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Abstract: This study investigates methods of deriving meteorological parameters needed in space
geodetic applications, from the surface data of the numerical weather model (NWM). It is more
efficient than pressure level data in terms of storage and transmission. Based on more realistic
assumptions for the structure of the troposphere, formulas for accurate vertical reduction of pressure
(P) and precipitable water vapor (PWV) are deduced, and they are applied with the gridded lapse
rate data provided by the GPT2w model. The new method achieves better accuracy especially
when a large height difference between the grid point and station exists. Validation with global
radiosonde observations shows that the RMS errors of P, temperature (T), and water vapor pressure
(e) derived from 2.5◦ × 2.5◦ ERA surface data are 1.16 hPa, 1.95 K, and 1.76 hPa respectively; zenith
tropospheric delays (ZTDs) calculated from derived P, T, and e values have a mean RMS error
of 3.26 cm, comparable to that obtained from in situ measurements; adding PWV will increase
ZTD estimation accuracy to 1.52 cm, comparable to that obtained from NWM pressure level data.
Validations with Global Navigation Satellite System estimated ZTDs from global and regional station
networks display similar results on the globe, as well as features for localized regions. Using higher
spatial resolution NWM seems to have little effect on the accuracy of ZTDs calculated from P, T, and
e, while it apparently improves the accuracy of ZTDs calculated from P, T, e, and PWV.

Keywords: tropospheric parameters; zenith tropospheric delay; ERA surface data; tropospheric
parameter vertical reduction

1. Introduction

The neutral atmosphere effect, mainly the signal transmission time delay, exists in
a variety of radio space geodetic techniques, such as Global Navigation Satellite System
(GNSS), Very Long Baseline Interferometry (VLBI), as well as optical techniques like Satel-
lite Lase Ranging (SLR) [1]. To compensate for such an effect, usually information about
atmospheric parameters at the observation station should be known beforehand or some-
times be estimated in geodetic data analysis. Improper handling of the neutral atmosphere
effect would lead to obvious degradation of measurement accuracy, for example precise
positioning and precipitable water sensing. Those atmospheric parameters include pres-
sure, temperature, humidity, tropospheric delay, weighted mean temperature, and so on.
Besides utilization in the determination of zenith hydrostatic delays (ZHD), pressure is also
related to atmosphere pressure loading [1], and temperature can be applied in modeling
the thermal deformation of VLBI telescopes or geodetic monuments [1], and it also affects
the GNSS receiver-dependent hardware delays between different frequencies [2].

Obviously, the most accurate and direct way to obtain useful atmospheric information
is meteorological sensors at geodetic sites; however, local measurements are usually not
available or accessible. Currently, most International GNSS Service (IGS) reference stations
are not equipped with collocated meteorological sensors, and some meteorological sensors
at IGS stations are not properly calibrated, leading to erroneous measurements [3,4]. In
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addition, parameters like tropospheric delay and weighted mean temperature must rely
on observations capable of sensing vertical atmosphere structure, e.g., radiosonde, which
usually suffer from low temporal resolution and long distance from geodetic sites. For
convenience, researchers resort to values derived from numerical weather model (NWM)
data or empirical models. The most representative and comprehensively used empirical
models are a series of GPT models successively established by researchers from Vienna
University of Technology, now including GPT, GPT2/GMF, GPT2w, and GPT3, in which
the modeled parameters become more abundant and the spatio-temporal resolution and
accuracy continuously improve [5–8]. Improved zenith wet delay (ZWD) vertical approxi-
mation based on new parameters resulted in superior performance to pervious methods
adopted in a few tropospheric models [9]. An enhanced global grid model was recently
proposed for calibration of ZHD computed with surface pressure [10].

Due to their inability to capture the rapid variation of meteorological fields, especially
moisture in time and space, empirical models are unable to satisfy the requirement of
high-precision geodetic applications. Hence, more research concentrates on the extraction
and validation of meteorological parameters from reanalysis as well as forecast NWM
data with different resolutions and provided by different institutes. Test on the zenith
tropospheric delays (ZTDs) calculated through integrating the pressure level data of NWM
produced by the National Center of Environment Prediction (NCEP) exhibited an average
accuracy of about 1.4 cm over the globe [11]. The performance of a network-based Global
Positioning System (GPS) RTK approach with the aid of real-time tropospheric delay
corrections obtained using the National Oceanic and Atmospheric Administration (NOAA)
NWM models were analyzed and an overall improvement of 19% was acquired [12]. The
ZTDs derived from European Center for Medium-Range Weather Forecasts (ECMWF) and
NCEP NWM data were compared against GPS derived ZTDs over Chinese stations during
2004, and it was found that the agreement reached about 2.4 cm on average for ECMWF
data, about 1.0 cm better than the result against NCEP data [13]. Then, a later comparison
study demonstrated slightly better agreement for ZTDs from ECMWF data although the
reference data became radiosonde observations over China [14]. A benchmark campaign
showed that over central Europe, the mean RMS difference between GNSS-ZTDs and
reanalysis results was about 10 mm for ERA-Interim and 12 mm for the NCEP Global
Forecast System [15]. Besides, the two-stage tropospheric correction model based on an
optimal combination of NWM and GNSS tropospheric parameters demonstrated higher
accuracy and stability than results derived only from NWM [16]. The NWM-constrained
precise point positioning approach improved the multi-GNSS precise positioning in terms
of both accuracy and convergence time [17]. Although the wide-area grid tropospheric
model derived only from GNSS network also showed a good potential in augmenting
precise positioning [18,19], for real-time mode it still suffers from poor continuity in data
collection and transmission. The interpolated meteorological parameters from NWM data,
mainly pressure and temperature at the station, are also often used instead of in situ
measurements for GNSS precipitable water vapor (PWV) retrieval, and research has shown
sufficiently good accuracy of this approach [4,20–22].

The VMF Data Server, operated by the Vienna University of Technology, has contin-
uously provided operational atmospheric products based on ECMWF NWM data since
about 2003 [23,24]. Those products, including station-specific and gridded zenith delay,
mapping function, gradients, weighted mean temperature, and so on, have induced posi-
tive effect on geodetic data analysis, for instance GNSS, VLBI, and SLR. Then, atmospheric
products of similar type are also generated using other NWMs such as NCEP [25].

Nevertheless, most of the studies presented above are based on the pressure level
data of NWM, which normally consists of tens of height levels and thus place a heavy
burden on data storage and transmission. To overcome such disadvantage, this study
attempts to extract the required meteorological parameters from surface data of NWM,
which means much less data volume than pressure level data. The key to this approach is
finding accurate vertical reduction algorithms for those atmospheric parameters. To avoid
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usage limitation, we will not obtain the vertical reduction method by statistical analysis
on local climate for certain regions, as was done in some studies [13]. Instead, we deduce
algorithms for parameters from basic atmospheric functions, and then apply them with
gridded coefficients derived from the empirical model GPT2w, mainly the temperature
and water vapor pressure lapse rates.

Section 2 describes the characteristics of different data sets used in this study. Section 3
introduces the vertical reduction approach for atmospheric parameters. Section 4 presents
a comprehensive assessment of the results obtained using our method by a variety of
validation data. Finally, the conclusions are summarized in Section 5.

2. Data

In this study, the estimation values of atmospheric parameters at the target location are
retrieved from ERA-Interim surface data together with the lapse rate data from the GPT2w
model. Then, the derived parameters are assessed through two worldwide meteorological
data sets, namely the Integrated Global Radiosonde Archive (IGRA) and IGS GNSS-ZTD
data, and two regional GNSS-ZTD data sets over China and Europe, respectively. All data
cover a time period of one year from January 2015 to December 2015.

