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Abstract: Urban areas have very complex spatial structures. These spatial structures are primarily
composed of a complex network of built environments, which evolve rapidly as the cities expand
to meet the growing population’s demand and economic development. Therefore, studying the
impact of spatial structures on urban heat patterns is extremely important for sustainable urban
planning and growth. We investigated the relationship between surface temperature obtained by
the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, at 90 m spatial
resolution) and different urban components based on high-resolution QuickBird satellite imagery
classification. We further investigated the relationships between ASTER-derived surface temperature
and building footprint and land use information acquired by the New York City (NYC) Department
of City Planning. The ASTER image reveals fine-scale urban heat patterns in the NYC metropolitan
region. The impervious-medium and dark surfaces, along with bright covers, generate higher surface
temperatures. Even with highly reflective urban surfaces, the presence of impervious materials
leads to an increased surface temperature. At the same time, trees and shadows cast by buildings
effectively reduce urban heat; on the contrary, grassland does not reduce or amplify urban heat. The
data aggregated to the census tract reveals high-temperature hotspots in Queens, Brooklyn, and
the Bronx region of NYC. These clusters are associated with industrial and manufacturing areas
and multi-family walk-up buildings as dominant land use. The census tracts with more trees and
higher building height variability showed cooling effects, consistent with shadows cast by high-rise
buildings and trees. The results of this study can be valuable for urban heat island modeling on
the impact of shadow generated by building heights variability and trees on small-scale surface
temperature patterns since recent image reveals similar hotspot locations. This study further helps
identify the risk areas to protect public health.

Keywords: urban heat island; building footprint; remote sensing; ASTER; New York City

1. Introduction

Urban areas have very complex spatial structures [1]. These spatial structures continue
to evolve rapidly as the cities expand to meet the growing population’s demand and
economic development [2]. The intensity of these transformations during recent times
is at an alarming level worldwide. Because, at present, 55% of the world’s population
(4.2 billion) resides in urban areas, which is expected to increase to 70% by 2050 [3]. The
transformations of urban areas result in higher surface- and air temperatures than rural
areas, which is termed as the “urban heat island (UHI) effect” [4,5]. The UHI affects the
environment, climate, vegetation growth, air and water quality [6] and threatens human
health and well-being. Therefore, understanding UHI and its various influencing factors at
a city-wide scale are crucial to managing urban growth and UHI mitigation.

The UHI can be classified into three broad categories based on the height and way it
generates [4]. The first category is the boundary layer UHI, which occurs in the layer above
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the mean building height. The second category is the canopy layer UHI, which occurs in
the layer from the surface to approximately the mean building height. The third category is
the surface UHI (SUHI), which occurs at the surface [7]. The first two categories are studied
based on ground-based meteorological measurements or intensive field experiments within
a limited time [7]. However, the lack of spatial samplings of surface temperatures in and
around cities has been recognized as a significant problem in the traditional atmosphere UHI
study [8]. On the other hand, the SUHI refers to the relative temperature differences of urban
surfaces compared to surrounding rural areas. The SUHI is typically characterized by airborne
or satellite thermal infrared remote sensing at regional scales. The recent developments in
spaceborne and airborne remote sensing technology and the availability of thermal sensing
data from various satellites makes it possible to study SUHI at different spatial (from local to
global scales) and temporal (diurnal, seasonal, and inter-annual) scales [6,7,9].

The SUHI can be caused by physical processes, structural conditions, and anthro-
pogenic factors. Heat-trapping and non-porous urban materials absorb more heat and
prevent the release of heat back to the atmosphere. The cooling effects of land-sea breezes
can complicate UHI conditions [10,11]. Complex urban geometry casts shadows between
high-rise buildings, reduces sun exposure, and narrows the surface view of the atmo-
sphere, resulting in a lower surface temperature [12–14]. Anthropogenic factors, such as
winter heating or summer cooling from commercial and residential buildings, amplify
the intensity of the UHIs. On the other hand, the urban greenspaces, such as trees in the
neighborhood, increase the likelihood of cooler surface temperature because trees release
excess heat through evapotranspiration [15,16].

In big cities, tall buildings often cast shadows on nearby buildings and the ground [17].
Loughner [18] showed the impact of building heights on the surface temperature based on
the coupled Weather Research and Forecasting model and an urban canopy model (WRF-
UCM). They observed shorter buildings are associated with higher surface temperature
because they cast fewer shadows and allow heating of the building walls, roads, and
heat-trapping impervious surfaces through direct sunlight [18]. On the other hand, taller
buildings cast larger shadows and reduce solar radiation absorption onto urban impervious
surfaces, affecting local UHI variations and thermal characteristics [19]. The satellite sensors
like IKONOS and QuickBird provide high-resolution imagery of a region and offer a unique
opportunity to map detailed urban land cover information. We can obtain accurate urban
land use information from these high-resolutions images, such as impervious surface
types (based on spectral characteristics), vegetation cover (trees and grassland), the spatial
organization of urban structures, and shadows.

