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Abstract: The monitoring of human activity and vital signs plays a significant role in remote health-
care. Radar provides a non-contact monitoring approach without privacy and illumination concerns.
However, multiple people in a narrow indoor environment bring dense multipaths for activity
monitoring, and the received vital sign signals are heavily distorted with body movements. This
paper proposes a framework based on Frequency Modulated Continuous Wave (FMCW) and Impulse
Radio Ultra-Wideband (IR-UWB) radars to address these challenges, designing intelligent spatial-
temporal information fusion for activity and vital sign monitoring. First, a local binary pattern (LBP)
and energy features are extracted from FMCW radar, combined with the wavelet packet transform
(WPT) features on IR-UWB radar for activity monitoring. Then the additional information guided
fusing network (A-FuseNet) is proposed with a modified generative and adversarial structure for vital
sign monitoring. A Cascaded Convolutional Neural Network (CCNN) module and a Long Short Term
Memory (LSTM) module are designed as the fusion sub-network for vital sign information extraction
and multisensory data fusion, while a discrimination sub-network is constructed to optimize the
fused heartbeat signal. In addition, the activity and movement characteristics are introduced as
additional information to guide the fusion and optimization. A multi-radar dataset with an FMCW
and two IR-UWB radars in a cotton tent, a small room and a wide lobby is constructed, and the
accuracies of activity and vital sign monitoring achieve 99.9% and 92.3% respectively. Experimental
results demonstrate the superiority and robustness of the proposed framework.

Keywords: activity monitoring; vital sign monitoring; FMCW radar; IR-UWB radar; feature
extraction and fusion; CCNN; LSTM; generative adversarial network

1. Introduction

With the rapid development of the Internet of Things, remote human sensing has
received considerable attention for health-care applications. Measuring humans’ activity
and physiological information is crucial for diverse remote monitoring scenarios, ranging
from elder fall detection to patient monitoring [1,2].

Various sensors have been applied for remote health-care. Compared with contact
devices, such as electrocardiogram (ECG) and photoplethysmograph (PPG), non-contact
sensing not only avoids inconvenience and discomfort, but also provides daily health
monitoring. Non-contact sensors are mainly classified as vision-based, infrared-based and
radio-based. Vision-based sensors suffer from insufficient illumination and raise privacy
concerns, while the infrared-based solutions are temperature-sensitive. In radio-based
sensors, the radio frequency identification (RFID) tags and Wi-Fi require the participant to
be equipped with the dedicated devices, which limit the application scenarios [3]. Radar
systems are not affected by light and temperature conditions, leveraging reflected signals
from the human body to analyze the activity and vital sign information. Radar systems
also show outstanding performance in personnel recognition [4], people counting [5], gait
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classification [6], human activity recognition (HAR) [7–12], vital sign monitoring [13,14]
and human identification [15].

To provide multiple observations and more accurate measurements, utilizing multiple
radars and fusing multisensory information have been investigated for human sensing.
In [16], a bidirectional Long Short Term Memory (LSTM) neural network and a Naive Bayes
Combiner (NBC) are combined to fuse data from four radars for human gait classification.
A deep learning approach is proposed in [17] for fall detection using Range-Doppler
radars. In [18], an adaptive Kalman filtering algorithm is designed to fuse radar data
from multiple channels to detect the respiration. [19] develops a distributed MIMO radar
system with iterative adaptive approach to localize multiple objects and estimate their
respiration rates and heartbeat rates. Although these studies discuss activity detection
or respiration monitoring with multiple radars, there still lacks a framework to monitor
the activity and vital signs simultaneously for moving people in the indoor environment.
Dense and superposed multipaths from multiple people with body movements in a narrow
and confined environment bring difficulties for activity monitoring. Moreover, different
activities of people lead to varying distances and angles between the radar antenna and
the target’s chest, while a large angle and changing distances badly affect the vital sign
monitoring accuracy. In addition, the diverse movements of the human body create serious
distortions of the vital signals, making it a challenge to extract valid vital sign information.

This paper proposes a framework to address these problems, achieving intelligent
spatial-temporal information fusion on Frequency Modulated Continuous Wave (FMCW)
and Impulse Radio Ultra-Wideband (IR-UWB) radars for indoor activity and vital sign
monitoring for moving people. Figure 1 shows the flowchart of the proposed framework,
composed by the feature extraction and fusion for activity monitoring, and the A-FuseNet
for vital sign monitoring. The main contributions are listed as follows:

1. A novel feature extraction and fusion method is proposed with FMCW and IR-UWB
radars for activity monitoring with various body movements, combining global and
local spatial-temporal distribution information in 3-D space. For FMCW radar, the
energy features of the Range-Doppler map (RDM) are extracted as the global spatial
distribution, while the local binary pattern (LBP) features of the azimuth-elevation
angle spectrum are proposed to complement the local contrast of angles. In addition,
continuously received signals in IR-UWB radar are regarded as a 2-D radar matrix for
extracting the spatial-temporal texture features with 2-D wavelet packet transform
(WPT). These features are concatenated as a vector and combined with a random
forest for activity classification.

2. The additional information guided fusion network (A-FuseNet) is proposed for ro-
bust vital sign monitoring against distortions caused by body movements, to extract,
recover and fuse valid heartbeat information. It is proposed with the modified gener-
ative and adversarial structure, comprised of a fusion sub-network to generate the
fused vital sign signal, and a discrimination sub-network for optimization. Consid-
ering the spatial variability and temporal correlation of data from different radars,
the fusion sub-network is designed with a Cascaded Convolutional Neural Network
(CCNN) module for vital sign information extraction and fusion, as well as an LSTM
module to analyze and generate the heartbeat signal with temporal relevance. The
discrimination sub-network optimizes the fused signal with a real sample. More-
over, the activity and body movement characteristics are introduced to A-FuseNet as
additional information to guide the fusion and optimization.