2.1. ERA-Interim Surface Data

ECMWF has been producing a variety of forecasts, analysis, climate reanalysis, and
specific data sets since the 1970s by assimilating a wide range of meteorological obser-
vations collected by satellites and earth observation systems via atmospheric models.
ERA-Interim is a global atmospheric reanalysis product of ECMWF [26], which contains
gridded atmospheric and surface parameters. This study utilizes the ERA-Interim surface
fields, including both the analysis fields and forecast fields, which are available every 6 h
(at 00, 06, 12, 18 UTC) and every 3 h (at 00, 03, 06, 09, 12, 15, 18 UTC), respectively. These
forecasts are produced twice daily (from 00 and 12 UTC) at forecast steps from 3 to 12 h.
Surface pressure (P), dewpoint temperature at 2 m (d2m), temperature at 2 m (T), and
precipitable water vapor are chosen to determine the meteorology of the target station with
the aid of the lapse rates provided from the GPT2w model. This study is primarily based on
data field on a global grid of 2.5◦ × 2.5◦; however, the 0.75◦ × 0.75◦ grid that represents the
original horizontal resolution of ERA-Interim is also considered for investigating the effect
of spatial resolution. Here, we do not employ the advanced ERA5 hourly products [27]
provided by ECMWF, because the higher resolution will greatly increase the burden of
data storage and transmission, and then weaken the advantage of this method.

2.2. GPT2w

The GPT2w model is an empirical tropospheric delay model, capable of providing
estimations for air pressure (P), temperature (T) and its lapse rate (β), water vapor pressure
(e) and its height decrease factor (λ, also called the lapse rate of water vapor pressure),
weighted mean temperature (Tm), and mapping function coefficients [7]. These parameters
are modeled using a harmonic function representing annual and semiannual variations on
a global grid of 1.0◦ × 1.0◦. The GPT2w model exhibits good performance in the vicinity of
the earth surface, with generally low system offsets for most regions over the global and a
mean RMS error of about 3.6 cm for ZTD estimations [7]. In this study, we mainly use the
lapse rate values of temperature and water vapor pressure from GPT2w to adjust P, T, e,
and PWV from the ERA-Interim surface grid height to the height of the target height.

2.3. IGRA

IGRA, which we obtained from the National Climatic Data Center of NOAA, is the
most complete and comprehensively used radiosonde data source. It is comprised of
1–4 quality-assured radiosonde observations per day at more than 1500 globally distributed
stations with varying periods of record [28]. Radiosonde observations contain profiles of
pressure, temperature, and water vapor pressure from the surface to the top of the sounding
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(around 30 km). Those parameters are utilized to calculate the atmospheric refractivity,
and then the tropospheric delays (ZHD, ZWD, and ZTD) at the surface level are obtained
through integration of refractivity along the whole profile. The detailed algorithm is shown
in Section 3.1. According to a previous analysis, the ZHD and ZWD calculated from the
radiosonde data have mean accuracies of 2.4 and 4.4 mm, respectively [14]. By using
observations at global IGRA stations, the atmospheric parameters retrieved from ERA-
Interim surface fields can be comprehensively evaluated. The reference values include P,
T, e, ZHD, ZWD, and ZWD at the surface level of radiosonde. IGRA data are available
from ftp://ftp.ncdc.noaa.gov/pub/data/igra/v1/derived-v2/data-por/, accessed on 13
November 2019.

Although various quality assurance algorithms have already been applied to remove
gross errors in the IGRA data, we still need further checks in order to obtain reliable ZHD,
ZWD, and ZTD values. In this study, a radiosonde sounding is eliminated when any of
the following criteria is satisfied: (1) the highest level of sounding is lower than 15 km or
the number of vertical levels is no more than 4; (2) the pressure difference between two
successive vertical levels is great than 300 hPa; (3) humidity observation or water vapor
pressure is not available at the surface (i.e., the lowest level of sounding); (4) the highest
level where valid water vapor pressure observation is available shows a value greater
than 0.1 hPa; (5) the height difference between two successive vertical levels where valid
water vapor pressure observation is available exceeds 10 km. In addition, the radiosonde
data only provides geopotential height, which should be transformed to geometric height
before numerical integration is performed to calculate the tropospheric delays. Only IGRA
stations that have valid records on more than 70% of the days in 2015 are considered in the
validation, and this leads to 530 stations in all, with their geographic locations being shown
in Figure 1a. In this study, only the surface (the lowest level) meteorological observations
of radiosonde soundings and the calculated surface tropospheric delays are used to assess
the retrieved parameters.

2.4. GNSS-ZTD

Since this study aims to provide meteorological parameters for geodetic users, ZTD
time series derived from GNSS observation data are also employed to test the performance
at those GNSS stations. The IGS ZTD data, which is now routinely produced over hundreds
of stations with a temporal resolution of 5 min, have a formal error of 4 mm [29]. In the
statistics, GNSS-ZTD data with a formal error exceeding 20 mm were eliminated and the
comparisons were conducted every 30 min. To avoid the seasonal bias, only stations with
valid record lengths longer than 70% of the entire period are considered, and this leads to
302 stations in total. These criteria are also applied in the other two GNSS-ZTD data sets.
The geographic locations of those IGS stations are shown in Figure 1c.

The Crustal Movement Observation Network of China (CMONOC), which includes
more than 260 continues GNSS reference stations as well as other geodetic technologies
such as VLBI and SLR over the Chinese mainland, have provided significant basic data for
crustal movement and geodynamic research, earthquake prediction, wide-area differential
GNSS services, atmospheric science, etc. [30]. The GNSS data product service platform of
China Earthquake Administration routinely collects the CMONOC GNSS observation data
and calculates and distributes the hourly tropospheric products (http://www.cgps.ac.cn,
accessed on 10 December 2019). Similar criteria are applied to exclude improper data and
this leads to 237 stations in all. The geographic locations of those stations are shown in
Figure 1e.

The EUREF Permanent Network (EPN) is now made up of more than 280 contin-
uously operating GNSS reference stations distributed over Europe, the North Atlantic,
and Greenland. Since 2001, the EPN analysis centers routinely archive and distribute
the tropospheric zenith delay products in time interval of an hour [31]. These ZTD data
are available from https://igs.bkg.bund.de/root_ftp/EUREF/products/, accessed on 10
December 2019. Applying the above-mentioned criteria leads to 256 stations in all and

ftp://ftp.ncdc.noaa.gov/pub/data/igra/v1/derived-v2/data-por/
http://www.cgps.ac.cn
https://igs.bkg.bund.de/root_ftp/EUREF/products/
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their geographic locations are shown in Figure 1g. It has to be pointed out that about 75
stations from EPN also belong to IGS.
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Figure 1. Geographic locations of IGRA (a), IGS (c), CMONOC (e), and EPN (g) stations used in this
study. (b,d,f,h) show normalized histograms of height differences between ERA surface data grids
and observation stations of IGRA, IGS, CMONOC, and EPN, respectively. In (b,d,f,h), the black lines
refer to results for the 2.5◦ × 2.5◦ grid while the red lines refer to those for the 0.75◦ × 0.75◦ grid. The
percentages of height differences within ±300 m are also displayed, black for the resolution of 2.5◦ ×
2.5◦ and red for the resolution of 0.75◦ × 0.75◦.

An overview of these data sets is shown in Table 1. Figure 1 also displays histograms
of the height differences between ERA surface data grids and the observation stations of
four validation data. The x axis refers to grid height minus station height. In most cases, the
height differences lie within ±300 m. When the 2.5◦ × 2.5◦ grid is applied, the percentages
of height difference within ±300 m are found to be 80.8, 75.5, and 82.0% for IGRA, IGS,
and EPN stations, respectively; using a 0.75◦ × 0.75◦ grid will increase the percentages
by about 3 to 4%. The percentages are relatively lower for the CMONOC stations, which
is due to the fact that those stations are mainly built to monitor crustal deformation and
movement, so they tend to be located on regions with high elevation fluctuations. This will
also provide good opportunity to test our methods.
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Table 1. Characteristics of the data sources used in this study.