The remotely sensed surface temperature exhibits large spatial variability, i.e., the
mixture of cold and hot surface components [7,20]. The large spatial variability in surface
temperature is primarily due to different urban components because of its small spatial
scale (typically between 10 m and 20 m). Due to this, it can result in irresolvable hot and
cold spots [21,22]. Roth [20] observed the effect of a few very hot roofs or a significant com-
bustion source heat on the pixel values in an area where most of the active surface is much
cooler. Therefore, it is necessary to use satellite data better to unmix the satellite observed
mixed surface temperature to derive a relationship with different urban components [23].
The availability of urban structural information provides a unique opportunity to combine
field-based building footprint data with remote sensing measurements to explain urban
heat patterns at a finer scale.

This study investigates various influencing factors to fine-scale spatial variations
in urban heat patterns in the New York City (NYC) metropolitan region during the late
summer/early autumn. We attempted to establish a relation between surface temperature
measured by ASTER satellite and urban structures, urban materials, shadows from build-
ings and trees, and vegetation cover, identified by classification of very high-resolution
satellite imagery and the urban structural data obtained from the NYC Department of City
Planning. We further examined the role of urban trees and building height on the SUHI
in the NYC metropolitan region. Finally, we compared the status of UHI mitigation (e.g.,



Remote Sens. 2021, 13, 3797 3 of 19

green roof and cool roof project) to see whether the observed hotspot still exists based on
recent satellite measurements.

2. Study Area

The study area covers New York City (NYC) and its metropolitan region (Figure 1).
A true-color composite of ASTER satellite (15 m spatial resolution) shows the fine detail
of urban structures: vegetation in green, urban areas in white/gray, and water in black
(Figure 1). The residential areas are scattered, shown as bright spots mixed with green trees
on the streets. At the center is Manhattan, with a bright green oasis (Central Park) in the
middle. Manhattan is the center of the financial district with many tall buildings mainly
located south of Central Park in the downtown and midtown region (Figure 1 inset map).
The dark color represents the shadows cast by the high-rise buildings. The mixed bright
and dark spots in the west part of the midtown are lower-rise buildings. The Hudson River
runs north to south and separates New Jersey (on the left) from Manhattan Island (on the
right). The Harlem River at the north of Manhattan separates Manhattan from the Bronx.
The Harlem River merges with the East River and separates Manhattan from Queens
in the east and Brooklyn in the southeast. Following the direction to which Manhattan
points is the Staten Island. In the suburban region, green vegetation is scattered in the
residential backyards. The industrial areas shown in bright and dark spots are located at
the intersection between Queens and Brooklyn, next to the East River.
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The climate is controlled by cold, dry air mass movement from the north and warm,
humid air mass movement from the south. In addition to the above two air masses’
interactions, the air mass flow from the North Atlantic Ocean produces cool, cloudy,
and moist weather conditions in the NYC metropolitan area. The land-sea temperature
differences in all seasons have a strong local impact on NYC climate. Land-sea breezes cool
NYC on warm spring and summer days and warm NYC on cold nights in autumn, winter,
and early spring [24]. Surface elevation increases from the coast to inland. In the NYC
metropolitan region, two ridges are parallel to the coastline (Figure 2a). One is along the
boundary between Brooklyn and Queens, and the other is on the west side of the Hudson
River. Each ridge blocks the cooler land-sea breeze when moving from the coast to inland,
resulting in warmer surface temperatures (Figure 2b).

Remote Sens. 2021, 13, 3797 4 of 19 
 

 

The climate is controlled by cold, dry air mass movement from the north and warm, 
humid air mass movement from the south. In addition to the above two air masses’ inter-
actions, the air mass flow from the North Atlantic Ocean produces cool, cloudy, and moist 
weather conditions in the NYC metropolitan area. The land-sea temperature differences 
in all seasons have a strong local impact on NYC climate. Land-sea breezes cool NYC on 
warm spring and summer days and warm NYC on cold nights in autumn, winter, and 
early spring [24]. Surface elevation increases from the coast to inland. In the NYC metro-
politan region, two ridges are parallel to the coastline (Figure 2a). One is along the bound-
ary between Brooklyn and Queens, and the other is on the west side of the Hudson River. 
Each ridge blocks the cooler land-sea breeze when moving from the coast to inland, re-
sulting in warmer surface temperatures (Figure 2b). 

 
Figure 2. The maps showing: (a) The topography of New York City (at 30 m spatial resolution), ridges can be seen in the 
map, and (b) ASTER surface temperature (K) over New York City and surrounding locations on 8 September 2002. 