3. A dataset is constructed with an FMCW and two IR-UWB radars in three indoor
environments for activity and vital sign monitoring, including a narrow and confined
cotton tent, a small room with many sundries, and a wide and empty lobby. The multi-
radar data are generated for two people performing three different activities including
sitting, standing and lying, with four kinds of body movements including keeping
still, arms and legs moving randomly, the upper body waggling back and forth, and
turning left and right periodically. Six testers participated in the experiments, and a
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total of 352 min × 3 radar data were collected. This dataset is now available at https:
//github.com/yangxiuzhu777/Multi-Radar-Dataset (accessed on 1 July 2021). The
accuracies of activity and vital sign monitoring achieve 99.9% and 92.3% respectively
on the constructed dataset. Different classifiers and four other methods are compared
for activity monitoring, while four other methods are conducted for comparison
in vital sign monitoring. The results verify the effectiveness and robustness of the
proposed framework.
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Figure 1. Flowchart of the proposed framework, composed by the feature extraction and fusion for activity monitoring and
the A-FuseNet for vital sign monitoring.

The remainder of this paper is organized as follows: Section 2 describes the experi-
mental setup and dataset generation. Section 3 presents the proposed feature extraction
and fusion for activity monitoring. In Section 4, the proposed A-FuseNet for vital sign
monitoring is described in detail. Section 5 presents the experimental results and analysis,
while Section 6 concludes this paper.

2. Experimental Setup and Dataset Generation
2.1. Dataset Generation

In this paper, the multi-radar dataset for activity and vital sign monitoring is con-
structed with an FMCW and two IR-UWB radars. The IR-UWB radar is a System on Chip
(SoC) with a built-in transmitter and receiver, based on the XeThru X4M03 chip produced
by Novelda AS, Oslo, Norway. It has a center frequency of 7.29 GHz, the bandwidth in the
−10 dB concept of 1.5 GHz, and the sampling rate at the receiver of 23.328 GHz. This chip
has two differential antennas for transmitter and receiver respectively, which are directional
patch antennas with the central angle of 65◦ on azimuth and elevation. The datasheet
and hardware configurations of the X4M03 chip is public available in [20]. The FMCW
radar system consists of the IWR1843BOOST module with three transmitting antennas and
four receiving antennas, and the DCA1000 data-capture adapter for raw data collection,
produced by Texas Instruments Inc Dallas, TX USA. The FMCW transceiver operates at
76 GHz to 81 GHz, with the transmitting power of 12 dBm. The horizontal and elevation
angle of the onboard antennas are 50◦ and 20◦ in the 6 dB-beamwidth concept, respectively.
More hardware and datasheet information about the IWR1843 chip is described in [21].
The personal computer controls two IR-UWB and an FMCW radars by the USB cables, and
collects the raw data from three radars.

https://github.com/yangxiuzhu777/Multi-Radar-Dataset
https://github.com/yangxiuzhu777/Multi-Radar-Dataset
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The experimental setup is shown in Figure 2. An FMCW and two IR-UWB radars were
employed along a linear baseline at a height of 1.45 m for data collection. The FMCW radar
was deployed at the midpoint of two IR-UWB radars, 0.55 m apart from them. In order to
validate the performance of the proposed framework, three different indoor environments
at Beijing University of Posts and Telecommunications were considered for multi-radar
data collection. These indoor environments included: (a) a narrow and confined cotton tent
with an area of 1.5 m × 2 m; (b) a 3.5 m × 2.2 m small room with many sundries; and (c) a
wide and empty lobby with an area of 4.3 m × 8.5 m, as shown in Figure 2a–c respectively.
Participants were required to perform different activities with various body movements in
front of three radars. All the radars collected data at 20 frames-per-second. The oximeter
with FDA certification served as the reference for vital sign monitoring, and was equipped
for each person to record heartbeat rate. These three radars began data collection with
multi-thread, and the timestamp was attached to each recorded signal from three radars
and the oximeter for data synchronization.
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Figure 2. Experimental setup.

To demonstrate the performance of the proposed framework for activity and vital sign
monitoring, two scenarios with 12 conditions were designed for multi-radar data collection.
The detecting area was equally divided into two zones A and B. Thus, zones A and B were
of equal geometric size, which was 0.75 m × 2 m in the cotton tent, 1.75 m × 2.2 m in the
small room, and 2.15 m × 8.5 m in the empty lobby, respectively. Two people performed
three different activities with four kinds of body movements in each zone respectively. In
scenario 1, as the first column in Figure 3 shows, the people in zone A sat and the other
people stood in zone B, with their bodies facing the radars. Scenario 2 involved two people
lying down and sitting in zones A and B, respectively, as presented in the second column
in Figure 3. In each scenario, the people in zone A kept still or with arms and legs moving
randomly, while the other people in zone B performed four different body movements,
including keeping still, arms and legs moving randomly, the upper body waggling back
and forth, and turning left and right periodically. Eight measurements of different activities
and body movements were recorded in each scenario.

Six volunteers participated in the experiments, and a total of 352 min × 3 radar data
were collected in these two scenarios. A brief physical description of these participants is
listed in Table 1. In this paper, the radar sample was selected for each person with a 10 s
duration and a 5-second overlapping, and a total of 6176 × 3 samples were generated.
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Figure 3. Dataset generation scenarios.

Table 1. Brief physical description of the participants.

Participant Gender Age (yr) Weight (kg) Height (m)

P1 Male 23 78 1.86
P2 Male 24 54 1.70
P3 Male 23 102 1.87
P4 Female 24 54 1.63
P5 Male 23 72 1.85
P6 Female 23 54 1.68

2.2. FMCW and IR-UWB Radar Signal Model

In the multi-radar dataset, signals from an FMCW radar and two IR-UWB radars were
recorded. The IR-UWB radar [22] transmits and receives the impulse signal with a wide
bandwidth, providing accurate ranging and strong penetration. The received IR-UWB
radar signal S(τ, t) is represented as follows:

S(τ, t) = Ss(τ, t) +
N

∑
i=1

Si(τ, t), (1)

where Ss(τ, t) denotes the signal echoes from the static environment, and Si(τ, t) represents
the reflected signals from the i-th people. N is the number of detected people. τ indicates
the fast time along signal propagation, while t represents the slow time for accumulating
received signals.