Data Source Parameters Spatial Coverage Spatial Resolution Temporal
Resolution

ERA surface analysis P, T, d2m, PWV Globe 2.5◦ × 2.5◦, 0.75◦ × 0.75◦ 6 h
ERA surface forecast P, T, d2m, PWV Globe 2.5◦ × 2.5◦, 0.75◦ × 0.75◦ 3 h

GPT2w β, λ, Tm Globe 1.0◦ × 1.0◦

IGRA P, T, e profiles 530 stations over the globe Point 1–4 times/day
IGS ZTD 302 stations over the globe Point 5 min

CMONOC ZTD 237 stations over China Point 1 h
EPN ZTD 256 stations over Europe Point 1 h

3. Method
3.1. Calculation of Tropospheric Delay from Atmospheric Profile

The propagation delay of a radio signal caused by the neutral atmosphere depends on
the refractivity along the travel path. The delay in the zenith direction is expressed as:

ZTD =
∫ ∞

H
(n− 1) dz = 10−6

∫ ∞

H
N dz (1)

where n is the refractive index, N is the refractivity and N = 106(n− 1). H is the height of
the station in m and z is the signal path in the zenith direction in m. The expression of N is
as follows:

N = k1
Pd
T

+ k2
e
T
+ k3

e
T2 (2)

where Pd and e are the partial pressures of dry air and water vapor in hPa. T is the
temperature in K. The constants ki (i = 1, 2, 3) were determined experimentally. Here, we
adopt the values given by [32].

The refractivity N can be split into a hydrostatic term Nh and a nonhydrostatic term
Nw, N = Nh + Nw,

Nh = k1Rdρ = k1
Pd
T

+ k1
Rd
Rw
· e
T

(3)

Nw = k′2Rwρw + k3
e

T2 = k′2
e
T
+ k3

e
T2 (4)

where ρ is the air density and ρw is the density of water vapor; Rd and Rw are the specific
gas constants of dry air and water vapor, Rd = 287.053 J/kg/K, Rw = 461.525 J/kg/K.
k′2 = k2− k1

Rd
Rw

. Then, the zenith tropospheric hydrostatic delay and wet delay are obtained
by integrating Nh and Nw respectively.

When calculating ZTD, ZHD, and ZWD from atmospheric profiles such as radiosonde
observations and NWM pressure level data, trapezoidal numerical integration is often
employed. However, since the refractivity usually follows an exponential decline with
increasing height, trapezoidal integration would cause slightly positive biases, especially
when there is a large height gap in real observations. It is more accurate to use the
logarithmic trapezoidal integration method [14], as shown below.

ZHD = 10−6 ∑
i

(Hi+1 − Hi)
(

Nhi+1
− Nhi

)
(

InNhi+1
− InNhi

) (5)

ZWD = 10−6 ∑
i

(Hi+1 − Hi)
(

Nwi+1 − Nwi

)(
InNwi+1 − InNwi

) (6)

where the subscript i refers to the ith level. Since N = dN/(dN/N) = dN/dInN,
dN/dInN can be used to obtain the mean N value between two successive levels as in the
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above formulas. For exponential variation parameters, it is a more precise representation
than a linear average.

3.2. Calculation of Atmospheric Parameters from ERA Surface Data

This section introduces the method of deriving the values of P, T, e, and PWV at the
target station. The procedure consists of three steps. First, vertical reduction is performed
to acquire the properties at the same height with observation station. Then, horizontal
interpolation is applied using bilinear interpolation between four surrounding grid points.
The final step is a linear trend interpolation in the time domain. The last two steps are
apparently easy to implement, so vertical reduction is the primary concern of this section.
In the following analysis, subscript H refers to properties at the height of the station, while
subscript s refers to those at the height of surface data, e.g., the grid of ERA surface data.

In the troposphere, the temperature decreases with height at a nearly constant rate.
Thus, the vertical reduction of temperature is normally performed based on the temperature
lapse rate β, as shown in Equation (7). In previous studies [7,33,34], the variation of water
vapor pressure with height is assumed to be related to the variation of total pressure using
the factor λ, as shown in Equation (8). In this study, both equations are applied with the
values of β and λ derived from gridded file of the GPT2w model.

T = Ts − β(z− Hs) (7)

e
es

= (
P
Ps
)

λ+1
(8)

Ts, Hs, Ps, and es refer to corresponding parameters at the grid of ERA surface data.
The reduction of pressure is realized through applying assumptions on vertical atmosphere
structure. For example, the GPT2w model uses a vertical reduction function obtained
under the assumption of isothermal atmosphere, i.e.,

P = Ps exp (− g
RdTv

(z− Hs)) (9)

where g is the gravity acceleration in m/s2. Tv is the virtual temperature in K, and it is
the temperature of dry air that has the same density at the same pressure as moist air of
temperature T. All relationships for dry air are valid for moist air if we replace temperature
T by the virtual temperature Tv. As is known, the atmosphere in the lower troposphere
should be treated as moist air, especially for middle and lower latitudes, or it will lead to
obvious bias.

In comparison to the isothermal atmosphere, the polytropic atmosphere, i.e., a model
atmosphere assuming hydrostatic equilibrium with a constant nonzero lapse rate, reflects
the realistic troposphere better. Under this assumption, the pressure in the moist atmo-
sphere is calculated as:

P = Ps(1−
Γ(z− Hs)

Tv
)

g
ΓRd

(10)

where Γ is the lapse rate of the virtual temperature in K/m. Equation (10) is adopted for
pressure reduction in this study. Before using Equation (10), the expression of Γ is needed.
From the definition of Tv,

Tv = (1 + 0.608q)T (11)

where q is the specific humidity: q = εe
P = 0.622 e

P . The formula of Γ can be deduced as:

Γ =
dTv

dz
= (1 + 0.608q)β + 0.608T

dq
dz

(12)
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Using Equation (8) and the hydrostatic equation ∂P
∂z = −ρg while taking the derivative

of q with respect to z, we obtained the following expression:

dq
dz

= −λq
g

RdTv
(13)

However, in the polar regions, the structure of the temperature profile sometimes
significantly deviates from the above constant lapse rate assumption, for the actual tem-
perature in the lower troposphere shows an increase with height. For example, the mean
temperature lapse rate values of GPT2w are mostly negative in the higher latitudes. Thus,
in those regions isothermal atmosphere assumption is still adopted for pressure reduction,
i.e., Equation (9).

The vertical reduction of PWV is achieved according to its definition:

PWV = PWVs −
1
ρ1

∫ H

Hs
ρwdz = PWVs −

1
ρ1Rw

∫ H

Hs

e
T

dz (14)

where ρ1 is the density of liquid water, ρ1 = 1000 kg/m3. The integration term of the right
side of Equation (14) can be calculated using logarithmic trapezoidal integration method,
as shown below. ∫ H

Hs

e
T

dz =
(H − Hs)(

eH
TH
− es

Ts
)

ln
(

eH
TH

)
− ln

(
es
Ts

) (15)

In most GNSS applications, the user location has dramatic height difference with
the base station, so vertical reduction of meteorological parameters is always necessary
to account for errors caused by height difference. Currently, many analyses resort to
simple models with global uniform coefficients, for example the Berg function [35] for
pressure reduction (see Equation (10) in [36]). The GPT2w model is capable of providing
accurate lapse rate data with high spatial resolution in the vicinity of earth’s surface; thus,
vertical reduction of parameters relates to atmospheric effect on GNSS data analysis can be
conveniently accomplished by these lapse rate values. Obviously, the methods discussed
in this section can also be applied for other surface atmospheric data.

