
geospatial big data, provides a greater number of geospatial data sets, and supports
various image-processing algorithms. Still, the visualization capability of GEE is not an
advantage. GEE’s modeling capabilities (simulation of complex geographical/ecological
processes, such as urban expansion modeling and vegetation dynamic modeling) are
limited. It also lacks complex SAR and high-resolution geospatial data sets and the ability
to perform optimization.Complex algorithms are difficult to implement, and optimization
algorithms are implemented locally. At present, the development of GEE is still in its
infancy. Nonetheless, it is undeniable that GEE has the potential to become an effective tool
for use in Earth system science. Significant improvements in the supporting technology are
needed, however. The addition of more computing resources, more open-source data sets,
more image-processing algorithms, and the contributions of more Earth system scientists
will allow GEE to become an effective tool that combines monitoring, modeling, analysis,
assessment, and management decisions that can be applied to solve global environmental
problems.
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The spherical visualization provided by GE is an advantage. Although GEE provides
near real-time data, it is limited by its computing resources and the supported algorithms
(Section 4.3). As a result, its capabilities relating to modelling and simulating the global
environment are also still limited. The ideal virtual Earth that was described in Gore’s
speech had the capacity to model and simulate the global environment and to dynamically
display the environment in real-time as well as the future. Such a virtual Earth would
display the Earth’s morphology using the advanced technologies of cloud computing, 3D
and virtual reality (VR), and would have the capability to process big data. In this way,
people would be able to observe global real-time (e.g., it will be very useful for Asian
elephant’s migration in China very recently [133]) or simulated future environmental
changes using internet-connected devices, and scientists would easily be able to obtain
details of environmental conditions or other geo-information at any place and time. Such a
virtual Earth would meet the challenges proposed by Yu and Gong [2] and would be an
effective tool for use in Earth system science.
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