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Abstract: Water vapour is one of the most important parameters utilized for the description of
state and evolution of the Earth’s atmosphere. It is the most effective greenhouse gas and shows
high variability, both in space and time. Thus, detailed knowledge of its distribution is of immense
importance for weather forecasting, and therefore high resolution observations are crucial for accurate
precipitation forecasts, especially for the short-term prediction of severe weather. Although not
intentionally built for this purpose, Global Navigation Satellite Systems (GNSS) have proven to meet
those requirements. The derivation of water vapour content from GNSS observations is based on
the fact that electromagnetic signals are delayed when travelling through the atmosphere. The most
prominent parameterization of this delay is the Zenith Total Delay (ZTD), which has been studied
extensively as a major error term in GNSS positioning. On the other hand, the ZTD has also been
proven to provide substantial benefits for atmospheric research and especially Numerical Weather
Prediction (NWP) model performance. Based on these facts, the scientific area of GNSS Meteorology
has emerged. The present study goes beyond the current status of GNSS Meteorology, showing how
reasonable estimates of ZTD can be derived from highly-kinematic, single-frequency (SF) GNSS data.
This data was gathered from trains of the Austrian Federal Railways (ÖBB) and processed using the
Precise Point Positioning (PPP) technique. The special nature of the observations yields a number
of additional challenges, ranging from appropriate pre-processing and parameter settings in PPP
to more sophisticated validation and assimilation methodologies . The treatment of the ionosphere
for SF-GNSS data represents one of the major challenges of this study. Two test cases (train travels)
were processed using different strategies and validated using ZTD calculated from ERA5 reanalysis
data. The validation results indicate a good overall agreement between the GNSS-ZTD solutions and
ERA5-derived ZTD, although substantial variability between solutions was still observed for specific
sections of the test tracks. The bias and standard deviation values ranged between 1 mm and 8 cm,
heavily depending on the utilized processing strategy and investigated train route. Finally, initial
experiments for the assimilation of GNSS-ZTD estimates into a NWP model were conducted, and
the results showed observation acceptance rates of 30–100% largely depending on the test case and
processing strategy.

Keywords: Zenith Total Delay; GNSS Meteorology; PPP; ERA5-reanalysis; data assimilation; NWP

1. Introduction

Water vapour, accounting for only roughly 0.25% of the mass of the atmosphere,
is a highly variable constituent [1]. Large spatial and temporal variations characterize
both its global and regional distribution, making its observation at suitable resolutions a
demanding task. At the same time, it denotes the most important greenhouse gas impacting
global warming, a key component of the hydrological cycle and the basic prerequisite
for all forms of precipitation. Thus, observations of atmospheric water vapour are of
key importance for weather forecasting and climate studies. Therefore, a multitude of
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observation systems were developed, but all of them are subject to systematic errors and
usability constraints in different environmental conditions. Utilized sensors range from
classical radiosonde measurements to ground-based microwave radiometers and modern
satellite missions specifically designed for the retrieval of water vapour.

Global Navigation Satellite Systems (GNSS) belong to the latter category, although
they were originally built up for different purposes. In addition to their typical applications,
such as positioning and navigation, GNSS have become a feasible alternative for remote
sensing of the troposphere over the last decades, in particular for atmospheric water vapour.
The derivation of the atmospheric water vapour content from GNSS is based on the fact
that GNSS signals transmitted between the satellites and the ground-based receivers are
affected by the atmosphere [2].

This fact has given rise to the scientific field of GNSS Meteorology, whose basic concept
was outlined by Bevis et al. [3]. The GNSS signal experiences a delay, which depends
on the amount of water vapour contained in the atmosphere along the signal path. This
delay is typically estimated for the zenith direction and, therefore, called the Zenith Total
Delay (ZTD).

The ZTD is related to the weather conditions in the vicinity of the GNSS station
(pressure, temperature, and humidity) and, therefore, carries valuable meteorological
information [4], which can be exploited by means of data assimilation (DA) in numerical
weather prediction (NWP). Unfortunately, the ZTD denotes an integral measurement along
the vertical and, therefore, does not provide a suitable vertical resolution that can be easily
mapped to meteorological conditions in various height layers.

For beneficial usage in NWP, high accuracy requirements (∼1 cm [5]) have to be
met for ZTD estimates. Therefore, typically double-difference (DD) processing of static
reference station networks is applied in GNSS analysis. Nevertheless, using alternative
approaches, such as Precise Point Positioning (PPP) for GNSS Meteorology have been
investigated over the recent years (e.g., [5–8]), due to the manifold benefits of the technique.
These include independence of reference station data and, therefore, smaller data amounts
for processing, reducing latency time of resulting products, which is crucial in particular
for near-real time NWP operation (Nowcasting).

However, most studies and operational products still use only dual-frequency (DF)
observations from fixed stations, due to the easier data processing and more controllable
environmental conditions. Thus, SF-PPP processing for troposphere monitoring has yet
been explored by only a limited number of studies (e.g., [9–11]). Deng et al. [12] densified
an already existing station network with SF receivers and retrieved tropospheric delays
using static PPP in post-processing mode.

In order to deal with the ionospheric influence, they developed the Satellite-specific
Epoch-differenced Ionospheric Delay (SEID) model, which uses information from the
surrounding reference stations to generate synthetic observations on a second frequency
for the SF receiver. This approach was also investigated in the course of this study for
kinematic observations. Krietemeyer et al. [10] studied the feasibility of using low-cost
receivers to increase the density of GNSS networks for retrieval of the Precipitable Water
Vapour (PWV).

They processed one year of GNSS data from an IGS station and two co-located SF
stations by using the SEID algorithm to correct for the ionospheric influence. Mendez As-
tudillo et al. [13] carried out a performance assessment of three PPP online services and
three software packages concerning ZTD estimation. In this context, they compared ZTD
estimates from PPP processing to those obtained from the IGS tropospheric products.

The results indicate that the online PPP service performance was better than those
of selected PPP software packages in all cases. Zhao et al. [14] estimated both PWV from
low-cost multi-GNSS receivers in static mode. They retrieved ZTDs with an accuracy better
than 10 mm compared with tropospheric products published by IGS and about 3 mm for
PWV compared to radiosonde results.
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The possibility of monitoring tropospheric parameters from kinematic platforms has
been investigated by only a small number of studies. Most of them concentrated on
maritime environments, such as ship-borne [15–18] and buoy data [19,20]. ZTD estimation
from airborne data was initially investigated by Skone et al. [21].

Up until now, the only investigation on train-borne GNSS data was carried out by
Webb et al. [22], who analysed Zenith Wet Delay (ZWD) for over a decade of continuous
DF observations over a range of altitudes on the Snowdon Mountain Railway, located in
Snowdonia National Park, North Wales. Their multi-system GNSS solutions yielded an
improvement of about 5 mm in ZWD estimated in kinematic PPP mode, compared to the
GPS-only solution. The overall agreement in ZWD with NWP-based reference data was
11.6 mm for the multi-GNSS solution and 16.2 mm for the GPS-only solution.