3.3. Calculation of Tropospheric Delay from P, T, e, PWV

After the P, T, e, and PWV at the target location have been retrieved, ZHD, ZWD, and
ZTD are calculated from those parameters using three methods. The first method utilizes
the Saastamoinen model [37] with P, T, and e as input parameters. The expressions for
ZHD and ZWD are as follows:

ZHD = 0.002277PH (16)

ZWD = 0.002277(
1255
TH

+ 0.05)eH (17)

ZTD is the sum of ZHD and ZWD. The second method is based on the formulas
presented by Askne and Nordius [34]:

ZHD = 10−6 k1Rd
gm

PH (18)

ZWD = 10−6 k1Rd
gm

(
k′2

k1(λ + 1)
+

k3

k1(λ + 1− βRd/gm)TH
)eH (19)

wherein the values of parameter β and λ are extracted from the grid file of the GPT2w
model. gm is the gravity acceleration at the atmospheric column centroid in m/s2 and can
be computed as:

gm = 9.784(1− 0.00266cos2ϕ− 0.00000028H) (20)
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where ϕ is the latitude. Equation (19) is highly accurate because it is a theoretical solution
of ZHD (the integration of Nh) under the assumption of hydrostatic equilibrium, which
is normally satisfied in a realistic environment. The third method differs from the second
method only in ZWD calculation, i.e.,

ZWD = 10−6ρ1Rw
(
k′2 + k3/Tm

)
PWVH (21)

Tm is obtained from the GPT2w model. From the above, it is seen that methods 1
and 2 are suitable for the condition that surface pressure, temperature, and humidity are
acquired while method 3 is applicable when the PWV value is also available.

4. Results
4.1. Validation of P, T, e

Table 2 presents the global mean accuracies of P, T, and e retrieved from ERA surface
data, using surface values of IGRA observations as references. It lists validation results
for three ERA surface data sets: analysis fields on a grid of 2.5◦ × 2.5◦ and on a grid of
0.75◦ × 0.75◦, and forecast fields on a grid of 2.5◦ × 2.5◦. Overall, the retrieved P, T, and e
exhibit good accuracy for all three data sets. The meteorological parameters determined
from the 2.5◦ × 2.5◦ grid surface analysis data show a mean RMS of 1.16 hPa for pressure,
a mean RMS of 1.95 K for temperature, and a mean RMS of 1.76 hPa for water vapor
pressure. However, increasing the resolution from 2.5◦ to 0.75◦ only leads to marginal
accuracy improvements, about 0.10 hPa, 0.14 K, and 0.07 hPa for P, T, and e, respectively.
All parameters derived from the forecast fields show relatively higher RMS errors than
those from the analysis fields.

Table 2. Global statistics of accuracies of P, T, and e retrieved from ERA surface data with respect to radiosonde observations
at the surface over 530 global IGRA stations in 2015.

Data Pressure Temperature Water Vapor Pressure

Bias/hPa RMS/hPa Bias/K RMS/K Bias/hPa RMS/hPa

Analysis 2.5◦ × 2.5◦ −0.04 1.16 0.17 1.95 0.66 1.76
Analysis 0.75◦ × 0.75◦ −0.06 1.06 0.19 1.81 0.59 1.69

Forecast 2.5◦ × 2.5◦ −0.07 1.31 −0.10 2.35 0.36 1.86

To illustrate more detailed results, Figure 2 displays station-wise bias and RMS values
of pressure, temperature, and water vapor pressure derived from ERA surface analysis data
(blue triangle: 2.5◦ × 2.5◦; red cross: 0.75◦ × 0.75◦) over IGRA stations. Here, characteristics
of the errors from the forecast data are not shown in the figure, because they are very similar
to those from the analysis data.

As can be seen from Figure 2a, the biases for pressures derived from ERA surface
2.5◦ × 2.5◦ analysis data vary from −6 to 6 hPa on a global scale, showing no obvious
latitude-dependent variation. Pressure biases are within ±2 hPa over more than 96% of the
stations, and RMS values are less than 2 hPa over more than 90% of the stations, which
indicates comprehensive good performance around the globe. It is seen from Figure 2d
that in general pressure demonstrates higher RMS values in the higher latitudes than in
the lower latitudes, which is consistent with the latitudinal variation of the magnitude of
surface pressure. Remarkable offsets in pressure are observed over a few stations located in
the polar regions and middle latitudes of the Northern Hemisphere (NH), showing mostly
positive values above 3 hPa. As found in Figure 2a,d, over a few polar stations, the absolute
biases can be apparently reduced by about 1.5 to 1.9 hPa when using the 0.75◦ × 0.75◦ grid
instead of the coarser 2.5◦ × 2.5◦ grid and the RMS values can be reduced by about
1.0–2.1 hPa. However, improving horizontal resolution does not seem to have an obvious
impact on the performance of the lower and middle latitude regions.
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As seen in Figure 2b, the biases of temperatures derived from ERA surface 2.5◦ × 2.5◦

and 0.75◦ × 0.75◦ analysis fields both vary from about −4 to 4 K, with values falling
into the range of ±2 K over about 96% of the stations. More pronounced biases occur in
the Antarctic, which is possibly attributed to its unique vertical structure of atmosphere
(temperature) that is usually dominated by polar vortex. Those features cannot be realis-
tically and accurately represented by the GPT2w model, for only seasonal variations are
considered in GPT2w. The temperature RMS values obviously show an increase as latitude
increases, with lower values (<2 K) in the tropics and more scattered distribution (from 1
to 5 K) outside the tropics. RMS values are within 3 K over more than 91% of the stations
for temperatures derived from the 2.5◦ × 2.5◦ grid and over more than 93% of the stations
for those derived from the 0.75◦ × 0.75◦ grid.

It can be seen from Figure 2c,f that the accuracy of derived water vapor pressure is
highly latitude-dependent, showing more remarkable bias and RMS values in the lower
latitudes and smaller values (less than 1 hPa) in the higher latitudes. However, unexpect-
edly, the most significant errors appear in the subtropical regions of both hemispheres. For
example, a few coastal stations of the Arabian Peninsula, eastern Mediterranean, South
Mexico, and several high elevation stations over the Tibetan Plateau, according to our
further investigations. We also find that those coastal stations are basically consistent with
the regions where large standard deviations of λ from GPT2w are observed, as shown
in Figure 1 of [7], which possibly explains the large errors over those regions. For both
2.5◦ × 2.5◦ and 0.75◦ × 0.75◦ grid analysis data, the biases of water vapor pressure are
between −2 hPa and 2 hPa over about 90% of the stations, and the RMS values are below
3 hPa over about 90% of the stations. Moreover, using the 0.75◦ × 0.75◦ grid instead of
the 2.5◦ × 2.5◦ grid only leads to marginal improvement, which probably implies that the
resolution of 0.75◦ × 0.75◦ is still not sufficient for accommodating the spatial distribution
of water vapor pressure, especially for regions with significant topographic variations or
along the seaside.

Unlike pressure and temperature, the derived water vapor pressures exhibit posi-
tive offsets in terms of both overall performance (Table 2) and results for most stations
(Figure 2c). This is likely attributed to the determination of parameter λ. In GPT2w and
related research [7,34], it is a common approach to invert the zenith wet delay expression
(Equation (19)) with the surface parameters (ZWD, Tm, e) obtained beforehand to the λ.
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Hence, the value of λ is actually consistent with the surface ZWD and describes an average
effect of e decreasing with height through the whole troposphere. Then it is sometimes not
capable of capturing accurate vertical variation within small height range. In addition, we
have made further analysis and noticed that for cases with large height differences between
grid and station (>300 m), the water vapor pressure biases are mostly negative when the
stations are situated higher than the surrounding grid points, and vice versa.

In addition, we also find that the errors partly stem from the discrepancy between
ERA analysis data and radiosonde observations. Stations showing large errors are chosen
for further analysis and we find that for some stations, similar remarkable biases against
radiosonde observations are still seen when using the ERA pressure level data instead of
the surface data to derive the meteorological parameters. Some of the examples are listed
here: stations 50527, 54374, and 91680 show P biases; stations 51777, 85586, and 89002 show
T biases; stations 40430, 40457, and 83362 show e biases.