The FMCW radar continuously radiates an electromagnetic wave with linear frequency
variation during the modulation period. Compared with the IR-UWB radar, the FMCW
radar provides multidimensional information including target range, velocity and angle
with multiple antennas. The FMCW signal of the i-th detected people with a 2-D MIMO
antenna array is expressed as follows [23]:

X(r, v, a, b, t) =
N

∑
i=1

Aie−j2kri(t) · e−j2kdia(t) · e−j2kdib(t) · f (
ri(t)− r

rres
) · f (

vi(t)− v
vres

), (2)

where r and v represent range and velocity, respectively. Ai is the amplitude coefficient.
rres and vres indicate the range and velocity resolutions of the FMCW radar. k is the
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instantaneous wave number. f (·) denotes the impulse response function of ranging. For
simplicity, it is assumed to be a unit rectangular window. The formulation of f(.) is given as:

f (n) =

{
1, |n| ≤ 0.5

0. otherwise.
(3)

The array distance factors dia(t) and dib(t) are the projections of the position offset of
the a-th Tx and the b-th Rx antennas relative to the array center perpendicular to the radial
direction toward to the i-th people.

Sensor fusion has demonstrated advantages in providing abundant information and
increasing reliability. In this paper, the FMCW and IR-UWB radars with multiple obser-
vations in different positions and angles were combined to obtain heterogeneous and
complementary information for activity and vital sign monitoring.

3. Feature Extraction and Fusion for Activity Monitoring

This section introduces the proposed feature extraction and fusion method, to effec-
tively obtain and combine both FMCW and IR-UWB features for activity monitoring. The
schematic diagram is shown in Figure 4.

3.1. Target Detection and RoI Selection

Considering the capability of measuring range and angle simultaneously in multitar-
get situations, the FMCW radar is utilized in this paper to detect and localize two people in
the indoor environment. Firstly, the Range-Doppler map (RDM) RD(r, v, t) was obtained
by performing 2-D FFT [24] on the raw signal from the FMCW radar. The RDM was then av-
eraged over time to obtain RD(r, v) for target detection. The neighbor threshold detection
method [23] was applied iteratively to select the point with the local maximal amplitude in
RD(r, v), detecting the distance ri and velocity vi of the i-th target. The azimuth angle αi
was then computed with angle FFT. According to the spatial and geometric relations of
the relative positions between the FMCW radar and two IR-UWB radars, as well as the
range ri and angle αi, the radar-to-target distances l1i and l2i of the i-th target on IR-UWB
radars 1 and 2 were computed respectively, as shown in Figure 4.

In order to obtain sufficient and consistent information on each target with multipaths,
the Region of Interests (RoI) of FMCW and IR-UWB radars were selected in the areas
containing multiple reflected signals from the target. Dense multipaths make it unstable
and unreliable for detecting the activity with a single received signal. Therefore, the
RoIs were obtained during a period of time tc to include the time-varying information
from continuously received signals. The RoIs for the i-th target of an FMCW and two
IR-UWB radars are RDi(rRoI , vRoI , tc), M1i(l1RoI , tc) and M2i(l2RoI , tc) respectively, which
are defined as follows: 

ri −4r ≤ rRoI ≤ ri +4r,

vi −4v ≤ vRoI ≤ vi +4v,

l1i −4l ≤ l1RoI ≤ l1i +4l,

l2i −4l ≤ l2RoI ≤ l2i +4l,

(4)

where rRoI and vRoI are the distance and velocity of the RoI in FMCW radar, of which
the central points are ri and vi of the i-th target. l1RoI and l2RoI represent the distances
in RoIs with IR-UWB radars 1 and 2 respectively, with the central distances of l1i and l2i.
4r and4v indicate half of the distance and velocity ranges of RoI in FMCW radar, while
4l is half of the distance range with that of IR-UWB radar. To discriminate each person
from the dense multipath signals, the spatial range of RoI should be similar to a certain
physical parameter, such as a person’s height or shoulder width [5]. Therefore, the distance
of RoIs in all three radars was set as the ordinary width of a person’s shoulder—40 cm—for
more detailed personal information extraction. The bin numbers in RoIs along the distance
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range of the FMCW radar and two IR-UWB radars are 9 and 63, respectively. Accordingly,
4r and 4l were 20 cm, while 4v was set as 0.3 m per second to include the range of
movement speed from a person. The selected RoIs in an FMCW and two IR-UWB radars
were then applied for feature extraction.

Range-Doppler 

Map

FMCW Radar

Random Forest

IR-UWB Radar 1

Neighbor Threshold 
Detection Method 

Range

IR-UWB Radar 2

Spatial and Geometric 

Relations 

Target

2-D Wavelet 

Packet Transform 

Range

Doppler

c c

Distance

2-D IR-UWB Radar Data

Time

Detected RoI

Spatial and Geometric 

Relations 

Distance

2-D IR-UWB Radar Data

Time

Detected RoIDetected RoI

Feature   Extraction

Local Binary 

Pattern

Azimuth-ELevation 

Angle Spectrum

  LBP Features

Azimuth

Elevation

  Energy Features

L2-norm on 
each subband

Wavelet Packet 
Transform 
Features

Feature Fusion

Activity Classification

  

...

Target

c c

Feature Extraction 
on FMCW Radar

Feature Extraction 
on IR-UWB Radar 1

Feature Extraction 
on IR-UWB Radar 2

L2-norm on 
each subband

Wavelet Packet 
Transform 
Features

Histogram

Target Detection and RoI   Selection

   

   

    

 1  1 

 1 

 2  2 

 2 

 1  2 

    

2-D Wavelet 

Packet Transform 

  Angle   Range   Angle   

Figure 4. Schematic diagram of proposed feature extraction and fusion for activity monitoring.