Our present study goes beyond the investigations outlined above by applying kine-
matic PPP processing on SF-GNSS data gathered by receivers, which are mounted on trains.
The study, therefore, represents an initial assessment of the usability of train-borne SF-
GNSS data for meteorological purposes and the challenges associated with this approach.
The underlying idea is to use trains travelling on rail-tracks in the federal reserve of Austria
as permanently moving meteorological sensors. Currently, a large number of trains (∼1400)
are equipped with dual-system SF receivers, which are currently able to track GPS and
GLONASS signals. Data is gathered on different railway tracks over Austria in the course
of the project Greenlight, led by ÖBB.

The main motivation of using train-borne data for GNSS Meteorology is the much
denser spatial resolution due to the large number of sensors that are possibly available.
These travel through different height regions and weather systems and, therefore, are
predestined to investigate small-scale phenomena that are currently hard to represent in
NWP [23]. On the other hand, a significantly higher number of challenges is experienced
due to the specific nature of the data set.

This concerns problems, such as high kinematics (travel speeds of over 200 km/h),
ionospheric mitigation (SF data) and a large variety of critical environments encountered
along the tracks. Nevertheless, first investigations have already shown the feasibility of
this specific dataset for tropospheric monitoring [24]. This study aims to establish some of
the basic knowledge on data processing and estimation of tropospheric parameters from
highly-kinematic sensors with sufficient accuracy.

The results shown here concentrate on ZTD estimation and validation using indepen-
dent, NWP-based reference data as well as first tests of assimilation into an NWP model.
Further case studies and detailed analysis concerning other aspects and results of the PPP
processing of these data sets can be found in Aichinger-Rosenberger [25].

2. Data and Methodology
2.1. GNSS Data Sources

The analysed train-borne GNSS data stem from two different railway tracks. The
GNSS observations were gathered on diverse days on trains operated by ÖBB in the course
of the Greenlight project. In the course of this project, ÖBB began to equip their fleet of
trains with multi-GNSS receivers capable of logging GPS and GLONASS L1 observations
at an update rate of 1 Hz. Today, more than 1400 vehicles are already equipped with such
single-frequency receivers, providing decimetre localisation of the fast-moving traction
vehicles as well as access to raw GNSS data stored on the receivers on-board. These data,
acquired for two full days, form the foundation of all results shown in the following.

Furthermore, DF observations of a regional GNSS station network operated by EPOSA
(Echtzeit Positionierung Austria) and partners were utilized to generate the parameters for
the SEID model in the course of this study. The network consists of 38 stations distributed
all over Austria as visualized in Figure 1.
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Figure 1. The reference station network of EPOSA. The colour of the triangles denotes the company
operating the station. Taken from http://www.eposa.at/, accessed on 15 April 2021.

2.2. Tropospheric Delays from GNSS

As already outlined in the introduction, the retrieval of atmospheric information
from GNSS observations is based on the fact that electromagnetic signals are delayed
by the presence of the Earth’s atmosphere. The non-dispersive, tropospheric part of
the atmospheric delay is most commonly given as the ZTD—the delay experienced by
signals in the zenith direction. The ZTD can be split up into a hydrostatic part (the Zenith
Hydrostatic Delay, ZHD) and a wet part (the ZWD):

ZTD = ZHD + ZWD. (1)

ZHD accounts for the major part of the total delay and is largely determined by the
atmospheric pressure. Therefore, it can be modelled with sufficient accuracy from surface
pressure observations using, e.g., the formula of Saastamoinen [26]:

ZHD =
0.0022767 · ps

1− 0.00266 · cos(2 · θ)− 0.00028 · H (2)

where ps is the surface pressure, θ the station latitude, and H is the station height above
the geoid.

ZWD is directly related to the water vapour content in the air, representing the signal
of interest for meteorological purposes. Therefore, it also shows a high temporal and spatial
variability (just as water vapour), making precise modelling from meteorological surface
observations impossible. Thus, ZWD is commonly estimated as an unknown in GNSS
parameter estimation alongside of station coordinates and the receiver clock error.

2.3. GNSS Processing Strategy

The following section introduces the basic strategies used for processing of the train-
borne GNSS data, from pre-processing to specific approaches utilized for ionospheric
mitigation and parameter estimation in PPP.

2.3.1. Pre-Processing

The special nature of the utilized data requires extended pre-processing in order to
use code and phase measurements in PPP processing. Along with common strategies
for outlier detection such as outlined by Blewitt [27], this mostly concerns the detection
and correction of cycle slips present in the raw phase observations. Uncorrected, they can
significantly degrade the performance of PPP solutions.

The detection and correction of cycle slips is especially challenging for SF data, since
classical methods, such as the geometry-free (GF) or the Melbourne-Wübenna (MW) linear
combination (LC) [28] require observations on two carrier frequencies. Therefore, second-

http://www.eposa.at/
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order time-differencing of L1 phase observations was utilized, in order to detect and
exclude affected observations from processing.

2.3.2. Ionospheric Mitigation for SF Observations

The second major error source in GNSS processing attached to the Earth’s atmosphere
is the influence of the ionosphere. This atmospheric layer, located between ∼50–1500 km
in height above the surface, is characterized by ionization through solar radiation. A
high concentration of free electrons is existent especially within the F2-layer located about
350–450 km above the surface, which influences the propagation speed of electromagnetic
waves and, therefore, causes a delay of GNSS signals.

Since the ionosphere is a dispersive medium for microwaves, the actual delay experi-
enced depends on the signal frequency. This fact is typically exploited in GNSS processing
to remove the ionospheric delay, by forming an adequate linear combination of observa-
tions taken on two frequencies. This Ionosphere-Free Linear Combination (IF-LC) serves
as the basis of typical PPP and other GNSS-processing algorithms.

For SF data, however, the ionospheric delay cannot be eliminated by forming linear
combinations and, thus, remains a major challenge for SF-GNSS processing. One common
approach for mitigation is to assume all electrons to be contained in a single (shell) layer
and estimate the Total Electron Content (TEC) of this layer using empirical models [29,30].
Another approach is to use range corrections given by regional or global maps of TEC (as
generated by the Center for Orbit determination in Europe (CODE) ), which are derived
from geodetic reference station networks.

As another alternative to these approaches, the Satellite-specific Epoch-differenced
Ionospheric Delay model (SEID) was introduced by Deng et al. [12]. It allows for processing
data from a SF receiver embedded in a network of DF reference stations. The model makes
use of the geometry-free linear combination (GF-LC) L4, given by

L4 = L1 − L2, (3)

and corresponds to the difference between carrier phase observations on the L1 and L2
frequency, which is mainly governed by the ionospheric refraction.