3. Materials and Methods 
3.1. Data Source 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sur-
face kinetic temperature data (level 2) was downloaded from NASA [25,26]. The temper-
ature and emissivity separation algorithm accurately retrieves surface temperature using 
the thermal infrared (TIR) bands [27]. The spatial resolution of ASTER surface tempera-
ture is 90 m and has an accuracy of 1.5 Kelvin. The QuickBird images (spatial resolution 
of 2.8 m) were used to produce the detailed land cover classification. During the time of 
satellite data acquisition, the weather was clear and cloud-free (Table 1). Both the images 
were collected within a month apart, in August–September 2002, for consistency, while 
recent ECOSTRESS data [28] was used to observe UHI mitigation effects on land surface 
temperature in our study area. The date of pass of the ECOSTRESS satellite is 27 August 
2020. The time of pass in all images is consistent and collected around 4 pm local time 
(EST). The ASTER and ECOSTRESS surface temperature product is corrected for emissiv-
ity. In contrast, the emissivity used in the Landsat surface temperature product was inter-
polated from ASTER Global Emissivity Database (GED) data for the spatial grid and spec-
tral bands and thus is not used for this study. 

The Shuttle Radar Topography Mission (SRTM) elevation at one arc-second (~30 m 
spatial resolution) was downloaded from NASA Earth Explorer. In addition, parcel (tax 
lot) level urban structural information and the building footprint data were downloaded 

Figure 2. The maps showing: (a) The topography of New York City (at 30 m spatial resolution), ridges can be seen in the
map, and (b) ASTER surface temperature (K) over New York City and surrounding locations on 8 September 2002.

3. Materials and Methods
3.1. Data Source

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) surface
kinetic temperature data (level 2) was downloaded from NASA [25,26]. The temperature
and emissivity separation algorithm accurately retrieves surface temperature using the
thermal infrared (TIR) bands [27]. The spatial resolution of ASTER surface temperature
is 90 m and has an accuracy of 1.5 Kelvin. The QuickBird images (spatial resolution of
2.8 m) were used to produce the detailed land cover classification. During the time of
satellite data acquisition, the weather was clear and cloud-free (Table 1). Both the images
were collected within a month apart, in August–September 2002, for consistency, while
recent ECOSTRESS data [28] was used to observe UHI mitigation effects on land surface
temperature in our study area. The date of pass of the ECOSTRESS satellite is 27 August
2020. The time of pass in all images is consistent and collected around 4 pm local time (EST).
The ASTER and ECOSTRESS surface temperature product is corrected for emissivity. In
contrast, the emissivity used in the Landsat surface temperature product was interpolated
from ASTER Global Emissivity Database (GED) data for the spatial grid and spectral bands
and thus is not used for this study.
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Table 1. Details of satellite data product used in this study.

Satellite Product Identifier Date of Pass Time of Pass Sun Elevation

ASTER–VNIR AST_L1T_00309082002155230_20150424220415_64929 8 September 2002 15:52:30.57 52.26◦

ASTER–LST AST_L1A#003_09082002155230_09302002162843.hdf 8 September 2002 15:52:30.57 52.26◦

QuickBird–QB02 CatId: 1010010000EA2000 2 August 2002 15:48:56.18 62.21◦

Note: Time of pass in EST (Eastern Standard Time).

The Shuttle Radar Topography Mission (SRTM) elevation at one arc-second (~30 m
spatial resolution) was downloaded from NASA Earth Explorer. In addition, parcel (tax
lot) level urban structural information and the building footprint data were downloaded
from the NYC Department of City Planning [29]. The urban structural parameters include
building footprint area, building classes, land use category, commercial area, residential
area, total floors, building heights, and year built. According to the year built, more than
95% of the buildings were built before 2000. Tree census data of 2005 in NYC census tracts
were also used in the analysis [30].

3.2. Image Classification

Urban areas represent a wide range of land uses and surface properties. To fully
understand the spatial characteristics of urban structural and anthropogenic factors and
the feedback to human-dominated urban ecosystems, we classified the urban areas into
different surface types. The most common subdivisions of urban areas are residential (low,
medium, and high), industrial, and commercial areas [31]. Each subdivision has distinct
surface morphological characteristics defined by the amounts and types of vegetation and
the size or roughness of different elements. These differences result in variations of flux
partitioning across a city and the development of distinct micro- to local-scale climates.
This study used a slightly different classification scheme for various urban components
following Gluch et al. [32]. The classification of different urban components was based on
the spectral reflectance of blue, green, red, and near-infrared wavelengths measured by the
QuickBird satellite. We did this to capture finer details of urban compositions and address
fine-scale surface temperature patterns in the study area.

We used a supervised approach to classify high-resolution QuickBird imagery into
various urban land categories (bright, medium, and dark impervious surfaces, shadows,
water, trees/shrubs, grassland, and bareground). We used the Fuzzy ARTMAP for classi-
fication, a neural network developed by Carpenter [33]. This algorithm has been widely
used for satellite image classification [34–36]. The ARTMAP is a match-based learning
neural network that uses a self-organizing arbitrary system to map inputs to outputs. It
also has attractive features such as being fast and stable [34,35].