3.2. Energy and LBP Feature Extraction on FMCW Radar

In FMCW radar, the global spatial distribution and general intensity of people with
different activities was first extracted by the averaging energy feature from RDi. In addition,
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considering that various activities in the 3-D space lead to dissimilar dynamic scattering in
both the transverse and longitudinal angle dimensions, a 2-D angle-FFT [25] was conducted
to obtain the azimuth-elevation angle spectrum for feature extraction.

Local binary pattern (LBP) is a texture analysis algorithm, and has been widely used in
image classification. It describes the local contrast of image texture by comparing the value
of a central pixel with that of the neighboring pixels in a circle. LBP thresholds the pixels
and creates a binary code to measure the local distribution of textures. In this paper, the
LBP was introduced on the azimuth-elevation angle spectrum to extract the local changing
and divergent features on different angles. The rotation invariant uniform (riu2) mapping
of LBP [26] has a lower dimension of the histogram, which is calculated as follows:

LBPriu2
I,R =


I−1

∑
n=0

s(gn − gc), i f U(LBPI,R) ≤ 2

I + 1, otherwise,

(5)

where gc and gn represent the gray values of the central pixel and the neighboring pixels
respectively. I is the number of neighbors and R denotes the radius. s(·) represents the
signum function. U(LBPI,R) is defined as:

U(LBPI,R) = |s(gn−1 − gc)− s(g0 − gc)|+
I−1

∑
n=1
|s(gn − gc)− s(gn−1 − gc)|. (6)

The histogram of LBP is listed as a feature, which describes the local distinction in
the azimuth-elevation angle with various activities. In order to obtain more detailed local
distribution information, the azimuth-elevation angle spectrum was divided into four
equal-size blocks, and LBP was performed on each block for feature extraction.

3.3. Wavelet Packet Transform Feature Extraction on IR-UWB Radar

Considering the motion continuity and time consistency, the activity information in a
2-D IR-UWB radar matrix is regarded as textures with spatial-temporal distribution. The
wavelet packet transform (WPT) [27] decomposes signals into low and high frequencies
as a tree of subspaces. Compared with the wavelet transform, WPT provides a higher
time-frequency resolution to obtain more refined detailed information. In this approach,
the IR-UWB radar data is decomposed at various scales with both detail and approximation
information. The scaling function ϕj,k(t) and the wavelet function ψj,k(t) with the j-th scale
and k-th subband index in WPT are shown as:

ϕj,k(t) =
1√
|2j|

ϕ(
t− 2jk

2j ),

ψj,k(t) =
1√
|2j|

ψ(
t− 2jk

2j ),
(7)

where 2j represents the dilation parameter for scaling and 2jk is the translation parameter
for wavelet locating.

In this paper, 2-D WPT is introduced to decompose the IR-UWB radar data into two
layers with 4 and 16 subbands respectively. Different activities and movements of the
human body create various local spatial-temporal distributions in radar data, leading
to changes in both approximation and detail scales. To characterize radar signals at all
scales, the wavelet packet coefficient sequences in all 20 subbands were selected for feature
extraction. The low-frequency coefficients represent the general distributions and tenden-
cies of the radar data caused by different activities, while the high-frequency coefficients
show the refined edge information varying with slight body movements and multipaths.
To describe the energy level of each subband with general and refined information, the
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L2-norms of each wavelet packet coefficient sequence were computed as features. The WPT
features were extracted from two IR-UWB radars for multiple observation information
from different angles.

3.4. Feature Fusion for Activity Monitoring

The energy and LBP features extracted from the FMCW radar, as well as the WPT
features obtained from two IR-UWB radars were then directly concatenated as a feature
vector for activity monitoring. Random forest served as an ensemble classifier consisting of
decision trees, and was utilized and combined with the feature vector to classify activities.

4. A-FuseNet for Vital Sign Monitoring

Besides human activities, vital signs serve as one of the most significant indicators
for human health monitoring. IR-UWB and FMCW radars measure the chest movement
with high resolution, and have been widely investigated for vital sign monitoring. More-
over, FMCW radar provides more abundant movement information such as velocity. In
this paper, two IR-UWB and an FMCW radars were utilized for providing different ob-
servations of the target’s cardiopulmonary activity, and the FMCW radar was also used
for complementing the additional movement information. This section introduces the
proposed additional information guided fusing network (A-FuseNet) to generate effective
vital sign signals, and the structure is shown in Figure 5.
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Figure 5. Structure of the proposed A-FuseNet for vital sign monitoring.

4.1. Structure of A-FuseNet

The deep neural network has exhibited potential for multimodal data fusion and
detection [28]. In order to deal with signal distortions and achieve an effective fusion, this
paper proposes A-FuseNet to recover, extract and fuse vital sign signals, combining the
spatial-temporal and correlation information from several radars.

The movement of a human chest li measured by IR-UWB radar was modeled as the
summation of the target-to-antenna distance ld(t) and the displacement lv(t) caused by the
cardiopulmonary activity, presented as follows:

li(t) = ld(t) + lv(t) = ld(t) + arsin(2π frt) + ahsin(2π fht). (8)

The cardiopulmonary displacement is approximately sinusoidal, which is caused
by the heaving chest due to breathing and heartbeat motions. ar and ah represent the
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displacement amplitudes of respiration and heartbeat. fr and fh denote the respiration and
heartbeat frequencies respectively. Traditional signal processing methods select the signal
with the maximal variance or energy as the most vital sign information, and decompose it to
obtain respiration and heartbeat signals. However, the vital sign signals are reflected from
many points of the human chest, and some of them are distorted during body motions.
The decomposition on a single signal leads to the loss of valid vital sign information.
Therefore, the detected RoIs M1i and M2i of the i-th people from IR-UWB radars 1 and 2
with more complete information are utilized for vital signal generation. In FMCW radar, the
cardiopulmonary activity information is captured from the phase φ(t), which is given by:

φ(t) = 4π
ri(t)

λ
= 4π

rd(t) + rv(t)
λ

, (9)

where λ denotes the wavelength of FMCW radar. ri(t) represents the distance between the
radar and the i-th human’chest, which is the summation of the target-to-antenna distance
rd(t) and the physiological displacement distance rv(t) due to the breathing and heartbeat
activities. Considering that body movements conceal and distort the vital signals, it is also
unreliable for analyzing the single phase in a fixed range of FMCW radar. Accordingly,
the phase matrix Phii was selected with the spatial range rRoI of the detected RoI RDi
from FMCW radar to include more complete vital sign information. For IR-UWB and
FMCW radars, M1i, M2i and Phii contain the distance variation information caused by
human cardiopulmonary activity and the body movement interference, which include
the reflections from the same motion condition and share the tendency of movement
changes. In addition, they both capture the tiny movements of the human chest for vital
sign monitoring, and the high range resolution in IR-UWB radar and the high sensitivity of
phase information in FMCW radar complement each other. Therefore, M1i, M2i and Phii
were input to A-FuseNet for body movement cancellation, heartbeat signal extraction and
vital sign information fusion.

A-FuseNet is proposed with the modified generative and adversarial structure, con-
sisting of two adversarial sub-networks. The fusion sub-network F combines two IR-UWB
radar data (M1i, M2i) and the FMCW radar data Phii, extracting vital sign information
from them and generating the fused vital signal F(M1i, M2i, Phii). The discrimination
sub-network D distinguishes the fused signal from the real vital sign signal o with a binary
classification. Considering that various activities and movements bring different distortions
to the radar signals, the additional information is added in two sub-networks to guide
the fusion and discrimination. In the optimization process [29], D is trained to maximize
the discrimination log(D(o)), while F is to minimize log(1− D(o, F(M1i, M2i, Phii))). The
objective function of A-FuseNet is defined as follows:

min
F

max
D

V(D, F) = E[log(D(o))] + E[log(1− D(o, F(M1i, M2i, Phii)))]. (10)

In the fusion sub-network, considering the spatial variability and temporal correlation
of data from three radars, a Cascaded Convolutional Neural Network (CCNN) module was
designed to extract vital sign information from each radar and the correlations observed
in different positions for effective fusion. To further analyze the temporal relevance in
heartbeat waveform, a Long Short-Term Memory (LSTM) module was followed to generate
the fused vital sign signal. In CCNN module, three channels of 2-D CNN each with four
layers were first applied to two IR-UWB and an FMCW radar data respectively to remove
motion interference and extract valid vital sign information. The produced 2-D feature
maps in three channels were then concatenated, and two CNN layers were followed to fuse
the vital sign features from different observations. Each layer of CNN includes the batch
normalization and ReLU activation, and max-pooling layers were applied. Considering the
temporal continuity of time-varying vital sign signals, the LSTM module with two layers
was designed to recover periodic heartbeat waveform features by capturing temporal
dependency in the feature sequence. Each LSTM layer has the hyperbolic tangent (tanh)
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activation function. Finally, three fully connected layers were utilized to integrate features
and generate the fused heartbeat signal.

The discrimination sub-network was implemented to optimize the fused vital sign
signal with a real sample. In this paper, the real sample was a sinusoidal wave fitted
from an oximeter with the measured frequency of the heartbeat rate. The fused heartbeat
signal from the fusion sub-network was regarded as the fake waveform, while the fitted
sinusoidal wave was the real waveform. The discrimination sub-network consisted of
three fully connected layers to obtain periodic features, map them to the sample space and
output the probability of the real or fake waveform. The sigmoid function was utilized to
activate the output layer of the discrimination sub-network. During the training process,
the fusion and discrimination sub-networks were trained alternately to optimize the fused
vital sign signal. The Adam optimizer was used in both sub-networks for the weights
update.

4.2. Additional Information

Different activities lead to various radar-to-target angles and distances, which have
distinct effects on received signals from three radars. Furthermore, different body move-
ments bring diverse types and degrees of distortions on the vital sign signals. Considering
that activities and body movements are significant and the major influence in vital sign
signal extraction, they were introduced into A-FuseNet to serve as additional information
to guide the fusing process. The additional information assists in generating the desirable
fused vital sign signal with specific conditions [30] as a reference, which produces the
heartbeat signal conditioned on different activity and body movement status.

4.2.1. Additional Activity Information

The radar-to-target angles and distances, as well as the distribution of multipaths
reflected from the human body, vary among diverse activities. Moreover, the changes in
received signals are different in three radars deployed at different observation locations.
Thus the activity category obtained from Section 3 was introduced in the fusion sub-
network to assist vital sign information extraction for two IR-UWB and the FMCW radars
respectively. Furthermore, the additional activity information was also added to the
discrimination sub-network to guide and modify the vital sign signal optimization.

4.2.2. Additional Movement Information

Different body movements distort the vital sign signals in various modes and degrees.
Thus, the movement information is crucial for appropriately selecting and recovering the
vital sign information with deteriorations in conditions of various motions. The variation
of Doppler velocity from the FMCW radar represents the changing tendencies and degrees
with different sorts of movements in diverse manners [31]. Therefore, the Doppler velocity
trajectory was obtained from the RoI RDi(rRoI , vRoI , tc) of FMCW radar as the following
equation to describe the variations on Doppler velocity:

(RT(tc), DT(tc)) = argmax(rRoI ,vRoI)
(RDi(rRoI , vRoI , tc)

2), (11)

where RT(tc) identifies the target-to-radar distance trajectory, and DT(tc) represents the
Doppler velocity trajectory.