Unfortunately, L4 still contains the phase ambiguity parameter, whose estimation is
still a major obstacle in GNSS processing. Therefore, the algorithm uses epoch-differences
of L4, δL4, in order to eliminate the influence of the phase ambiguities. For two consecutive
time steps, i and i + 1, this quantity reads

δL4(i) = L4(i + 1)− L4(i). (4)

The spatial change of the delay can be expressed by the positions of the intercept
pierce points (IPP) of the signal path and the layer [12]. The basic assumption now is that
this epoch-difference of a specific satellite, derived from DF stations, can be fitted to a linear
function, e.g., a plane. Using the notation of Deng et al. [12], this linear fit reads

δL4 = α0 + α1λ + α2θ, (5)

where θ is the latitude, λ is the longitude of their IPPs, and α0, α1 and α2 are the model
parameters to be determined.

From Equation (5), it becomes obvious that a minimum of three reference stations
is required to derive those model parameters. In general, a higher number of stations
is beneficial to derive more accurate results and deal with possible data gaps at certain
stations. In the case of four or more reference stations, the parameters are estimated by
means of a least-squares adjustment for each satellite at each epoch. This results in a
different plane model for each satellite-epoch combination, which gives a hint on the high
computational demand of the approach for larger datasets.
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Analysing the magnitudes of the computed δL4 values can be used for detection of
outliers and cycle slips affecting the utilized satellites at each epoch. In the processing
carried out in this study, a threshold of ±0.5 m is applied for δL4. If this threshold is
exceeded, the corresponding satellite is excluded from the further processing.

Using the generated model parameters at epoch i, the epoch-differenced ionospheric
correction of any SF receiver inside the reference network can be calculated. The correction
for a specific epoch k, L̃4(i0, k), is the sum of the epoch-differenced corrections between an
initial epoch i0 and epoch k,

L̃4(i0, k) =
k−1

∑
i=i0

˜δL4(i, i + 1). (6)

The ionospheric delay at the initial epoch i0 is unknown and, thus, set to zero by defi-
nition. This has the disadvantage of destroying the integer nature of the phase ambiguity,
which cannot be fixed to integer in PPP processing afterwards. By means of L̃4(i0, k) , a
converted L2 observation (L̃2) can be derived using

L̃2(k) = L1(k)− L̃4(i0, k). (7)

Although pseudorange observations are usually significantly down-weighted or not
used at all in PPP processing, they can be treated using the same procedure. However, it
is no longer necessary to operate on epoch-differences since no ambiguity parameter is
present. For a detailed formulation of the SEID-algorithm for pseudorange observations,
we refer to [12] or [25].

The original SF dataset can then be extended by the converted L2 and P2 observations
and can be used for DF processing (using the IF-LC) in a software package of choice.

2.3.3. PPP Processing

In order to estimate ZTD from the train-borne GNSS observations, the PPP tech-
nique is used. The PPP technique is characterized through the use of precise satellite
products (e.g., orbits, clocks, and biases), accurate observation models, and sophisti-
cated algorithms, which all are applied on the observation of a single GNSS receiver [31].
For a detailed discussion of the entire PPP algorithm, we refer to Zumberge et al. [32] or
Kouba and Héroux [33].

GNSS data for processing were provided by ÖBB as raw observations available every
second in binary format. These were converted to RINEX 2.11 format [34] and fed to the
PPP processing engines. Three different software packages were utilized for PPP processing
in SF or DF mode:

• CSRS-PPP [35]
• GAMP [36]
• PPP-Wizard [37,38]

All processing schemes outlined were applied at least for one test case. In the following,
these schemes are referred to as:

• CSRS-PPP: CSRS-PPP
• GAMP using SEID model: SGAMP (used only for CS1)
• PPP-Wizard: PPPW
• PPP-Wizard with height-constraint: PPPW-HC

3D-coordinates, receiver clock error, and ZWD were estimated every second using
those processing schemes.

Depending on the actual scheme either SF- or DF-PPP for GPS and GLONASS obser-
vations were used. IGS final products were utilized for satellite orbit and clock corrections.
Ionospheric corrections are applied for CSRS-PPP through IGS GIM broadcast TEC models
and for PPPW by obtaining EGNOS (European Geostationary Navigation Overlay Service)
corrections. Since the SGAMP scheme operates in DF-PPP mode, the IF-LC is applied here.



Remote Sens. 2021, 13, 3793 7 of 25

The hydrostatic part of the tropospheric delay (i.e., ZHD) is modelled by means of grids of
the Vienna Mapping Function 1 (VMF1) [39] for CSRS-PPP and using the Saastamoinen
model [26] for PPPW and SGAMP.

VMF1 (CSRS-PPP) and the Global Mapping Function (GMF) [40] (SGAMP and PPPW)
serve as tropospheric mapping functions. We chose 7.5◦ as the default setting for the cut-off
observation angle. Measurements from elevation angles below this value were not consid-
ered in the processing. For a priori noise estimates in the Kalman Filter (σL,σP,σZWD,σPosition)
a range of different setups were tried out, and the optimal settings were found to vary
significantly between the test tracks.

Both the code and phase range noise (σP,σL) were set to significantly higher values
compared to typically magnitude to account for rather low quality of the raw GNSS data
and difficult environmental conditions (e.g., multipath). ZWD was modelled as a random
walk process with a standard deviation (σZWD) of 5 mm/

√
s.

A number of different settings were tested for this parameter and the presented one
were found to provide the best average solution for GNSS-ZTD with respect to validation
results. The chosen setting might represent a tight constraint on ZWD in the first place,
but this is relativized by the fact that the ZWD is estimated every second above the fast
moving sensor.

Furthermore, for almost all test cases, the trains spent a significant amount of time at
fairly high altitude where the influence of water vapour is decreasing, especially in stable
and dry weather situations. An overview of the settings applied for the different processing
schemes can be found in Table 1.

Table 1. General PPP settings used for the test cases.