The classes were chosen based on spectral differentiation (Table 2). The analysis
was carried out based on vegetation leaf-on conditions [32]. The descriptions of these
classes are as follows: (1) Shadow class: A standalone category. The selection of shadow
classes attempts to separate impervious dark and shadow classes since they can constitute
different thermal properties. (2) Water class: In this class, all water bodies present within
the study are included, regardless of water depth. However, we masked out the water
body during the classification. (3) Trees class: This category includes vegetation that can
cast a shadow. Such as deciduous and evergreen trees and shrubs with greater canopy
cover. (4) Grassland class: This class includes grasses in residential lawns, parks, sides
of streets, and golf courses. The reflectance of this class in the near-infrared band is the
highest among all classes due to its continuous, photosynthetically active canopy [32].
(5) Bright cover class: The bright cover refers to surfaces with a high albedo, such as highly
reflective rooftops and industrial plants. (6) and (7) Impervious-medium and dark classes:
The impervious-medium surfaces are mainly concrete materials, while dark surfaces are
mainly asphalt, tar, parking lots, and roadways. The dark surfaces appear brighter than
shadows. (8) Bareground class: This class typically refers to playing fields and empty lots.
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Table 2. The land-use categories are delineated based on the spectral signature using Fuzzy ARTMAP [33].

Class Description

Shadow A standalone category. The shadow category includes shadows cast by
buildings and trees.

Bright cover
This class refers to sealed surfaces with a high albedo, such as highly
reflective rooftops and industrial plants. This corresponds to bright

surfaces seen in the original satellite images.
Impervious-medium The impervious-medium surfaces are mainly concrete building materials.

Impervious-dark The impervious-dark surfaces are mainly asphalt, tar, parking lots,
and roadways.

Trees This category includes any vegetation likely to cast a shadow. Such as
deciduous and evergreen trees and shrubs with greater canopy cover.

Grassland This class includes grasses in parks, sides of streets, residential lawns,
and golf courses.

Bareground This class typically refers to playing fields and empty lots.
Water All water bodies (river, lake, pond, etc.) are included in this class.

As per the class description, we selected training areas for shadows, bright cover,
impervious-medium and dark surfaces, trees, grassland, and bareground (Table 2). The
spatial resolution of the QuickBird image is fine enough to distinguish these individual
features represented by urban materials such as pavement, rooftops, trees, or bareground.

3.3. Accuracy Assessment

To quantitatively evaluate the accuracy of our image classification results, we used
both confusion matrix and further visual interpretation. To create the confusion matrix,
we recollected our ground truth from the original image through visual interpretation and
our knowledge of New York City. The ground truth used to create a confusion matrix is
entirely independent of the training sites for our classification algorithm. In reality, the
confusion matrix is not a panacea for classification accuracy assessment [37]. We collected
large homogeneous areas as ground truth and avoided mixed or heterogeneous regions.
The accuracy assessed using the confusion matrix tends to be overestimated. This problem
is even worse for the urban area due to the small scale of the urban structure, resulting in
many mixed pixels even for high-resolution QuickBird images.

Most of the pixels are correctly classified. Some grasslands are misclassified as
impervious-medium surfaces, while some impervious-dark surfaces are misclassified
as impervious-medium surfaces or the shadow category (Table 3). A few tree pixels are
classified as grassland, a few impervious-medium surface pixels are classified as bright sur-
faces, and a small part of bright surfaces are misclassified as impervious-medium surfaces.
Overall the classification accuracy is 0.959, and the Kappa coefficient is 0.947.

For the visual assessment of the shadow category, shapes turned out to be an effective
indicator. The shapes of shaded areas projected on the ground should reflect the original
shapes of the structures that obscured sunlight. More importantly, they should incline
to the specific direction precisely opposite of the Sun’s position. For instance, the dark
rectangular area which does not align with the Sun’s direction was almost automatically
eliminated from the shadow category. The shadow cover includes the shadows cast by
both trees and buildings. Our visual interpretation indicates that we classify the shadow
category very well.
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Table 3. The confusion matrix shows the number of correctly and incorrectly classified pixels of the QuickBird image.

Class Shadow Bright
Cover

Impervious-
Medium

Impervious-
Dark Trees Grassland Bareground Total

Shadow 5794 0 0 282 0 0 0 6076
Bright cover 0 4045 14 0 0 0 0 4059
Impervious-

medium 0 49 2634 131 0 232 0 3046

Impervious-dark 60 0 1 4468 0 0 0 4529
Trees 0 0 0 0 725 0 0 725

Grassland 0 0 0 0 13 473 0 486
Bareground 0 2 0 0 0 0 398 400

Total 5854 4096 2649 4881 738 705 398 19,321

Note: Overall accuracy is 0.959, and the Kappa coefficient is 0.947.

3.4. Data Processing

The data were cleaned, processed, merged, and analyzed in the python environment.
We process the following data for analysis: (1) NYC census tract with demographic infor-
mation, (2) Parcel level attributes containing building footprint, structural, and land use
information, (3) Tree census data containing location information for NYC region, which
is filtered for alive trees, (4) Land use classification of QuickBird image, and (5) ASTER
surface temperature at 90 m spatial resolution.