The Doppler velocity trajectories for four different body movements during 10 s of
sitting people are illustrated in Figure 6, including staying still, moving randomly, the
upper body waggling back and forth periodically, and turning left and right periodically.
As Figure 6a shows, the Doppler velocity keeps 0 m/s for people staying still, whereas it
fluctuates positively and negatively with body motions in Figure 6b–d. The periodicity
of body movements is obviously observed in both back and forth waggling and left and
right turning, while the random motion leads to irregular changes on Doppler velocity.
Moreover, the variation difference in back-and-forth movement is larger and the trajectory
is smoother than that with left-and-right turning, presenting more distinct velocity changes.
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The Doppler velocity trajectories present the body movement features in dissimilar ways,
which provide prior-knowledge of movement status and assist in recovering the heartbeat
signal in the condition of different distortion levels and modes. They were introduced as
the additional movement information in the fusion sub-network to assist vital sign features
recovery and heartbeat signal generation.
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Figure 6. Doppler velocity for different body movements.

5. Experimental Results and Analysis

In this section, experimental results on the constructed dataset for activity and vital
sign monitoring are analyzed. In addition, the performance of the proposed framework is
evaluated by comparing it with different methods.

5.1. Performance Analysis and Evaluation with Different Classifiers for Activity Monitoring

The multi-radar features were utilized to train a classifier and determine the activity
category. The proposed feature sample is a vector with a size of 1 × 113, which is the
concatenation of a 1 × 1 energy feature vector and a 1 × 72 LBP feature vector from the
FMCW radar, and a 1 × 40 WPT feature vector from two IR-UWB radars. In order to
validate the effectiveness of the proposed feature extraction and fusion, three classifiers
including a decision tree, a random forest and an AdaBoost are compared. The decision
tree is a tree structure to divide cases into subtrees at each leaf node. 500 decision trees are
combined to construct the random forest classifier in this paper. The AdaBoost concatenates
a succession of weak learners with SAMME.R algorithm.
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In the experiments for activity monitoring, four metrics, including accuracy, precision,
recall and F1 scores are computed to evaluate the classification performance [32]. True
positive (TP) and true negative (TN) are the numbers of samples which are correctly
predicted of the positive and negative classes respectively. False positive (FP) is the
outcome of the model incorrectly predicts the positive class, while false negative (FN)
represents the numbers of incorrect predictions of the negative class. The evaluation
metrics are calculated as shown below:

Accuracy =
TP + TN

TP + FP + FN + TN
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 =
2 · Precision · Recall
Precision + Recall

.

(12)

Of the feature samples, 80% are randomly selected to train the classifiers, whereas
the remaining samples are utilized for testing and calculating the evaluation metrics. This
procedure is repeated 20 times on each classifier with the randomly chosen samples.

The results of classification performance for activity monitoring with different clas-
sifiers are presented in Table 2. The accuracies with three classifiers all exceed 98.0%,
proving the effectiveness and stability of the proposed features for activity classification.
The random forest achieves the highest accuracy of 99.9%, while both the random forest
and the decision tree have the highest precision, recall and F1 scores with 100%.

Table 2. Activity monitoring performance of different classifiers with proposed features.

Accuracy Precision Recall F1

AdaBoost 98.0% 97.8% 97.8% 97.8%
Random Forest 99.9% 100% 100% 100%
Decision Tree 98.0% 100% 100% 100%

Table 3 shows the confusion matrix of activity classification with the random forest.
Standing achieves the best performance with an accuracy of 100%, while lying has the
lowest accuracy of 99.7% and 0.3% of this activity is misclassified as sitting. This result
is conceivable because the reflected signals of lying and sitting people have weaker vari-
ations, which makes it hard to distinguish them from the interference from four kinds
of body movements. Table 4 indicates the activity monitoring accuracies in three indoor
environments and on the whole dataset. It is observed that the wide lobby presents the
highest accuracy of 100%, while the small room has the lowest accuracy of 99.7%. The
small room with many sundries brings dense and complex multipaths, which makes it
difficult to distinguish the activities from the various body movements of people. In con-
trast, the wide and empty lobby conducts fewer obstructions and reflections, achieving
the best monitoring performance. The cotton tent is a narrow and confined space, which
yields dense multipaths for two people’s activity monitoring. The accuracies of the three
indoor environments all exceed 99.7%, demonstrating the effectiveness of the proposed
framework, and the robustness of activity monitoring in different indoor environments.
Table 5 presents the activity monitoring accuracies for participants P1 to P6 described in
Table 1. The accuracies for P1, P4, P5 and P6 all achieve 100%, while the lowest accuracy is
obtained for P2 and P3 at 99.7%. The results validate the activity classification capability
of the proposed framework for different persons. The activity monitoring accuracies in
12 conditions described in Figure 3 are presented in Table 6. The monitoring accuracies of
lying in Zone A with randomly moving and sitting in Zone B with randomly moving in
scenario 2 are 99.0% and 99.5% respectively, while the accuracies in other conditions all
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achieve 100%. In scenario 2, the activities of lying and sitting while randomly moving are
misclassified. It is explained that the reflections from the human body are relatively weak
when lying down, and different random movements increase the error rate.

Table 3. Confusion matrix of classification on three activities.

Predict Class

Target Class

Sit Stand Lie
Sit 99.9% 0.0% 0.1%

Stand 0.0% 100.0% 0.0%
Lie 0.3% 0.0% 99.7%

Table 4. Activity monitoring accuracies in three indoor environments and for the whole dataset.

Accuracy

Cotton Tent 99.9%
Small Room 99.7%
Wide Lobby 100%

All of three environments 99.9%

Table 5. Activity monitoring accuracies for six participants.

P1 P2 P3 P4 P5 P6

Accuracy 100% 99.7% 99.7% 100% 100% 100%

Table 6. Activity monitoring accuracies in 12 conditions.