Parameter Setting

Mode Kinematic SF-PPP (CSRS-PPP/PPPW)/DF-PPP (SGAMP)
GNSS GPS + GLONASS
Phase Ambiguities Float
Observation weighting Elevation-dependent
Orbits IGS final
Clocks IGS final
Ionosphere IGS GIM (CSRS-PPP)/EGNOS (PPPW)/SEID (SGAMP)
ZHD (a priori) VMF1 (CSRS-PPP)/Saastamoinen (PPPW, SGAMP)
Mapping function VMF1 (CSRS-PPP)/GMF (PPPW, SGAMP)
Elevation cut-off 7.5◦

σL 0.1 m
σP 1 m
σZWD 5 mm/

√
s

σPosition 10 m

2.3.4. Height-Constrained PPP

Parameter constraints have been extensively used in GNSS processing (e.g., [41,42])
as well as sensor fusion algorithms [43,44]. In this study, we make use of a state constraint
on the height coordinate to support ZTD estimation. The idea behind this approach is to
decorrelate ZTD and height estimates by using precise height information from a GNSS-
independent source. Therefore, height coordinates from an existing database of railway
tracks (RDB) all over Austria were used. The database was thankfully provided by ÖBB.
The followed approach represents a simple correction of the height estimate in the Kalman
Filter, by using the height provided at the nearest point in the RDB. For the following
approach, two remarks have to be considered:

• RDB heights are given above the mean sea level and, thus, have to be converted to
geodetic heights using interpolated geoid undulations from the Austrian Geoid model
GEOnAUT [45].
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• As the coordinates of the RDB points do not refer to the GNSS antenna but to (ref-
erence) pylons along the railway tracks, a height offset has to be applied. A median
offset of four meters (between pylon heights and an average of all PPP height solutions
available) was calculated over both tracks (i.e., the same train type travelling in both
test cases) and applied to the RDB heights for both cases analysed here.

The PPP height coordinate then is set to the corresponding geodetic height of the track
database and eliminated from the state vector in the Kalman filter. This corresponding
(geodetic) DB height then refers to the point in the RDB whose 2D-coordinates are nearest
to the PPP solution. The constraint (i.e., fixing of the height coordinate to RDB value) is
applied when the following condition is met:

|HGNSS − (HRDB + dH)| > 0.1 m (8)

where HGNSS and HRDB are geodetic heights from GNSS-PPP and the track database
(converted as described above), respectively, and dH is the applied offset between pylon
and antenna and equals four meters for this study (as described above).

This simple implementation of the height-constraint has the drawback of not providing
uncertainty estimates for the eliminated height coordinate. Thus, the approach strongly
relies on the quality of the RDB heights and the geoid model. The quality of the RDB
heights is generally in the mm range for each pylon reference point, at a maximum distance
between pylons of five metres [46]. As no large height differences will be covered by the
train track within this distance, the uncertainty introduced by the interpolation will not
exceed that of the kinematic SF-PPP estimates. GEOnAUT provides geoid undulations
with a standard deviation of about 2 cm [45], which is also significantly lower than the
typical kinematic SF-PPP performance.

The approach described above was implemented in the PPP-Wizard software and
operated as a separate processing scheme (PPPW-HC). Utilized PPP settings for the test
cases are exactly the same as for PPPW, outlined in Table 1.

2.4. GNSS-ZTD Validation Using ERA5

GNSS-ZTD estimates derived from PPP processing have to be validated using inde-
pendent reference data in order to make sure that quality standards for NWP usage can
be met. This was accomplished by computing reference ZTD values from atmospheric
reanalysis fields using ray-tracing methods. The utilized reanalysis data stems from the
ERA5-reanalysis [47]—the newest atmospheric reanalysis data set from the European
Centre for Mid-Range Weather Forecasts (ECMWF).

4D-fields of pressure, temperature, and specific humidity were used for the computa-
tion of reference ZTD values (in following referred to as ERA-ZTD). The data-set, which
has a horizontal and temporal resolution of 31 km and one hour, respectively, is provided
at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?
tab=overview, accessed on 20 November 2020. The detailed procedure of ZTD computation
follows the approach presented by Wilgan and Geiger [48] and is outlined in the following.

Using the formulation of Essen and Froome [49], the total refractivity Ntot is computed by

Ntot = k1
p
T
− k2

e
T
+ k3

e
T2 , (9)

where p denotes the pressure, T is the temperature, e is the partial water vapour pressure,
and k1 = 77.689 KhPa−1, k2 = 71.2952 KhPa−1, and k3 = 375, 463 K2hPa−1 are the optimal
average refractivity coefficients from Rüeger [50], empirically determined for the L-band
frequencies.

With Equation (9), 4D-fields of Ntot were calculated from the ERA5 data. These allow
for the computation of 3D-fields of ZTD (ZTDERA) through the vertical integration given
by Equation (10)

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
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ZTDERA = 10−6
∫ HNL

HGNSS

Ntot, (10)

where HGNSS and HNL denote the heights of the GNSS receiver and the ERA5 top model
level, respectively. For discrete data as used here in the form of ERA5 grids, Equation (10)
can be approximated by Equation (11):

ZTDERA = 10−6
NL−1

∑
i=1

Ni + Ni+1

2
· δsi, (11)

where Ni is the total refractivity at the i-th vertical level, NL is the number of vertical levels
of ERA5, and δsi denotes the geometric distance between the i-th and the (i+1)-th layer.
Furthermore, the delay at the top level NL is derived using Equation (12) following [26]:

ZTDNL = 0.002277 · (pNL + (
1255
TNL

+ 0.05) · eNL), (12)

where pNL, TNL, and eNL represent the respective parameters at the highest vertical level
of ERA5. The total ZTD is then given by Equation (13)

ZTDtotal = ZTDNL + ZTDERA. (13)

The actual ZTD value for a given point on the train-trajectory is determined via linear
interpolation of the 3D ZTDtotal field and referred to as ERA-ZTD in the following.

In order to assess the performance of the different processing schemes outlined in
Section 2.3, deviations between ERA-ZTD and GNSS-ZTD were computed for all test cases
and are presented in Sections 3.1.2 and 3.2.1. These differences in ZTD are analysed by
visual comparison and in terms of the following statistical performance metrics:

• Bias
• Standard deviation (σ)
• Root Mean Square Error (RMS)
• Correlation coefficient (R)

2.5. Assimilation Experiments

Furthermore, initial experiments for assimilation of train-borne GNSS-ZTD were
carried out in the course of this study. Therefore, we introduce the main setup and
objectives of these assimilation tests in the following section. These tests should not
be equated with full impact studies for ZTD assimilation as found in various literature
(e.g., [51–54]). A rather reduced setup was used and investigations concentrate fully on an
assessment of the required quality of the GNSS-ZTD estimates and their ability to enter
the DA system. Therefore, a few considerations have to be noted here before the results
are presented:

• Due to both time and computational resources, the results of this study focus on the
actual DA procedure. This means that only the WRFDA module was run, and an
assessment of the quantity of GNSS-ZTD observations entering the procedure (and
therefore the models initial state) is presented.

• No actual forecast was produced due to reasons mentioned above and also due to
the unlucky coincidence that almost no precipitation was observed over Austria on
the investigated days. This would make it difficult to verify an (beneficial) impact
on precipitation/moisture forecasts, even if the computational resources would have
been available.

• Furthermore, the impact of GNSS-ZTD gathered from just one railway track per
analysed case study on actual forecasts is assumed to be very limited. In a future state,
this might change as soon as data from multiple tracks can be obtained simultaneously.
Nevertheless, comparisons of model output with independently-derived GNSS-ZTD
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at surrounding reference stations were carried out to obtain a first impression on the
impact using only a small data set (i.e., one hour on one track).