The urban land cover compositions derived from the QuickBird image and ASTER
surface temperature were co-registered using the co-registration tool in the ENVI software
(L3Harris Geospatial). We used zonal statistics functions in the python environment to
aggregate ASTER surface temperature at the census tract level. The zonal statistics provide
minimum, maximum, mean, and majority, including several other statistical parame-
ters [38]. We aggregated total trees, building area, residential area, commercial area, garage
area, and retail areas within each census tract to compare the relationships between surface
temperatures and different building attributes. We did spatial join (polygon to polygon)
to assign ASTER pixel to each QuickBird pixel to compute fractional cover of different
QuickBird land cover classes within each ASTER pixel. The spatial join assigned ASTER
pixel to QuickBird pixel that entirely sits within it. This operation discards QuickBird pixel
that intersects two and more ASTER pixels to avoid mixed temperature signal. The raster
statistics count QuickBird pixel/classes in each ASTER pixel to determine the relationship
between urban components and surface temperature. The data provides information on
the percentage of each QuickBird class within each ASTER surface temperature pixel of
90 m resolution. We also computed the dominant land use category within each ASTER
pixel to check relationships with surface temperature. All the figures were prepared in
R studio, ArcGIS Pro 2.8.1, and Python 3.

4. Results
4.1. Satellite-Derived Surface Temperature and Urban Compositions

The ASTER data shows that surface temperature increases from the coast to inland,
with cool surface temperatures in Staten Island and South Brooklyn to the warmest in New
Jersey in the west (Figure 2b). Three significant areas of surface temperature patterns could
be identified, with the coolest coastal regions of Brooklyn, then the warmer Manhattan,
Queens, and the Bronx, and the warmest New Jersey areas. These surface temperature
patterns correspond to two ridges (Figure 2a), which block the land-sea breeze to bring
cooler air inland.

A visual inspection of our supervised classification map of the NYC area (Manhat-
tan and adjoining region) reveals that the distribution of different urban materials and
landforms appears to be realistic (Figure 3a). Water bodies are represented by the two
rivers and lakes in Central Park, green patches of Central Park, tracts of large paved urban
surfaces, and buildings that line the streets are all found at their expected locations. Further,
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the shadow is well characterized in the downtown Manhattan area, where most high-rise
buildings with significant shadow components are located. The lack of bareground class
also indicates the efficient use of space in the NYC area, where the land value is relatively
high. The impervious-medium and dark surfaces represent the two dominant classes in our
study area (Figure 3b). Trees and shadows are the second most dominant classes, followed
by water bodies, bright surfaces, and grassland.
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Figure 3. The figure shows: (a) The composition of urban materials obtained by classification of the QuickBird image
using Fuzzy ARTMAP neural network scheme, (b) total coverage of urban components in Manhattan and its surrounding
area, and (c) Violin chart with boxes represents the interquartile range (IQR) of surface temperature in different urban
components. Mean (filled circle) and median (full line inside the box) is also shown.

Bright surfaces have the highest mean surface temperature (312.6 K, median 312.4 K)
together with impervious-medium and dark surfaces (mean 311.8 K and 311.5 K, respec-
tively). While the lower mean surface temperature was represented by shadow (307.6 K,
median 307.4), typically cast by high-rise buildings, grassland (309.8 K, median 310 K),
trees (308.06 K, median 307.8 K), and water bodies (303.3 K, median 302 K). The violin
chart with boxes representing interquartile range (IQR) reveals each class’s range and
frequencies of surface temperature (Figure 3c). Most of the shadow pixels are in Manhat-
tan, whereas brighter pixels are in Queens. Some of those bright surfaces are industrial
plants, which release waste heat. In Manhattan, the dark, heat-trapping materials, like tar
roofs and asphalt roads blocked from direct exposure to incoming solar radiation exhibit
cooler surface temperatures (Figures 2b and 3a). By contrast, areas to the west of midtown
Manhattan and the north of lower Manhattan display much warmer surface temperatures
(Figures 2b and 3a). These areas are dominated by low-rise buildings that cast fewer
shadows. Three airports in this region, including LaGuardia in Queens, JFK in Brooklyn,
and Newark in New Jersey, all show hotspots. These hotspots correspond to the area with
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large bright impervious surfaces, indicating that large impervious surfaces exhibit greater
surface temperature, even if the surface is bright.

4.2. Relationship between Urban Compositions and Surface Temperature

To observe the relationship between fractional urban compositions and surface tem-
perature, we assumed a 10% threshold of each QuickBird class to impact surface tem-
perature in each ASTER pixel substantially. The above threshold was chosen to reduce
the noise/mixed-signal effects of the major fraction cover on minor fraction cover. We
found greater noise in the bivariate relationships below 10% fraction cover. The analysis
revealed that surface temperature decreases with the increase in shadow coverage, with
r values of −0.27 and p < 0.01 (Figure 4a). The Sun position when the ASTER data was
collected (52-degree Sun elevation) was lower than the Sun position when the QuickBird
data was collected (62-degree Sun elevation), so the ASTER image has more shadows than
the QuickBird image. As discussed below, this may not affect the relationship between
surface temperature and shadows but may add noise to the relationships between surface
temperature and impervious surface classes.