Scenario 1 Scenario 2

Zone A
Sit Lie

Still Randomly Moving Still Randomly Moving
100% 100% 100% 99.0%

Zone B

Stand Sit
Still Randomly Moving Still Randomly Moving

100% 100% 100% 99.5%
Back and Forth Waggling Left and Right Turning Back and Forth Waggling Left and Right Turning

100% 100% 100% 100%

Figure 7 illustrates the classification accuracies with different proportions of training
feature samples for activity monitoring based on random forest. It is shown that larger
proportions of training samples bring a better performance, and the accuracy tends to be
stable when the proportion reaches 70%. The classification accuracy is over 97.5% even
with only 10% of training samples, demonstrating the robustness of the proposed feature
extraction and fusion.
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Figure 7. Classification performance with different proportions of training samples for activ-
ity monitoring.

5.2. Performance Comparison with Other Features for Activity Monitoring

To verify the superiority of the proposed feature extraction and fusion, comparisons
with other methods are carried out on the dataset in this paper for activity classification.
Four methods are employed for comparison, including the temporal features in the multi-
channel proposed in [24], the statistical features for people sensing in [33], and two classical
neural networks, AlexNet and LeNet [34]. The temporal features consist of the scattering
center tracking features, the low level descriptor of RDM, and the relationship features
between channels. The statistical features are composed of the mean, variance, coefficient
variance, kurtosis, skewness, maximum value, and the argument of maximum value of
radar signals. These features are combined with the random forest classifier for comparison.
The AlexNet and LeNet serve as end-to-end classification methods, directly taking the
radar data as the input and classifying the activities.

The comparison results on each radar and multi-radar fusion with the five methods
are illustrated in Figure 8. The proposed features present the best performance among all
of these methods on both IR-UWB and FMCW radars as well as their combinations. The
classification accuracies on each single radar all exceed 85.5% with the proposed features,
and are clearly better than those of the other four methods. Results prove the robustness
and superiority of the proposed features on different radars and for data fusion. In addition,
it is observed that the accuracies of all three feature-based methods present improvements
with feature fusion compared with that of each radar, demonstrating the effectiveness of
radar information fusion.
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Figure 8. Classification performance comparison of different methods for activity monitoring.

5.3. Performance Analysis for Vital Sign Monitoring

In the experiments on vital sign monitoring, 80% of the radar data is randomly chosen
to train A-FuseNet, and the other 20% is utilized for testing. Figure 9 indicates a fused
vital sign signal generated by A-FuseNet and a reference of the synchronous waveform.
The red line represents the generated heartbeat signal with 10 s, while the blue line is
the sinusoidal waveform fitted with the heartbeat frequency recorded by the oximeter
synchronously. As illustrated, the waveform profile of the generated signal effectively fits
with the reference, proving the reliability of A-FuseNet for generating vital sign signals.
It is observed that there exists a partial deformation in the amplitude of the generated
signal, but the frequency is perfectly matched with that of the reference. Since that FFT is
applied on the generated signal to estimate heartbeat rate in this paper, it is acceptable with
the deviation of amplitudes. In the future, the synchronous ECG signal could be utilized
as the reference to optimize A-FuseNet, and it is possible to obtain a more informative
heartbeat waveform with PQRST characteristics. PQRST denotes the P, Q, R, S and T waves,
indicating the turning points of a heartbeat waveform in the ECG signal, of which the
amplitude and duration describe more detailed information about cardiac movement .

The accuracy Acc of the heartbeat rate estimation is calculated on each sample,
defined as:

Acc = (1− |hre − hro|
hro

)× 100%, (13)

where hre denotes the estimated heartbeat rate from A-FuseNet, and hro is the heartbeat
rate measured by oximeter. The average accuracy is utilized for performance evaluation.
The vital sign monitoring accuracies in the 12 conditions described in Figure 3 are listed
in Table 7. The highest accuracies are obtained for the sitting activity with back and forth
waggling, and left and right turning movements, reaching 95.3% and 95.4%, respectively.
The results indicate the satisfactory capability of A-FuseNet to recover the heartbeat signal
with interference from regular body movements. It appears that the monitoring accuracies
with random movements and keeping still are slightly lower compared to back and forth
waggling and left and right turning movements, but still exceed 91.2%. Table 8 presents
the vital sign monitoring accuracies for six participants, the physical description of which
is presented in Table 1. The highest accuracy is achieved for P5 of 96.3%, while P1 has the
lowest accuracy of 91.4%. It is observed that the performance of heartbeat monitoring has
greater variation for different persons compared with activity monitoring in Table 5, which
is caused by the individual differences and variability of human physiological signs. The
accuracies for six participants all exceed 91.4%, revealing the effectiveness of the proposed
framework for vital sign monitoring of different persons.
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Figure 9. A generated heartbeat signal from A-FuseNet.

Table 7. Vital sign monitoring accuracies in 12 conditions.

Scenario 1 Scenario 2

Zone A
Sit Lie

Still Randomly Moving Still Randomly Moving
92.9% 93.2% 92.7% 91.9%

Zone B

Stand Sit
Still Randomly Moving Still Randomly Moving

91.2% 92.7% 93.5% 94.6%
Back and Forth Waggling Left and Right Turning Back and Forth Waggling Left and Right Turning

93.8% 93.3% 95.3% 95.4%

Table 8. Vital sign monitoring accuracies for six participants.