Model and Setup

The Weather Research and Forecasting (WRF) model [55] was utilized for the as-
similation tests. The different model domains used for the tests are shown in Figure 2,
respectively, for the first test case.

Figure 2. Overview over the defined WRF domains utilized for the assimilation experiments, shown
for the first test case exemplary.

The parent domain with a 30 km horizontal resolution, shown in black (d01), essen-
tially covers Central Europe and the first nested domain, shown in blue (d02), with a 10 km
resolution fitted to the Austrian borders. Furthermore, a third, very small domain with a
3 km resolution (green, d03) was added in order to adequately represent the mountainous
terrain that is encountered on the train routes.

The general settings for the assimilation tests are summarized in Table 2.

Table 2. Overview of the WRFDA settings chosen for the assimilation tests.

Parameter Setting

Horizontal resolution (d01,d02,d03) 30/10/3 km
Boundary conditions ERA5

Observation interval (GNSS-ZTD) 60 s
Assimilation method 4D-Var
Assimilation window 1 h
Observation operator GPSZTD

Observation error (pre-defined in WRFDA) 0.5 cm
Error threshold 2.5 cm

Under special conditions, such as mountainous terrain in combination with moderate
or unknown quality of the observation data, the most important parameter in the DA
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setup is the horizontal resolution of the model domain. It determines the quality of the
background/model topography, which is crucial for the calculation of ZTD values in
the model domain (referred to as WRF-ZTD from now on). Since the quality check is
based on the deviation between GNSS-ZTD and WRF-ZTD, the accuracy of WRF-ZTD
directly influences the results of the check and, therefore, the decision of which GNSS-ZTD
observations are accepted by WRFDA.

3. Results

In the following, the results of two test cases are provided in the form of estimated
GNSS-ZTD and comparison with ERA-ZTD. All presented ZTD time series were post-
processed using a moving-average filter with a time window of five minutes, in order to
smooth out noise components still present in the PPP solutions. Each of the processing
schemes outlined before was utilized for at least one of the presented case studies. Further-
more, initial assimilation tests using the WRF model are presented in a separate section for
each test case. A detailed overview of those case studies is given in Table 3.

Table 3. Overview of the conducted case studies. Indicated are the route and date of travel.

Test Case Date Route

CS1 28 September 2017 Salzburg–Klagenfurt
CS2 29 November 2019 Innsbruck-Wörgl-Schwarzach/St.Veit-Liezen

3.1. Case Study 1: 28 September 2017

The first case study (CS1) investigates a train travel on the route Salzburg–Klagenfurt
on 28 September 2017. The actual train track (as derived from CSRS-PPP processing) is
visualized in Figure 3. The route includes a large variety of difficult environments for
GNSS positioning, from urban areas at the beginning and end (corresponding to Salzburg
and Klagenfurt/Villach) to extended sections of alpine terrain (narrow valleys), where
large amounts of multipath effects and signal obstructions are present. The latter can be
seen from Figure 4, which shows the number of observed satellites and Geometric Dilution
Of Precision (GDOP) values along the track.

Substantial variations in both the number of satellites and GDOP indicate a large
variability of environmental conditions and sections of distorted geometry are visible as
a drop in available satellites and an increase in GDOP. These sections correspond to the
passage of the most complex terrain along the track (narrow valleys and passing of the
main alpine ridge). Furthermore, large differences in absolute height are covered by the
track, with the highest points reaching over 1000 m above sea level (a.s.l.).
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Figure 3. Train track investigated in CS1 (Salzburg–Klagenfurt), derived from CSRS-PPP processing.
Indicated in blue are the EPOSA stations used for calculating the SEID model parameters.

Figure 4. The number of visible satellites (left) and GDOP values (right) along the CS1 route.

3.1.1. CS1: Kinematic SEID Model

For this first case study, the application of the SEID model is tested for ionospheric
mitigation. As the SEID model relies on DF data from nearby reference stations, the EPOSA
network was utilized for the provision of DF observations. The chosen seven stations are
listed in Table 4, and the track map with the station locations indicated is shown in Figure 3.
The decision of which and how many stations were selected was based on the distance
from a defined reference point, which was determined in a static way as the midpoint
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(median) of the trajectory, and all stations within an 80 km distance from this reference
point (indicated by the blue circle in Figure 3) were selected.

The actual threshold value was based on former studies and was variable under
different circumstances (e.g., a higher/lower number of stations available within a shorter
distance, i.e., a more or less dense reference station network). This clearly represents a
simplified approach for a kinematic application, which should be extended for follow-up
studies to test the usage of a moving reference point, which was chosen as a suitable
time step.

Table 4. Reference stations chosen for SEID processing for CS1.

Station Distance from Reference Point [km]

Gummern 47.6
Oching Süd 4.9
Rötenkogel 55.2
Saalfelden 66.0
Salzburg 62.4

Sillian 66.2
Schladming 62.4

3.1.2. CS1: ZTD Validation

For this test case, ZTD estimation was carried out using all four processing schemes in-
troduced before. Furthermore, ERA-ZTDs were calculated along the entire track according
to the outlined methodology and used for the validation of GNSS-ZTDs. Figure 5 shows a
comparison of GNSS-ZTDs and ERA-ZTDs in terms of ZTD values and ZTD differences of
the different processing schemes for CS1. In addition, histograms of ZTD differences with
respect to ERA-ZTD for each GNSS-ZTD solution are shown in Figure 6.

A number of key features can be spotted from the resulting time series. First prominent
feature is the high correlation between all solutions of GNSS-ZTD and ERA-ZTD. Temporal
patterns of all solutions only differ marginally for the utilized processing schemes and the
reference values derived from ERA5. Nevertheless, an (approximately constant) offset to
ERA-ZTD is present for essentially all GNSS-ZTD solutions. The largest offset shows up
in the PPPW solution, resulting in a significant underestimation of ZTD along the track
compared to ERA-ZTD (a negative bias of 8.8 cm). This is also visible in the distributions
of ZTD differences, shown in the respective histograms (see Figure 6).
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Figure 5. Comparison between the estimated GNSS-ZTD (CSRS-PPP (red), SGAMP (blue), PPP-
Wizard (green), and PPPW-HC (lime)) and ERA-ZTD (black) for CS1. Top: ZTD, bottom: differences
between GNSS-ZTD with respect to ERA5-ZTD.

However, the PPPW-HC version actually performs best in comparison to ERA-ZTD,
showing very low bias (0.1 cm) and RMS (1.2 cm) values as also visible in Table 5. Therefore,
at least the bias is comparable to the values typically provided by DF solutions from
geodetic equipment, which is commonly used for troposphere monitoring (see, e.g., [4]).
Although the standard deviations are higher than for geodetic solutions, the results from
this type of processing are still very promising. The pronounced advantage of the PPPW-
HC over the standard version might indicate a height offset introduced in PPPW, which
diminishes by applying a constraint as described in Section 2.3.4.