4.2. Effects of Vertical Reduction of Pressure

For pressure reduction from grid height to the target station height, the power function
proposed by Berg [35] is often recommended [38,39]. Actually, the Berg function is an
approximation of the barometric formula of polytropic atmosphere (i.e., Equation (10)),
which employs the standard (constant) atmospheric parameter values at mean sea level
(i.e., 1013.25 hPa for pressure, 288.15 K for temperature, and 6.5 K/km for temperature
lapse rate) and ignores regional and temporal climate variations. Some research has
applied a first-order approximation, with parameters from the GPT model or standard
atmosphere [40]. Unfortunately, those methods cannot yield realistic results when there is
a significant height difference.

Figure 3 depicts the station-specific errors of pressures obtained by using the Berg
function for height correction. In comparison to Figure 2a,d, pressure reduction with
the Berg function presents much poorer performance, especially for the NH midlatitudes
and polar regions, showing RMS values exceeding 5 hPa for lots of stations; while in
Figure 2d the corresponding results are mostly below this level. The error induced by the
Berg function is mainly related to two factors: the height difference between the grid and
target station and the discrepancy between local climate and the standard atmosphere. The
resultant pressure error would be more significant when both the large height difference
and bad representation of standard atmosphere are met. According to Equation (10), if the
target station is situated lower than the height of surrounding grid points and meanwhile
the standard temperature is warmer than the local value, it will cause negative offset for
the derived pressure. This is reflected by those polar stations with remarkable biases less
than −5 hPa and RMS values reaching 5–15 hPa, as shown in Figure 3.
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Comparison results about the performance of the Berg function and our method for
pressure reduction are shown in Table 3. Statistics are conducted respectively for two
data sets obtained in terms of absolute height differences between ERA surface data grid
and IGRA stations: less than 300 m and exceeding 300 m. It is seen that when the height
differences are within 300 m, the differences in pressure RMS errors between two methods
are relatively small; our method is obviously superior when the absolute height differences
are above 300 m, showing a mean improvement of 2.08 (1.31) hPa and better performance
over about 90% (84%) of the stations when using ERA 2.5◦ × 2.5◦ (0.75◦ × 0.75◦) grid
data. From Figure 3 and Table 3, it is also noticed that the Berg method is more sensitive
to grid resolution for increasing the resolution from 2.5◦ to 0.75◦ can apparently improve
the pressure reduction results, which is probably caused by smaller height differences for
denser grid. However, the method used in this study is generally more stable, as seen from
Figure 2.

Table 3. Performance comparison of the Berg function and our method for pressure reduction. The bias and RMS differences
(in hPa) refer to the results obtained from the Berg function minus those from our method. The percentage of stations at
which our method outperforms the Berg function is also presented.

ERA Surface Data Height Difference ≤ 300 m Height Difference > 300 m

Mean Bias dif Mean RMS dif Percent Mean Bias dif Mean RMS dif Percent

2.5◦ × 2.5◦ −0.29 0.27 79% −2.81 2.08 90%
0.75◦ × 0.75◦ −0.16 0.10 62% −1.96 1.31 84%

It was pointed out that due to the hydrostatic/wet mapping separation effects, a
10 hPa error in total pressure at the station will result in a 2.4 mm error in height solution
when the cutoff elevation angle is set to 5◦ [36]. Therefore, in order to achieve mm level
accuracy, we recommend applying the more complicated vertical reduction method for
pressure proposed in this study instead of the Berg function when there is a remarkable
height difference.

4.3. Validation of Tropospheric Delays over the Globe

Tropospheric delays, including ZHDs, ZWDs, and ZTDs, are calculated via functions
shown in Section 3.3, with the atmospheric parameters extracted from ERA surface data as
inputs. In this procedure, three methods were utilized: the Saastamoinen model with P,
T, and e, the Askne and Nordius model with P, T, and e, and tropospheric delays derived
with P, T, e, and PWV. In the following analysis, the Askne and Nordius model is labeled
as A&N, and the Saastamoinen model is labeled as Saas.

4.3.1. Overall Performance

Table 4 shows the global mean accuracies of ZHDs, ZWDs, and ZTDs derived from
the ERA surface analysis data, through comparisons with reference values calculated
from IGRA data. For a better illustration, corresponding results obtained from actual
meteorological observations (i.e., surface values of radiosonde soundings) are also shown
in Table 4, as well as results of two empirical tropospheric models, GPT2w and IGGtropSH,
which was developed by us [41].
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Table 4. Statistics of global mean accuracies of ZHDs, ZWDs, and ZTDs calculated from ERA-Interim surface analysis data,
with the reference values from IGRA data over 530 stations during 2015. Statistics on tropospheric delays obtained from
actual surface meteorological parameters and two empirical tropospheric models GTP2w and IGGtropSH, respectively, are
also shown.

Input Data Model ZHD ZWD ZTD

Bias (cm) RMS
(cm) Bias (cm) RMS

(cm) Bias (cm) RMS
(cm)

ERA (2.5◦) P, T, e A&N 0.00 0.27 1.08 3.26 1.07 3.26
ERA (2.5◦) P, T, e Saas 0.02 0.27 0.12 3.35 0.14 3.34

ERA (2.5◦) P, T, e, PWV 0.00 0.27 0.19 1.51 0.19 1.52

ERA (0.75◦) P, T, e A&N −0.01 0.24 1.07 3.29 1.06 3.27
ERA (0.75◦) P, T, e Saas 0.01 0.24 0.06 3.35 0.07 3.34

ERA (0.75◦) P, T, e, PWV −0.01 0.24 0.18 1.28 0.17 1.28

IGRA surface P, T, e A&N 0.01 0.02 0.38 3.20 0.39 3.20
IGRA surface P, T, e Saas 0.03 0.03 −0.52 3.42 −0.49 3.41

GPT2w −0.10 1.47 −0.09 3.90 −0.19 3.99
IGGtropSH −0.63 4.08

As can be seen from Table 4, the global mean RMS errors are about 3.26 and 3.35 cm for
ZTDs computed with the A&N and Saas models using P, T, and e derived from 2.5◦ × 2.5◦

ERA surface analysis data, respectively, which are very close to the corresponding values
(3.20 and 3.41 cm) computed using measured surface parameters. It is indicated that
atmospheric parameters derived from ERA surface data exhibit basically the same level
of accuracy with actual observations in terms of ZTD estimation. It is also noticed that
the A&N model slightly outperforms the Saas model when either derived or measured
atmospheric parameters are as inputs. Unfortunately, no improvement is observed when
higher spatial resolution ERA surface data are used, although the derived P, T, and e
all exhibit marginally higher accuracy, as seen in Table 2. This is not a surprise result
considering the limited relation between ZWD and water vapor pressure at the surface.

When the PWV parameter is added for ZTD estimation, the performance is signifi-
cantly enhanced, showing a mean RMS value of 1.52 cm for the 2.5◦ × 2.5◦ grid analysis,
which is due to the high correlation between PWV and ZWD. Besides, it is noted that using
higher resolution ERA PWV data has a positive effect on ZTD estimation, since the mean
RMS error is reduced by more than 2 mm.

For ZHDs, the global mean RMS error is about 0.27 cm for both the A&N and Saas
models using pressures derived from 2.5◦ × 2.5◦ ERA surface data, and this value decreases
to 0.24 cm when the 0.75◦ grid data is utilized, as seen in Table 4. Obviously, those results
are fully consistent with the errors of derived pressure shown in Table 2. Nevertheless,
given measured station pressures, both models estimate the ZHD at submillimeter level,
which means hydrostatic equilibrium is always satisfied in the troposphere. The accuracy
of ZHD obtained from ERA surface data is greatly superior to that obtained from the
empirical model GPT2w, which has no auxiliary input, and shows a mean RMS value
of 1.47 cm. In the GNSS-PWV retrieval procedure, the uncertainty in PWV due to the
uncertainty in ZHD (σZHD) is calculated as Π×σZHD (Π is the proportionality of PWV to
ZWD and has a typical value of 0.15 [42]). Thus, the accuracy of ZHD obtained from ERA
surface data can satisfy mm level PWV retrieval and it is convenient to utilize this approach
when there is no collocated meteorological sensor.