P1 P2 P3 P4 P5 P6

Accuracy 91.4% 94.3% 92.8% 94.0% 96.3% 95.4%

5.4. Performance Comparison with Other Methods for Vital Sign Monitoring

To verify the feasibility of A-FuseNet for vital sign monitoring, four other methods
were employed for comparison. The method with FFT [35], the Variational Mode Decom-
position (VMD) [36], the Heartbeat Estimation And Recovery (HEAR) proposed in [37] and
the adaptive Kalman filtering presented in [18] are conducted for heartbeat rate estimation.
For the methods with FFT and VMD, the signal with the maximal energy is selected as hav-
ing the most heartbeat information, and FFT and VMD algorithms are applied respectively
for decomposition. HEAR is designed to extract heartbeat signals with body movement
interference. It acquires vital sign signals by mapping maximum echo amplitudes and
compensating for large body movements, combined with the variational nonlinear chirp
mode decomposition (VNCMD) for heartbeat rate monitoring. In this paper, FFT, VMD
and HEAR are applied on IR-UWB radars 1 and 2 to estimate the heartbeat of each person,
and their results are averaged on two radars. Adaptive Kalman filtering fuses two IR-UWB
radar signals with an adaptive Kalman filter and estimates the heartbeat rate by applying
FFT. In addition, the A-FuseNet structure without additional information is implemented
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for comparison to prove the effect of activity and movement information. The training
and testing process repeats five times for comparison, and the results in three indoor
environments and on the whole dataset are shown in Table 9.

Table 9. Vital sign monitoring accuracy in three indoor environments with different methods.

Cotton Tent Small Room Wide Lobby All Environments

FFT [35] on IR-UWB radar 1 82.1% 80.8% 82.5% 82.0%
FFT [35] on IR-UWB radar 2 81.6% 81.0% 82.4% 81.7%

Average on two radars with FFT [35] 85.8% 84.7% 86.3% 85.4%
VMD [36] on IR-UWB radar 1 75.3% 78.5% 77.2% 76.4%
VMD [36] on IR-UWB radar 2 76.1% 78.7% 77.6% 77.1%

Average on two radars with VMD [36] 78.6% 81.9% 80.6% 79.7%
HEAR [37] on IR-UWB radar 1 84.5% 82.6% 85.6% 84.4%
HEAR [37] on IR-UWB radar 2 84.5% 82.7% 85.6% 84.4%

Average on two radars with HEAR [37] 85.0% 82.9% 85.9% 84.8%
Adaptive Kalman filtering [18] 82.7% 81.6% 83.3% 82.7%

A-FuseNet 90.8% 94.9% 94.4% 92.3%
A-FuseNet without additional information 89.7% 91.9% 93.5% 90.9%

According to Table 9, the proposed A-FuseNet outperforms the other four methods on
vital sign monitoring in all three environments, achieving the highest averaging accuracies
of 90.8%, 94.9%, 94.4% and 92.3% in the cotton tent, the small room, the wide lobby and
all environments respectively. The cotton tent is narrow and confined, causing heavy
obstruction and superposition of cardiopulmonary signals from two people, which leads
to the lowest heartbeat estimation accuracy. The average accuracy of A-FuseNet in all
environments is 6.9%, 12.6%, 7.5% and 9.6% higher than those with FFT, VMD, HEAR and
adaptive Kalman filtering respectively. The performances of these compared methods are
affected by various activities and body movements, while A-FuseNet shows the ability
to extract and recover valid vital sign information during body motions. Moreover, A-
FuseNet has the capability of generating the heartbeat waveform, benefiting from the
modified generative and adversarial structure, which provides more information and has
the potential for future heartbeat waveform analysis. The additional information improves
the average accuracy of A-FuseNet by 1.1%, 3%, 0.9% and 1.4% in the cotton tent, the
small room, the wide lobby and all of three environments respectively, demonstrating the
significance of activity and movement information. It is noted that there still exist 7.7% of
errors for heartbeat monitoring with A-FuseNet. It is explained that A-FuseNet is trained
with data from all the participants, while the significant individual differences in heartbeat
may require personalized training.

5.5. Time Processing of the Proposed Framework for Activity and Vital Sign Monitoring

Table 10 presents the processing time of each step of the proposed framework for activ-
ity and vital sign monitoring, which is averaged on each testing sample. The experiment is
carried out on a workstation equipped with Ubuntu 16.04.7 LTS system, Intel Xeon E5-2630
CPU and NVIDIA GeForce GTX 1080 Ti graphic card. It is shown that the total processing
time is 3.719 s, and the RoI selection occupies most of this time at 3.157 s, while the feature
extraction, activity classification and A-FuseNet for heartbeat signal generation only take
0.052 s. Considering that each sample has a 10 s duration, this total processing time is
acceptable for real time processing. In the future, the processing time for RoI selection
could be reduced, and the system could be established at home for real time activity and
vital sign monitoring.
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Table 10. Time processing for activity and vital sign monitoring.

Process Time (Seconds)

Preprocessing 0.510
RoI Selection 3.157

FMCW Radar Feature Extraction 0.007
UWB Radar Feature Extraction 0.039

Random Forest Classifier 3 × 10−5

A-FuseNet 0.006
Total 3.719

6. Conclusions

In this paper, a framework for indoor activity and vital sign monitoring with an FMCW
and two IR-UWB radars is proposed. LBP, energy and WPT features are extracted from
three radars to represent the spatial-temporal distribution information, and are combined
with a random forest for activity monitoring. Moreover, A-FuseNet is proposed with
the modified generative and adversarial structure, consisting of a fusion sub-network
with CCNN-LSTM modules for heartbeat signal generation, as well as a discrimination
sub-network for optimization. The additional activity and movement information is
introduced to guide the fusion process. A multi-radar dataset is constructed in three indoor
environments, including a cotton tent, a small room and an empty lobby to validate the
performance of the proposed framework. The accuracy of activity monitoring reaches
99.9%, 23.1%, 1.9%, 25.9%, and 22.1% higher than those with temporal features, statistical
features, AlexNet and LeNet, respectively. For vital sign monitoring, this framework
achieves an average accuracy of 92.3%, 6.9%, 12.6%, 7.5% and 9.6% higher than those with
FFT, VMD, HEAR and adaptive Kalman filtering methods, respectively. The results prove
the effectiveness and superiority of the proposed framework for human sensing. In future
work, more multi-radar data will be collected and analyzed with more complex scenarios
to further validate the feasibility of the proposed framework. ECG signals will be applied
to optimize A-FuseNet for more informative heartbeat waveform generation, and the real
time monitoring system will be optimized for intelligent households.
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