The surface temperature decreases with tree cover, with a steeper decrease than the
shadow class with r values of −0.57 and p < 0.01 (Figure 4b). The relationship between the
dominant grassland class and surface temperature is not significant (Figure 4c). Grassland
does not significantly reduce and amplify urban heat, consistent with the ground observa-
tions conducted in a tropical city by Nichol and Wong [13]. Trees show a greater cooling
effect during the day by providing shade than grassland [15,16]. This suggests that the
shadow effect and evapotranspiration from trees have a more significant impact on cooling
due to their larger leaf area index than grassland; however, it requires further studies at a
city-wide scale. Surfaces with bright cover show an increasing surface temperature trend;
however, the correlation is not strong but significant, with r values of 0.18 and p < 0.01
(Figure 4d). Usually, bright surfaces with high albedo reflect more and absorb less solar
radiation than other impervious surfaces. We expect that surface temperature decrease
with bright surface cover. However, due to its low heat capacity, even the bright material
can heat the surface easily and quickly. Furthermore, the bright surface is surrounded by
heat-trapping surfaces such as impervious-medium and dark surfaces. Those nearby darker
impervious materials may amplify and increase the surface temperature with bright covers.
Another contributing factor could be that most bright surfaces are rooftops and industrial
plants, constantly exposed to the Sun. Therefore, co-existing darker impervious materials
within the same ASTER pixel of 90 m spatial resolution contributes to heating effects.

The relationship is quite noisy for the dominant impervious-medium surface class, but
the overall surface temperature increases (r values of 0.37 and p < 0.01). However, the slope
is not very steep (Figure 4e). The main reason for the noise is that the definition for this
class is not very clear, and many impervious-medium surfaces can have different materials.
Those materials can have different radiative emission and absorption properties that affect
the surface temperature. The surface temperature also increases with the impervious-dark
surfaces, with r values of 0.32 and p < 0.01 (Figure 4f). The slope is slightly steeper than the
impervious-medium surfaces. Overall, our results show that the r values are not very high,
the highest r-value is −0.57 for the shadow category, but the relationships are statistically
significant. Low r values are primarily due to the mixed land use category within each
ASTER pixel. However, the relationship does show the impact of trees, shadows, and
impervious surfaces on surface temperature.
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4.3. Impact of Land Use and Building Structure on Surface Temperature

The mean surface temperature for building footprint in the Bronx region is the highest,
followed by Brooklyn, Manhattan, and Queens (Figure 5). Building footprint data indicate
that the mean surface temperature in Staten Island is the lowest, at least 1.5 K less than that
in Queens and 4 K less than that in Bronx and Brooklyn (Figure 5). The violin chart shows
the surface temperature distribution in all boroughs; some extreme outliers exist in the data,
especially for the Bronx. The median surface temperature in all boroughs is close to their
mean concentrations. The analysis further revealed that the industrial and manufacturing
land use category has the highest mean and median surface temperature than any other
land use category (Figure 6). In addition, transportation and utility, and parking facilities
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also show higher surface temperature, amongst others. Public facilities and institutions,
vacant land, and one and two-family buildings comprise land use categories show the
lowest mean and median surface temperature. The choropleth map showed that the heat-
generating industrial and manufacturing land use is dominant in southwestern Queens
and the Bronx, where surface temperature is more than 313 K (40 ◦C) and forms a high-
temperature hotspot (Figure 7). In Bronx, Brooklyn, and Queens, multi-family walk-up
buildings are associated with higher surface temperature clusters. The possibility of
anthropogenic factors such as winter heating and summer cooling is likely generating more
heat in these localities.
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Figure 7. Choropleth maps show: (a) Dominant building’s land use and (b) surface temperature (mean, K) in different
census tracts of New York City.