For ZWDs obtained from surface P, T, and e data, the global mean RMS error is
above 3 cm for either model. According to the results obtained using the in situ P, T,
and e measurements as input, the Saas model tends to underestimate the ZWD, showing
a global mean bias of about −0.49 cm; while the A&N model tends to overestimate the
ZWD, showing a mean bias of about 0.39 cm. However, such overestimation becomes
more pronounced as the A&N model is applied with P, T, and e derived from ERA surface
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data, since an overall bias of up to about 1.0 cm is seen on a global scale. This is generated
by combination of two error sources: positive bias of derived e values (see Table 2) and
positive ZWD bias obtained with the A&N model. Similarly, the relatively lower mean
bias for ZWDs obtained from ERA surface P, T, and e data with the Saas model can be
explained by two factors having opposite effects: the negative bias of the Saas model itself
and the positive bias of the input parameter e. In terms of ZWDs derived with ERA surface
P, T, e, and PWV data, the globally averaged bias is below 2 mm, reflecting no obvious
offset between our approach and radiosonde observations.

Table 5 shows similar results with Table 4 but obtained with ERA surface forecast data.
It is noted that ZTDs calculated with the ERA surface forecast P, T, and e data demonstrate
slightly smaller absolute bias and RMS than the corresponding values from analysis data,
which is due to the smaller bias of e derived from the surface forecast data, as shown in
Table 2. In terms of ZTDs obtained from ERA surface P, T, e, and PWV data, the RMS error
is about 1.80 cm on average when the forecast data is utilized, about 3 mm greater than
those from analysis data.

Table 5. Statistics of global mean accuracies of ZHDs, ZWDs, and ZTDs calculated from ERA-Interim surface forecast data,
with the reference values from IGRA data over 530 stations during 2015.

Input Data Model ZHD ZWD ZTD

Bias (cm) RMS (cm) Bias (cm) RMS (cm) Bias (cm) RMS (cm)

ERA (2.5◦) P, T, e A&N −0.01 0.30 0.77 3.15 0.76 3.16
ERA (2.5◦) P, T, e Saas 0.01 0.30 −0.14 3.44 −0.13 3.44
ERA (2.5◦) P, T, e,

PWV −0.01 0.30 0.17 1.79 0.16 1.80

4.3.2. Spatial Behaviors

In addition to overall performance, more detailed statistics on the spatial behavior
of tropospheric delay estimation accuracy is presented in the following section. Figure 4
shows the station-specific bias and RMS values of ZTDs derived from 2.5◦ × 2.5◦ ERA
surface analysis data over the IGRA stations: (a) and (c) refer to the results obtained from
surface P, T, e, and PWV data; (b) and (d) refer to those obtained from surface P, T, and e
data with the A&N model.

As seen from Figure 4b, over the globe, the biases of ZTDs derived from ERA surface P,
T, and e data range from about −1.8 to 6.4 cm, showing generally positive values over most
regions. The bias is most predominant for the equatorial regions, then it decreases gradually
as the latitude increases. The maximum positive biases reaching up to about 5 cm occur in
Malay Archipelago, and remarkable values are also observed over Patiala (northwestern
Indian), Aswan (southern Egypt), Pointe-à-Pitre (Grande-Terre Island, Caribbean Sea),
and so on. Negative biases are only found in a few places, for example, the south coast
of the Mediterranean Sea, southern Africa, the west coast of Mexico and Gulf of Mexico,
and southwestern Russia. The corresponding RMS values displayed in Figure 4d exhibit
consistent spatial behavior with that of biases, except for eastern China, where significant
RMS values of about 5 to 6 cm are observed.

It is noted from Figure 4a,c that the approach using ERA surface P, T, e, and PWV data
provide highly accurate ZTD estimations and approximately homogeneous performance
over the entire globe. The ZTD biases range roughly between −2.1 and 3.4 cm, and accord-
ing to our analysis, at about 91% of the stations the biases are within ±1 cm and at about
98% of the stations the biases are within ±2 cm. The most pronounced over-prediction of
ZTD appears over three stations located in northwest China’s Xinjiang Province and Aswan
(southern Egypt). As seen in Figure 4c, the RMS values are generally below 2 cm for most
middle and higher latitude regions while slightly larger values appear over Xinjiang and
the southeastern part of China, as well as a few stations located on the tropical islands and
coasts. The RMS values are less than 2 cm over more than 80% of the stations, whereas this
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percentage can increase to 90% as the higher-resolution data (0.75◦) is utilized, according
to our investigation. We also find that some of the large biases result from the discrepancy
between the two data sources for biases still exist in statistical comparison between ZTDs
calculated from ERA pressure level data and radiosonde observations.
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The effect of spatial resolution of ERA surface data on ZTD estimation is explored
through displaying the station-specific differences of RMS values between two different
resolutions in Figure 5. The symbol refers to the results obtained from 2.5◦ × 2.5◦ grid data
minus those from 0.75◦ × 0.75◦ grid data. As found in Figure 5a, when using ERA surface
P, T, and e data, the differences caused by different resolutions are within ±1 cm over most
stations; higher spatial resolution seems not to yield superior performance as expected.
Figure 5b indicates that, when ERA surface PWV data are also utilized for ZTD retrieval,
slightly better accuracy is obviously acquired with higher spatial resolution data for almost
all the latitudes. Such enhancement is more significant at the lower and middle latitude
stations where water vapor is abundant. In addition, the three stations in Xinjiang Province
that show relatively larger errors in Figure 4c, now exhibit an improvement of 1–2 cm in
RMS errors with 0.75◦ grid data, as indicated by the red marks in Figure 5b.
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Figure 5. Station-specific differences in RMS values of ZTDs obtained from ERA surface data of two spatial resolutions. (a)
refers to ZTDs derived from P, T, and e. (b) refers to ZTDs derived from P, T, e, and PWV. The symbol denotes the results
obtained from 2.5◦ × 2.5◦ grid data minus those from 0.75◦ × 0.75◦ grid data.

In Figure 6, the station-specific bias and RMS values of ZHDs as a function of latitude
are depicted, in which the red line refers to the results derived from ERA surface data and
the black line refers to those derived from local pressure measurements. As seen from the
red line, the ZHD RMS errors vary from 0.1 to 1.2 cm, with more than 92% of the values
being less than 0.5 cm. In addition, Figure 6 also shows that ZHD calculated from local
pressure measurements is accurate at sub mm level over each station, although slightly
better performance is observed in the lower latitudes.
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Figure 7 displays the latitude-dependent distribution of bias and RMS values of ZWDs
calculated from different approaches. For the sake of clarity, zonal mean bias and RMS
values for each 5-degree width latitude band are depicted instead of station-specific results.
The two types of blue symbols present results of ZWDs calculated from the A&N (triangle)
and Saas (square) models with realistic P, T, and e measurements. Since they only reflect
the effect of empirical ZWD models, we explore their features firstly. From Figure 7a, it
is found that the in the lower latitudes there exists obvious biases for ZWD estimations
derived with both A&N and Saas models, although with opposite signs. The zonal mean
bias of the A&N model reaches about 2 cm between 15◦ latitude north and south of equator,
and then it decreases to approximate zero for other latitudes. The Saas model shows
remarkable negative zonal mean biases up to about −3.5 cm at the equator, and as the
latitude increases the magnitude of bias decreases, being mostly negative in the NH and
positive in the southern hemisphere (SH); biases close to zero only occur in the Antarctic
and a few latitude zones. It has to be mentioned that, for station-specific ZWD results, more
pronounced biases are observed for both models than those shown in Figure 7, according
to our investigation.
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Figure 7. Latitudinal variation of zonal mean (5◦ latitude interval) bias (a,c) and RMS (b,d) values of ZWDs. The reference
ZWDs are calculated from radiosonde profiles over 530 IGRA stations. The red triangle refers to results obtained using P, T,
and e from ERA surface analysis data with the A&N model, and the red square refers to those with the Saas model. The
black asterisk refers to results obtained using P, T, e, and PWV from ERA surface analysis data. The blue triangle refers to
results obtained using P, T, and e at the surface level of radiosonde data with the A&N model, and the blue square refers to
those with the Saas model.