The SGAMP solution also shows low values for bias and RMS (1.3/2.8 cm), but an
increased standard deviation (by a factor∼2) compared to the other schemes. Nevertheless,
these results are able to indicate the potential of the SEID model for SF-GNSS processing
and applications, such as GNSS Meteorology.

The results from CSRS-PPP are comparable to those of SGAMP in terms of bias (2.4 cm)
and similar for RMS (2.7 cm). This scheme provides the lowest standard deviation of all
solutions (1.2 cm). A detailed summary of the performance metrics for the ZTD validation
is given in Table 5.
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Figure 6. Histograms of the ZTD differences between the estimated GNSS-ZTD (CSRS-PPP (red),
SGAMP (blue), PPP-Wizard (green), and PPPW-HC (lime)) and ERA-ZTD for CS1. Additionally, the
bias and standard deviations are indicated for each GNSS-ZTD solution.

Overall, the results of the CS1 ZTD validation outline the potential of the newly intro-
duced processing schemes (SGAMP and PPPW-HC), which both are able to outperform the
“standard” PPP solutions from CSRS-PPP and PPPW. In particular, the good performance
of PPPW-HC encourages its usage for the second test case (CS2) shown as well as for
future studies.

Table 5. The performance metrics for the ZTD validation against ERA-ZTD for the processing results
of CSRS-PPP, SGAMP, PPPW, and PPPW-HC for CS1.

Processing Scheme Bias [cm] σ [cm] RMS [cm] R

CSRS-PPP 2.4 1.2 2.7 0.99
SGAMP 1.3 2.5 2.8 0.95
PPPW −8.8 1.8 8.9 0.97

PPPW-HC 0.1 1.3 1.3 0.99

3.1.3. CS1: Assimilation Test

This section provides results of the first initial assimilation tests for CS1. The GNSS-
ZTD solutions validated in the prior section are introduced in the WRFDA procedure using
the setup outlined in Section 2.5. Before discussing this test case in detail, it should be
noted here that the chosen time slot for assimilation (from 9–10 UTC) corresponds to the
most challenging part of the track, the actual passing of the alpine ridge. This was chosen
on purpose in order to investigate the DA procedure and observation usability in the most
challenging conditions possible.

An overview of the acceptance rates for the utilized schemes is given in Table 6.
The overall performance of most schemes is reasonable but significantly degraded in
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comparison to the second test case (see Section 3.2.3). This holds especially for the CSRS-
PPP solution, as no single observation is accepted by WRFDA. This fact seems particularly
anomalous when revisiting the validation results from the prior section. However, there
appears to be a distinctive bias introduced by the coarse representation of topography
within WRF, not only to the real-world but also with respect to ERA5. This might explain
the good performance of CSRS-PPP in the validation (also with a low standard deviation)
but weak results in the assimilation test.

The other solutions will be affected as well by this bias, although the observation
errors (with respect to WRF-ZTD) of their estimates seem to fall below the cut-off (see
Table 2) more frequently. For PPPW-HC, approximately half of the derived GNSS-ZTD was
accepted (29/56, ∼52%), which represents promising results under the given conditions.
For SGAMP 21 (37.5%) and for PPPW 14 (25%), the observations still passed the quality
check. Another interesting feature of those results is the areal distribution of assimilated
observations for each processing scheme.

Some major differences in agreement with the model state/background forecast show
up when looking at different sections along the investigated track. SGAMP and PPPW-HC
appear to fit better in the first part of the track (first half hour), whereas all accepted
observations from PPPW were gathered at the end of the track. This behaviour is likely
also attached to the model topography and the biases introduced by it, as discussed above.

Table 6. The acceptance rates for GNSS-ZTD results of CSRS-PPP, SGAMP, PPPW, and PPPW-HC
for CS1.

Processing Scheme Acceptance Rate [%]

CSRS-PPP 0.0
SGAMP 37.5
PPPW 25.0

PPPW-HC 51.8

3.1.4. CS1: Assimilation Impact at Nearby GNSS Sites

In order to make an initial assessment of the impact of GNSS-ZTD assimilation on the
model performance, WRF-ZTD calculations (both with/without assimilation of train-borne
GNSS-ZTD) were compared with ZTD estimates from nine EPOSA stations near the train
track. For CS1, all available processing schemes were used in WRFDA and, therefore, can
be considered in the following comparison. However, since no CSRS-PPP observations
passed the quality check in WRFDA (see prior section), its results are left out for this test
case. The chosen EPOSA stations are visualized along with the covered train track and the
WRF domain in Figure 7.

Estimates from these stations are derived operationally together with whole network
shown in Figure 1 from DD processing using the Bernese GNSS software 5.2 [56] and
serve as a reference for the different WRF-ZTD results. Furthermore, ERA-ZTDs were
also calculated at the respective station locations in order to add another data source for
comparison. The ZTD results from all nine analysed stations and for each type of derivation
are summarized in Table 7.
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Figure 7. WRF model domain (green) with the covered train track (red) and nearby EPOSA stations
utilized for comparison (orange dots).

In general, te results show deviations between EPOSA-ZTD and different WRF-ZTD
solutions from the mm range up to 1–3 cm at certain stations. Monitoring the stations
along the railway track (SALZ and OCHS) the assimilated WRF-SGAMP solution showed
an improvement in consistency with EPOSA-ZTDs compared to the sole WRF solution.
On the other hand, for more distant stations, the PPPW solution appears to provide ZTD
estimates closer to the EPOSA-ZTD estimates.

Furthermore, looking at the ERA-ZTD values derived at the EPOSA sites, a consistent
overestimation of ZTD can be noticed. This might explain why PPPW (always negative
bias with respect to ERA-ZTD, see Section 3.1.2) performed the best for most stations in
this comparison.

Table 7. Differences between the ZTD estimates from EPOSA stations against WRF-ZTD without
(WRF) and with the assimilation of train-borne GNSS-ZTD (WRF-SGAMP, WRF-PPPW-HC, and
WRF-PPPW) and ERA-ZTD calculated at the respective stations.

dZTD-Type KIBG ROET SILL SAAL SALZ OCHS SHLA LIEZ SHEI

ERA5 [mm] −18.9 −10.5 −8.5 −12.8 −25.8 −9.5 −22.7 −27.6 −24.8
WRF [mm] −10.5 −0.4 6.0 −0.4 −9.7 −6.2 −9.9 −10.4 −16.1
WRF-SGAMP [mm] −18.4 −5.3 0.1 −9.6 −19.5 −13.5 −18.3 −17.8 −22.7
WRF-PPPW-HC [mm] −5.3 1.5 11.3 4.2 −4.5 −1.1 −3.9 −4.4 −11.4
WRF-PPPW [mm] 3.7 8.9 16.2 16.4 8.2 6.5 5.1 2.8 −4.4

3.2. Case Study 2: 29 November 2019

The second test case (CS2) investigates data gathered on 29 November 2019 along the
route Innsbruck–Liezen. The exact train track, again derived from CSRS-PPP processing, is
shown in Figure 8.
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Figure 8. Train route for CS2, 29 November 2019.