The relationships between surface temperature and the number of trees in different
NYC census tracts show that higher surface temperature is associated with lower tree
counts, although some exception exists (Figure 8a). Most of the census tracts with lower
tree counts are located in Bronx, Brooklyn, and Queens. However, lower tree counts are
also associated with lower surface temperatures in some of the census tracts. Those census
tracts are primarily located in Manhattan. The scatter plot of the relationship between
surface temperature and building height reveals an interesting pattern (Figure 8b). Higher
surface temperature is associated with lower building heights (i.e., fewer floors), whereas
lower surface temperature is associated with higher building heights (i.e., more floors).
We also observed an increase in surface temperatures with building density but showed
decreasing trend when density is higher than 0.45 (Figure 9a). The scatter plot also revealed
a decrease in surface temperature with higher building height variability (Figure 9b). Most
of these census tracts that show a decrease in surface temperature are in Manhattan, where
buildings are much taller with more floors and height variability. We also show that census
tracts with less building height variability and higher tree counts are associated with lower
surface temperature. These results indicate that the larger variations in building heights
and trees contribute to lower surface temperature in urban areas of New York City during
late summer and early autumn. During this time of the year, the Sun is at a relatively
lower elevation. Thereby more shadows are being generated by higher-rise buildings on
the surrounding lower-rise buildings and urban heat-trapping surfaces, causing cooling
effects. The observed heterogeneity in surface temperature is likely associated with the
neighborhood’s specific building land use and structure. We observed that Manhattan
has a greater share of high-rise buildings, while Staten Island has more trees than other
localities. On the contrary, Bronx, Brooklyn, and Queens have a greater share of industrial
and manufacturing land use and multi-family walk-up buildings, including fewer trees.
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Figure 8. The scatterplot shows the relationship between: (a) Surface temperature (mean) and the
number of trees, and (b) surface temperature (mean) and building height (m) in different census
tracts of New York City. Different colors signify boroughs of New York City: MN for Manhattan, BX
for Bronx, BK for Brooklyn, QN for Queens, and SI for Staten Island.



Remote Sens. 2021, 13, 3797 14 of 19Remote Sens. 2021, 13, 3797 14 of 19 
 

 

 
Figure 9. The figure shows the relationships between: (a) Surface temperature (mean) and building 
density (ratio of the total building footprint to the land area), and (b) surface temperature (mean) 
and building height variability (m) in different census tracts of New York City. Different colors sig-
nify boroughs of New York City: BK—Brooklyn, BX—Bronx, MN—Manhattan, QN—Queens, and 
SI—Staten Island. 

Figure 9. The figure shows the relationships between: (a) Surface temperature (mean) and building
density (ratio of the total building footprint to the land area), and (b) surface temperature (mean)
and building height variability (m) in different census tracts of New York City. Different colors
signify boroughs of New York City: BK—Brooklyn, BX—Bronx, MN—Manhattan, QN—Queens, and
SI—Staten Island.
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5. Discussion

Three factors, trees, building heights, and impervious surfaces, including bright
surfaces, are primarily responsible for surface temperature heterogeneity in our study
site. The replacement of vegetation by heat-trapping and non-porous urban materials
alters surface conditions such as albedo, thermal capacity, and heat conductivity. Such
transformation alters radiative fluxes between the surfaces and the lower atmosphere [4].

Trees reduce heat in two ways. Firstly, the shadows resulting from the tree control the
total amount of radiation absorbed per unit surface area of heat-trapping materials. Secondly,
trees return more surface heat to the atmosphere through evapotranspiration and reduce
surface temperatures. Similarly, shadows cast by high-rise buildings reduce the amount of
solar energy absorbed by the urban heat-trapping surfaces, and so there will be less heating
effect. Guo et al. [14] observed a positive impact of building height and density on land
surface temperature. They further observed higher land surface temperature associated
with medium building height and a lower building density. Krüger et al. [39] showed a
direct link between urban climate and building heights. Similarly, we found a slightly higher
surface temperature in medium-height buildings (ranging between 10 and 15 m), but the
temperature decreases when the heights increase beyond 15 m together with its variability.
This indicates that the relationships between surface temperature and urban structure are
more likely associated with urban types. Generally, the shadows cast by tall buildings cover
large urban impervious surfaces in the areas having more height variability. In addition,
because the Sun is at a lower elevation in September cause longer shadows in comparison
with the summer seasons. Likewise, Zheng et al. [40] observed adverse effects of building
heights on land surface temperature in residential areas of Beijing. However, the shadow
effect on surface temperature varies with the time of the day and the day of the year.

The shadows from high-rise buildings influence temperature, similar to how vegeta-
tion affects surface temperature [41]. Mutual shadows created by tall vegetation, such as in
forests, eliminate any existing gaps in forests. Even if some gaps exist between high-rise
buildings in cities like New York, the mutual shadows cast on the wall of the buildings
and the ground reduces heating effects. Additionally, when the height variability increases,
the shadows can effectively cover the adjacent building walls up to hundreds of meters
away depending on the Sun’s azimuth [42]. Under such conditions, less incident radiation
will likely be absorbed on the urban surfaces (horizontal and/or vertical), leading to cooler
urban surfaces. Wang and Xu [12] also indicate that land surface temperature decreases
significantly with building height differences and brings a cooling effect.