The above analyses elaborately reveal that the empirical Saas model causes unrealistic
ZWD estimations for most regions of the world, which is due to its globally uniform
and season-invariant coefficients; by using gridded model coefficients from GPT2w, the
A&N model has shown obviously improved performance, but systematic offsets still
exist over the tropics and further refinement on the parameter λ is still required. In
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addition, our statistics also find that, because of their significant biases, despite using in
situ meteorological measurements as inputs the Saas and A&N models perform worse
than blind models such as GPT2w and IGGtropSH for certain tropical and subtropical
stations. We have made a preliminary attempt on model refinement, which investigated
the inaccurate coefficients of the Saas model over the whole China region and established
a station-specific tropospheric model [43]. The improved model shows ZTD prediction
residuals closer to a normal distribution with very low systematic bias. The TropSite model,
which was proposed for the Galileo System and consists of station-specific coefficients
respectively for hundreds of globally distributed stations, demonstrated a mean accuracy
of about 2.5 cm when using realistic surface meteorological properties [44].

The two types of red symbols in Figure 7 depict the accuracy of ZWDs obtained from
the A&N and Saas models with meteorological parameters derived from ERA surface data
as model inputs. Therefore, they represent a combination effect of model error and error
of inputs. As seen in Figure 7a, the red symbols exhibit similar latitudinal variation with
the corresponding blue symbols expect for higher biases of about 0.5 to 1.5 cm, which is
probably associated with the positive biases of the derived e values; the difference becomes
much smaller for higher latitudes. Although these approaches show significantly different
features in bias, the patterns of ZWD RMS values are similar, showing larger values in
the tropics and then decreasing continuously with the increasing latitude, as found in
Figure 7b,d. In addition, when driven with local meteorological measurements, the A&N
model outperforms the Saas model generally over all latitude bands between 30◦ S–30◦ N;
it is also superior for most latitude bands when driven with parameters obtained from ERA
surface data.

It can be seen from Figure 7 that the approach (black symbol) that based on PWV data
perform significantly better in terms of both bias and RMS. Constantly low bias around
zero is seen for all the altitudes, and zonal mean RMS values vary from about 0.5 cm in
the polar regions to around 2.0 cm in the tropics. Figure 7 also reveals that slightly better
accuracy is achieved with higher resolution ERA surface data in almost all the latitude
bands.

As seen in Table 4, the accuracy of ZWDs is highly correlated with that of ZTDs with
almost identical bias and RMS values, suggesting that most of the ZTD errors stem from
the mismodeling of the wet delays. Hence, Figure 7 can also indicate the features of ZTD
errors.

4.3.3. Comparison with IGS GNSS-ZTDs

Statistical results of ZTD validation against another global data set, i.e., GNSS-ZTDs at
302 IGS stations, are summarized in Table 6. The results are comparable to those obtained
by comparisons with IGRA data (Tables 4 and 5), except for slightly lower bias and RMS
values for ZTDs calculated from ERA surface P, T, and e data shown in Table 6. The
differences of ZTD estimation accuracies obtained from two validation data sets should be
mainly due to the different geographical distributions of radiosonde and GNSS stations.
A previous study about comparison of GNSS-ZTDs at global IGS stations and ray-traced
delays from pressure level data of ECMWF had found that the agreement is about 0.5 cm
in bias and 1.4 cm in standard deviation [45]. Recently, a similar study has found the mean
bias to be 0.47 cm and standard deviation to be 1.40 cm [46]. In this study, the overall
agreement between ZTDs obtained from ERA surface P, T, e, and PWV data and those
from GNSS observations are about 1.55 cm for the 2.5◦ × 2.5◦ grid and 1.41 cm for the
0.75◦ × 0.75◦ grid, which is comparable to the results of [45,46]. Ray tracing through
atmospheric profiles is normally considered to be the most accurate method for ZTD
calculation; however, our study indicates that similar accuracy can also be achieved using
surface data of NWM. In comparison to ray tracing, our approach is apparently easy to
implement, because of its much simpler calculation procedure and requirement of less
meteorological data. Therefore, for geodetic applications in which atmospheric effect must



Remote Sens. 2021, 13, 3813 19 of 24

be processed precisely, surface data of NMW together with suitable vertical reduction
method can be used instead of ray tracing.

Table 6. Statistics of global mean accuracies of ZTDs calculated from ERA surface data and two
empirical tropospheric models, GPT2w and IGGtropSH, with GNSS-ZTDs over 302 IGS stations
during 2015 as references.

Input Data Data Type Model ZTD

Bias (cm) RMS (cm)

ERA (2.5◦) P, T, e Analysis A&N 0.75 2.89
ERA (2.5◦) P, T, e Analysis Saas 0.54 3.15

ERA (2.5◦) P, T, e, PWV Analysis 0.05 1.55

ERA (0.75◦) P, T, e Analysis A&N 0.80 2.91
ERA (0.75◦) P, T, e Analysis Saas 0.58 3.17

ERA (0.75◦) P, T, e, PWV Analysis 0.09 1.41

ERA (2.5◦) P, T, e Forecast A&N 0.52 2.91
ERA (2.5◦) P, T, e Forecast Saas 0.33 3.24

ERA (2.5◦) P, T, e, PWV Forecast 0.04 1.58

GPT2w −0.27 3.78
IGGtropSH −0.76 3.88

Figure 8 shows latitudinal variations of bias and RMS values of ZTDs derived from
ERA surface analysis data over global IGS stations. As mentioned, the feature of ZTD
errors can be totally represented by that of ZWD errors; therefore, we can directly compare
Figure 8 with Figure 7 here. Although in Figure 7 zonal means are displayed instead of
station-specific values, we can still discern that biases obtained respectively from valida-
tions against two data sets demonstrate roughly consistent behaviors: noticeable positive
biases for the A&N model and negative biases for the Saas model in the equatorial regions;
smaller absolute biases in the higher latitude regions; more remarkable biases for the Saas
model relative to the A&N model at most stations. Small difference is observed for RMS
features: validation with IGRA data shows the largest RMS errors in the tropical and
subtropical regions while validation with IGS data demonstrate smaller RMS values near
the equator than subtropical regions. This is likely attributed to the much sparser coverage
of IGS stations in the tropics.
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data (2.5◦ × 2.5◦) over 302 IGS stations in 2015. The red line and black line indicate results of ZTDs obtained from derived
P, T, and e with the A&N model and the Saas model respectively, while the blue line indicates results of ZTDs obtained
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4.4. Validation of Tropospheric Delays with Regional Data

This section describes the validations of tropospheric delays against GNSS-ZTDs over
two regional networks. Based on denser coverage over regional areas, they will lead to
more detailed assessment results compared to global networks. Table 7 shows the statistics
of mean accuracies of ZTDs calculated from ERA surface data over the CMONOC stations
and EPN stations, respectively.

As mentioned above, the accuracy of ZTD estimation is impacted by two factors: the
error of surface parameters and the error of the chosen empirical model. Before analysis,
we introduce a simple way to estimate their respective influences roughly. According to
Equation (17), we can deduce that an error of 1 hPa in water vapor pressure will result in a
ZTD error of about 1 cm (here, T = 288 K is used, but the choice of T value has little effect
on the estimation result). We can use this rule to roughly separate the ZTD error induced
by e error from that induced by inaccurate tropospheric model.