This route again provides very diverse conditions along the track with some prominent
features, such as major cities (Innsbruck), major (Inn Valley and Enns Valley), and very
narrow alpine valleys (Brixen Valley, i.e., Wörgl-Kitzbühel) as well as mountain passes
(Grießen pass, and Mandling pass). Therefore, environmental conditions (multipath, signal
obstruction, and atmospheric conditions) are very different along different sections of
the route, which is, again, reflected in the number of visible satellites and GDOP values
visualized in Figure 9. The first section (corresponding to the Inn Valley) provides better
geometry (GDOP between 2 and 4) and visibility of satellites (number of visible satellites
constantly over 10), whereas a significant degradation of these parameters is observed
when entering more mountainous environments afterwards.

Figure 9. The number of visible satellites (left) and GDOP values (right) along the CS2 route.

3.2.1. CS2: ZTD Validation

Similar to CS1, the results of the ZTD validation using the ERA-ZTD reference values
are shown here for CS2. Figure 10 shows the comparison of GNSS-ZTD estimations from
three different processing schemes (CSRS-PPP, PPPW, and PPPW-HC) and ERA-ZTD (top),
as well as deviations of all schemes from ERA-ZTD (bottom part). Furthermore, Figure 11
shows histograms of ZTD differences with respect to ERA-ZTD for each GNSS-ZTD
solution.
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Figure 10. Comparison between estimated GNSS-ZTD (CSRS-PPP (red) and PPPW (green)) and
ERA-ZTD (black) for CS2, Top: ZTD, bottom: differences between GNSS-ZTD with respect to
ERA-ZTD.

In general, the results show similar features as already observed for CS1. Correlation
is, again, very high between GNSS-ZTD solutions and ERA-ZTD for large parts of the
analysed track, with correlation coefficients between 0.97 and 0.98 for PPPW and CSRS-PPP,
respectively. The results show an excellent performance of CSRS-PPP, with differences to
ERA5 often in the mm range and very high correlation between the respective time series.
The overall bias is only around 2.7 mm, the median is in the sub-millimetre range, and the
standard deviation is the lowest of all schemes (6.1 mm). PPPW-HC provides comparable
results for a large part of the route; however, some distinct deviations to ERA-ZTD are
visible around 13:30 to 14:30, which corresponds to the time with the worst geometry
(Figure 9).

These issues more likely originate from interpolation errors made in the constraining
process (wrong point/height stored in database is chosen). This becomes more intuitive by
looking at the PPPW solution, which shows a similar pattern to ERA-ZTD in this section.
Overall, the PPPW standard version shows an increased bias and RMS compared to CSRS-
PPP and PPPW-HC, although this bias is generally lower than for the prior test case.
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Figure 11. Histograms of the ZTD differences between estimated GNSS-ZTD (CSRS-PPP (red),
PPP-Wizard (green), and PPPW-HC (lime)) and ERA-ZTD for CS2. Additionally bias and standard
deviations are indicated for each GNSS-ZTD solution.

The correlation with ERA-ZTD is, again, very high for most schemes, only the PPPW-
HC results are distorted by the deviations around 13:30–14:30 (R = 0.72 for PPPW-HC
compared to R = 0.97/0.98 for CSRS-PPP/PPPW). Detailed statistics for the ZTD validation
of CS2 can be found in Table 8. Overall, the results are very promising, especially for
CSRS-PPP and PPPW-HC, considering the challenging conditions of the route.

Table 8. Performance metrics for the ZTD validation against ERA-ZTD for processing results of
CSRS-PPP, PPPW and PPPW-HC for CS2.

Processing Scheme Bias [cm] σ [cm] RMS [cm] R

CSRS-PPP −0.27 0.61 0.66 0.98
PPPW −2.87 1.64 2.95 0.97

PPPW-HC 0.57 0.80 1.68 0.72

3.2.2. CS2: Assimilation Test

Similar to CS1, we present the results of some initial assimilation tests here for CS2.
The utilized DA settings can again be found in Table 2. For CS2, only CSRS-PPP and PPPW
results were introduced in WRFDA. The acceptance rates for those two schemes are given
in Table 9.

Overall, the CS2 tests showed very promising results for both investigated GNSS-ZTD
solutions. All observations of CSRS-PPP were assimilated (60/60 points, right part) and
showed comparable or sometimes even smaller deviations to WRF-ZTD than to ERA-ZTD.
The performance of PPPW is also on a high level with 49/60, i.e., ∼82% of observations
entering WRFDA. Contrary to CS1, the biases introduced to the model topography appear
to be less present for this test case, resulting in an unexpectedly large number of accepted
observations as well as in a much better performance from the CSRS-PPP solution.

This might be explained by slightly less mountainous terrain along the train track,
where at least half of the route covers a major valley (Inn Valley), which might be rep-
resented more accurately in the WRF topography. Overall, these are promising results
showing the feasibility of using such GNSS-ZTD estimates for DA and backing up the
results derived in the validation.

Table 9. Acceptance rates for the GNSS-ZTD results of CSRS-PPP and PPPW for CS2.

Processing Scheme Acceptance Rate [%]

CSRS-PPP 100.0
PPPW 81.6
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3.2.3. CS2: Assimilation Impact at Nearby GNSS Sites

Similar to CS1, WRF-ZTD (again, with/without ZTD assimilation) were compared
with ZTD estimates from six EPOSA stations near the train track. The chosen stations, along
with the covered train track and the WRF domain, can be seen in Figure 12. ERA-ZTD was
also calculated at the respective station locations as another data source for comparison.
The results from all six analysed stations and for each type of derivation are summarized
in Table 10.

Figure 12. The WRF model domain (green) with covered train track (red) and nearby EPOSA stations
utilized for comparison (orange dots).

The results indicate only a small influence (compared to CS1) of ZTD assimilation for
the CSRS-PPP solution (1–3 mm). In the case of PPPW, the deviations were significantly
larger (1–2 cm). In comparison to CS1, none of the two investigated processing solutions
showed a positive impact on the WRF model state. Rather, a slight increase of the bias can
be observed for CSRS-PPP estimates (due to overestimation) as well as a cm-range increase
for PPPW (underestimation in all cases). As already visible for CS1, ERA5-based estimates
tend to overestimate ZTD at all stations compared to the reference values.