Our results show that surface temperature increases with increasing fractions of imper-
vious cover (both impervious-medium and dark surfaces). This indicates that dark urban
surfaces, mainly low-rise multi-family walk-up buildings with an average number of floors of
3.15, produce fewer shadows contribute to the urban heat. Surfaces with brighter covers show
an increasing surface temperature trend. Usually, bright surfaces increase surface albedo, i.e.,
reflect more and absorb less solar radiation than other impervious surface materials [43]. It is
expected that surface temperature would decrease with bright surface cover due to its high
albedo. However, due to its low heat capacity, even the bright impervious surface can heat
the surface easily and quickly. Most bright surfaces are rooftops and industrial plants, which
are constantly exposed to the Sun. Moreover, the bright surface is surrounded by dark and
medium-dark heat-trapping surfaces. The presence of these heat-trapping darker materials
may amplify the surface temperature. For the impervious-dark and impervious-medium
surfaces and roofs, not much light penetrates the surfaces, incident radiation is not reflected
back to the atmosphere is used to heat the surfaces, causing increased surface temperature.
Using high spatial resolution satellite data, we characterized the shadows, green vegetation,
impervious surfaces, and their brightness and identified each component’s impact on surface
temperature in our study site.
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Using building footprint data at the parcel level combined with high-resolution satel-
lite images, we identified the effects of different urban components such as shadows, green
vegetation, building heights, building density, impervious surfaces, and their brightness on
surface temperature. Building footprint data reinforces the satellite-derived interpretation
of finer-scale surface temperature variations in urbanized settings and determines the likely
causes. Our analysis indicates that shadows cast by high-rise buildings containing multiple
floors and trees reduce UHI effects. In contrast, impervious-medium and impervious-dark
surfaces, typically low-rise multi-family walk-up buildings, and brighter industrial and
manufacturing areas increase UHI.

Various environmental and governmental agencies are working towards mitigating
the UHI effect. Two approaches are being adopted. One uses highly reflective materials
for roofs and pavements, and the other planting trees. The green roof programs are being
conducted and tested in several big cities, including New York City [44]. Green roofs impact
stormwater use and help release heat absorbed on roof surfaces and cool overall surface
temperature. In addition, New York City adopted cool roof projects by whitening the
black asphalt rooftops and make them highly reflective to reduce surface temperature [45].
Our study indicates that trees and grasses can mitigate UHI. However, most green roof
projects are implemented in Manhattan, where ASTER data showed much cooler surface
temperatures in late summer/early autumn of 2002. The analysis of building footprint
data further revealed that NYC urban structure had not changed significantly (95% of the
buildings aged more than 20 years) except for the green roof and cool roof project in the
past 20 years. Recent land surface temperature data retrieved by ECOSTRESS revealed UHI
hotspots in the same areas observed in 2002, especially the Bronx, southeastern Queens,
Brooklyn, and the industrial regions of Queens (Figure 10). The NYC never gets direct
overhead sunlight throughout the year and composes many tall and skinny buildings.
The change of small roof area is likely to have an insignificant impact on temperature
observed by satellites. Nevertheless, it is also essential to have a detailed analysis of the
seasonal variations in surface temperature patterns and to quantify the long-term impact
of green roofs and cool roofs on UHI mitigation in the presence of various influencing
factors, such as the areas dominated by multi-family walk-up buildings and industrial and
manufacturing land use.

The future work will involve simulating time-series surface temperature patterns as a
function of urban structures, vegetation cover, and shadows derived from high-resolution
satellite data for the entire NYC region. It is well known that building shadows show
strong seasonality and affect urban land surface temperature [17]. Therefore, we planned
to use high-resolution ECOSTRESS images to study the spatiotemporal pattern of urban
heat. In particular, we will model the shadow effects due to building height variation
and trees on surface temperature patterns. We will combine the locations of cool roofs
and green roofs and quantify the cumulative effect on reducing the surface temperature
in the city to help design priority locations. Our long-term goal is to assimilate satellite-
observed spatiotemporal patterns of urban heat into urban climate models. The shadow
analysis would provide helpful information in sustainable urban design, including access
to sunlight during different seasons, and help mitigate the impact of climate change. The
quantification of UHI effects has a potential public health implication and helps safeguard
people from heat-related stress, especially in big cities with high building densities.
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6. Conclusions

Our study shows that the trees and shadows cast by high-rise buildings and their
variability have a cooling effect. In contrast, more impervious surfaces show a heating
effect even in the presence of highly reflective bright surfaces. The census tract with
industrial and manufacturing areas and multi-family walk-up buildings as dominant
land use categories correspond to the highest mean surface temperature. Buildings with
lower heights (fewer floors) and less height variability are associated with higher surface
temperature. Although the building density is the highest in Manhattan (the central
business district), many tall buildings with variable heights have shown cooling effects.
Staten Island has the lowest mean surface temperature amongst all boroughs of New
York City, where the number of trees is more. The Bronx has the highest mean surface
temperature and constitutes moderate building density, height, and height variability. The
finding from this study has an important implication for urban heat island modeling since
recent surface temperature image reveals similar hotspot locations as observed 20 years
ago. The results show the positive effects of trees and building shadows in reducing urban
heat. It could help prioritize the areas to mitigate the UHI effect and reduce associated
environmental and health-related costs, including sustainable urban planning.
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