Table 7. Statistics of mean accuracies of ZTDs calculated from ERA surface data and two empirical tropospheric models,
GPT2w and IGGtropSH, with GNSS-ZTDs over 302 CMONOC stations and GNSS-ZTDs over 302 EPN stations during 2015
as references, respectively.

Input Data Data Type Model CMONOC ZTD EPN ZTD

Bias/cm RMS/cm Bias/cm RMS/cm

ERA (2.5◦) P, T, e Analysis A&N 1.35 3.07 0.77 2.56
ERA (2.5◦) P, T, e Analysis Saas −0.22 3.08 0.99 2.75

ERA (2.5◦) P, T, e, PWV Analysis 0.41 1.54 0.42 1.38

ERA (0.75◦) P, T, e Analysis A&N 1.31 3.12 0.81 2.57
ERA (0.75◦) P, T, e Analysis Saas −0.27 3.15 0.99 2.76

ERA (0.75◦) P, T, e, PWV Analysis 0.38 1.43 0.43 1.26

ERA (2.5◦) P, T, e Forecast A&N 0.92 2.94 0.66 2.60
ERA (2.5◦) P, T, e Forecast Saas −0.58 3.27 0.88 2.80

ERA (2.5◦) P, T, e, PWV Forecast 0.47 1.62 0.40 1.39

GPT2w −0.02 3.54 −0.19 3.45
IGGtropSH −0.66 3.61 −0.63 3.51

Firstly, performance over China is explored. As seen in Table 7, for the approach
using the A&N model and derived P, T, and e, in comparison to its global statistics results
(Table 4) the overestimation of ZTD is more pronounced in China, showing a mean bias of
1.35 cm. We find that the mean bias of derived e over China (deduced from IGRA data)
reaches up to 1.0 hPa, about 0.3 hPa larger than the global mean value. Such remarkable
positive biases in e would account for most of the ZTD overestimations in China, although
the CMONOC stations are not completely collocated with the radiosonde stations. Besides,
the ZTDs obtained from derived P, T, e, and PWV also show slightly larger mean bias over
China than corresponding global results. In terms of RMS errors, the overall performance
is almost identical for the A&N model and the Saas model.

The station-specific validation results over China are shown in Figure 9, in which the
biases and RMS errors of ZTDs obtained from the 2.5◦ × 2.5◦ ERA surface analysis data
using three approaches are displayed. As seen in Figure 9a, over a few subtropical stations,
ZTDs derived from P, T, and e with the Saas model demonstrate great negative biases,
reaching about −4.5 to −3 cm. In fact, considering the fact that the mean bias of derived
e values varies from about 1.6 hPa for latitudes below 30◦ N to about 0.8 hPa for higher
latitudes over China (obtained from radiosonde data), the actual negative bias caused by
the Saas model should be more severe than that demonstrated in the Figure 9a. The A&N
model performs much better than the Saas model in terms of bias over the subtropics.

It is seen in Figure 9b that RMS values of ZTDs derived from P, T, e, and PWV
are less than 2.5 cm over most stations, except for a few stations within two latitude
bands, 25◦ N–31◦ N and 38◦ N–43◦ N. Investigations find that those stations are located
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in the eastern Hengduan Mountains (in southwest China) and eastern Xijiang Province,
respectively. From ZTD validation with radiosonde observations (Figure 4), relatively poor
performance over Xinjiang Province is also found, but detailed features over the Hengduan
Mountains are not available due to sparse coverage of radiosonde stations. Therefore, the
CMONOC data facilitate a more comprehensive assessment of ZTD estimations in western
China. The mean RMS errors of ZTDs derived from P, T, e, and PWV are about 1.54 cm and
1.43 cm for the 2.5◦ × 2.5◦ and 0.75◦ × 0.75◦ grid data, respectively. However, they seem
relatively lower than the results of a few similar studies that also carried out for China: the
mean RMS difference between the ZTDs provided by GNSS observations and ECMWF
pressure level data is about 2.4 cm [13]; the mean RMS difference between ZWDs provided
by radiosonde observations and ECMWF pressure level data is about 2.1 cm [14]. This is
attributed to the relatively sparser sampling of CMONOC in the eastern and southern parts
of China (see Figure 1e), where the climate is moister and thus causes higher discrepancy
between different data sources.
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Similar validation results over GNSS stations in Europe are presented in Table 7 and
Figure 10. It is found that for each approach, even for empirical models such as GPT2w and
IGGtrop, the overall ZTD estimation performance in Europe is better than that over the
globe as well as in China. This is attributed to the mild weather in Europe and relatively
higher latitudes of the EPN stations. It is noted that the mean latitude of stations is 48.8◦ N
for EPN, 34.6◦ N for CMONOC, and 31.9◦ N for IGRA.

From Figure 10a, it is observed that between 25◦ N and 40◦ N, the Saas model overes-
timates the ZTD, with maximum biases reaching about 3 to 5 cm, while the A&N model
shows superior performance due to its smaller absolute biases ranging between −1.5 and
2.5 cm. For latitudes higher than 50◦ N, ZTDs derived from the two models both demon-
strate good agreement with the observations. The mean difference of water vapor pressures
derived from ERA surface data and radiosonde observations is around 0.7 hPa in Europe,
corresponding to a bias of 0.7 cm in ZTD estimations. This indicates that ZTD biases shown
in Table 7 are mostly caused by the inaccurate estimation of water vapor pressure.
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obtained from derived P, T, e, and PWV.

5. Conclusions

This study has investigated the methods of deriving tropospheric parameters, includ-
ing P, T, e, PWV, ZTD, ZHD, and ZWD, from ERA-Interim surface data with the gridded
lapse rate data of the GPT2w model. Complicated formulas have been deduced for the
vertical reductions of pressure and PWV, based on realistic assumptions for atmosphere
structure. The global mean RMS errors of derived P, T, and e from 2.5◦ × 2.5◦ grid sur-
face analysis data are about 1.16 hPa, 1.95 K, and 1.76 hPa, respectively. Both P and T
demonstrate lower accuracy in the higher latitudes and some places of middle latitudes of
NH. The derived water vapor pressure exhibits positive biases over most stations. Vertical
reduction approach of P proposed in this study is superior to the Berg function for over
80% of the IGRA stations, especially when there exists great height difference between the
grid point and the observation station. The average improvement is about 0.27 hPa for
absolute height differences less than 300 m while it increases to about 2.08 hPa for those
above 300 m.

The ZTDs calculated from the ERA surface P, T, and e data (2.5◦ × 2.5◦ analysis)
show a globally averaged accuracy of 3.26 cm and 3.34 cm respectively while using the
A&N model and Saas model. They are comparable to the performance of those calculated
from local meteorological observations. The RMS errors of ZTDs calculated from the ERA
surface P, T, e, and PWV data range between 1.26 and 1.55 cm for the four reference data
sets. The approach using the ERA PWV data together with suitable vertical reduction is of
the same level of accuracy with respect to the results from NWM pressure level data.

Some common characteristics are noticed during validations using different reference
data sets: for ZTDs calculated from P, T, and e, forecast data perform similarly to analysis
data and higher spatial resolution does not result in better accuracy; for ZTDs calculated
from P, T, e, and PWV, analysis data and higher spatial resolution both yield slightly but
definitely better accuracy. Due to its globally and seasonally constant coefficients, the Saas
model shows obvious biases in most zones, especially remarkable underestimations of
ZWD over the tropics and the subtropics of NH. With the gridded lapse rates from GPT2w,
the A&N model displays lower offset, while an overestimation of ZWD by about 2 cm is
also seen over the tropics, implying requirement of further refinement.

Tropospheric parameters determined from NWM surface data is also capable of
satisfying the accuracy requirement of many geodetic applications and can facilitate users
without local meteorological instruments. Using NWM surface data instead of pressure
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level data cut down the budget for memory and transmission bandwidth and provides
great convenience to remote users.
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