Table 10. Differences between ZTD estimates from EPOSA stations against WRF-ZTD without
(WRF) and with assimilation of train-borne GNSS-ZTD (WRF-CSRS and WRF-PPPW) and ERA-ZTD
calculated at the respective stations.

dZTD-Type KIBG ROET MATR SALZ OCHS JENB

ERA5 [mm] −4.1 −5.0 −10.7 −10.4 −13.1 −11.3
WRF [mm] 1.2 −2.7 −5.2 −0.3 −3.6 −3.2
WRF-CSRS [mm] −1.6 −3.7 −7.6 −3.1 −6.1 −6.3
WRF-PPPW [mm] 18.0 6.6 7.6 19.0 9.2 15.3

4. Discussion and Conclusions

This study assessed the feasibility of deriving tropospheric parameters from GNSS
receivers operated on trains and their usability for assimilation in NWP models. GNSS-
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ZTD estimates were produced by kinematic PPP processing using four different pro-
cessing schemes based on different software packages (CSRS-PPP, SGAMP, PPPW, and
PPPW-HC). The derived GNSS-ZTD estimates were validated using reference ZTD com-
puted using ERA5-reanalysis data (ERA-ZTD) for two test cases (specific days and train
travelling routes).

Although the initial results indicated a good overall agreement between GNSS-ZTD
and ERA-ZTD, significant differences between processing schemes and test cases were
visible. On average, the GNSS-ZTD solutions agreed at the low cm to mm level with ERA-
ZTD. No distinctive superiority of one processing scheme over the others was recognized,
although certain strengths and weaknesses of different schemes were visible.

As an alternative approach of ionospheric mitigation for SF data, the SEID model was
modified to a kinematic mode and tested for CS1. The corresponding processing scheme
(SGAMP) showed promising results, especially for highly challenging applications, such
as presented here. SGAMP had a significantly lower bias (1.34 cm) compared to CSRS-
PPP/PPPW (2.4/8.8 cm), and the correlation with ERA-ZTD was as high as for the other
solutions. This makes the SGAMP processing scheme a promising candidate for future
investigations on this topic, although further experience and tests are definitely required.

Furthermore, the performance of GNSS-ZTD estimation can be improved by applying
a state constraint on the height coordinate in parameter estimation. With the aid of height
coordinates of the investigated railway tracks, stored in the official track database of
ÖBB, the Kalman filter module of the PPPW software was extended for such a height-
constraint option. Solutions derived using this implementation showed medium to large
improvements compared to the standard PPPW version and the other solutions. Overall,
this provided the most accurate validation results for CS1 (bias ∼1 mm) and reasonable
performance for CS2, although some problems were still found for certain periods.

In addition to the validation, the first assimilation tests for GNSS-ZTD data derived
from trains were conducted for the presented test cases using the WRF model. A 4D-Var
data assimilation scheme (WRFDA) was used for the assimilation of one hour GNSS-ZTD
using a temporal resolution of one minute, i.e., 60 observations each case. Overall, the
tests showed very promising results; however, (as for the validation results) distinctive
differences between the test cases and processing schemes were evident. This is outlined
by the comparison between both test cases.

For test case CS2, almost all GNSS-ZTD observations (CSRS-PPP: 100%, PPPW: 81%)
passed the quality check of the WRFDA module, which performs the assimilation proce-
dure within the WRF. On the other hand, the results for test case CS1 were significantly
worse, as for most of the four tested processing schemes, not even half of the observations
were accepted.

These differences most likely stem from the highly variable complexity of the envi-
ronmental conditions (mountainous terrain and GNSS-denied areas, such as tunnels and
urban areas), which might degrade both the NWP and GNSS performance. The major part
of the experienced degradation for CS1 might be linked to the rather coarse representation
of the topography in WRF (at 3 km in high mountainous regions) introducing the observed
biases. This would also explain the local differences in the acceptance rate of GNSS-ZTD
observations between the processed solutions.

For three out of four schemes (CSRS-PPP, PPPW-HC, and SGAMP) only observations
in the first part of the investigated track were assimilated and, for PPPW, only observations
from the end of the track. GNSS-specific error sources (e.g., multipath) will also still
influence the results, but rather show in an increase of noise in the solutions, which has
already been reduced by the moving-average filtering carried out in post-processing of the
PPP solutions.

Furthermore, comparisons to independent GNSS-ZTD from geodetic reference stations
were carried out for an initial assessment of the impact of train-borne ZTD on the WRF
model state. The comparisons revealed differences from the mm range to 1–3 cm with
respect to the independent ZTD estimates depending on the test case and processing
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scheme. These results indicate that further improvements in terms of quality of train-borne
GNSS-ZTD are needed and to be tackled for in future studies.

However, the observed deviations (and even increases in bias) compared to the original
model state were relatively small in most cases (few mm—1 cm) and could also be attached
to other factors of uncertainty still present in this comparison, such as:

• Bias correction: Typically, a bias correction is applied to all GNSS-ZTD estimates from
static stations used in NWP data assimilation. This is done to correct for inconsistencies
between model and real-world topography, which could lead to errors in the mm
to cm range, especially in mountainous areas. For static data, different approaches,
including static or variational techniques, have been developed. However, no typical
procedure exists for kinematic data up until now, and even simple averaging over a
number of collected time series along the same track was not possible in this study
due to the limited data resources.

• Formal errors of EPOSA-ZTD: Smaller deviations (in the mm range) between results
with/without ZTD assimilation are often covered by the formal errors of the EPOSA-
ZTD estimates.

Therefore, no solid conclusion on the impact of assimilating train-borne GNSS can be
given for the present study. Moreover, as this investigation did not include the production
of an actual (precipitation) forecast, it can only serve as a first indication of the usability of
the GNSS-ZTD estimates in NWP. Therefore, the actual benefit of such data sets on a NWP
forecast cannot yet be determined through verification of forecast products.

Overall, the presented study shows that reasonable ZTD estimates can be derived from
train-borne SF-GNSS data. Although specific (pre-) processing has to be applied and the
results are very sensitive to the chosen PPP setup, they are able to reach the desired quality
for NWP applications. Although their actual impact on NWP forecasts is still uncertain
and, therefore, a major topic for subsequent studies, chances for beneficial usage are high as
data quality is expected to increase further with the planned installation of new-generation,
low-cost (but DF) equipment on train fleets and more sophisticated processing approaches.

The initial idea of having a large fleet of trains (up to 1000 vehicles) and using each
one of them as a meteorological sensor for atmospheric water vapour is expected to draw
interest in the atmospheric science and NWP community, since the achievable horizontal
and temporal resolution cannot be provided by any other sensor at the moment. Further-
more, a possible extension to near real-time ZTD estimation will be of great benefit for
operational weather forecasting, particularly nowcasting applications.
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