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Abstract: Building instances extraction is an essential task for surveying and mapping. Challenges
still exist in extracting building instances from high-resolution remote sensing imagery mainly
because of complex structures, variety of scales, and interconnected buildings. This study proposes
a coarse-to-fine contour optimization network to improve the performance of building instance
extraction. Specifically, the network contains two special sub-networks: attention-based feature
pyramid sub-network (AFPN) and coarse-to-fine contour sub-network. The former sub-network
introduces channel attention into each layer of the original feature pyramid network (FPN) to
improve the identification of small buildings, and the latter is designed to accurately extract building
contours via two cascaded contour optimization learning. Furthermore, the whole network is jointly
optimized by multiple losses, that is, a contour loss, a classification loss, a box regression loss
and a general mask loss. Experimental results on three challenging building extraction datasets
demonstrated that the proposed method outperformed the state-of-the-art methods’ accuracy and
quality of building contours.

Keywords: building instance extraction; contour optimization; coarse-to-fine; remote sensing imagery

1. Introduction

Automatic extraction of building instances from remote sensing imagery is significant
in urban planning, environmental management, change detection, map making, and
updating [1–4]. A large number of high-resolution satellite imagery with finer spectral and
texture features can extract more precise building instances. However, due to the complex
and heterogeneous appearance of buildings in mixed backgrounds [3], accurately building
instance extraction from high-resolution satellite imagery is still a highly challenging task,
such as finer building contours generation especially for small buildings.

The building instance extraction aims to detect all buildings and precisely segment
each individual building, which can be treated as an image instance segmentation task
that performs instantiation and then segmentation [4]. Inspired by the Mask R-CNN [5],
advanced models derived from instance segmentation approaches have been explored to ex-
tract building instances from remote sensing imagery, and have achieved promising results
in the last four years [4,6,7]. However, existing methods still have two limitations. First,
the remote sensing imagery with complex background has much noise, which dramatically
affects the extraction of building contours with mask regression-based methods. More
specifically, it leads to a deviation between ground truth and prediction. Second, some
small building instances cannot be identified because scale differences of high-resolution

Remote Sens. 2021, 13, 3814. https://doi.org/10.3390/rs13193814 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-0465-3976
https://orcid.org/0000-0002-1829-4006
https://orcid.org/0000-0003-2387-5419
https://doi.org/10.3390/rs13193814
https://doi.org/10.3390/rs13193814
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13193814
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13193814?type=check_update&version=1


Remote Sens. 2021, 13, 3814 2 of 18

remote sensing images are not fully considered. Figure 1 presents an example of the two
issues, blurred contours and undetected small buildings, in the results of a classical instance
segmentation model. The red boxes represent buildings with blurring contours and the
yellow boxes represent undetected small buildings.

Figure 1. Visualization examples with classical instance segmentation model-Mask R-CNN. Note:
the red boxes represent buildings with blurring contours, the yellow boxes represent undetected
small buildings and the green boxes are generated by Mask R-CNN.

This study proposes a coarse-to-fine contour optimization network to extract building
instances accurately from high-resolution remote sensing imagery and alleviate the above
two limitations. The network contains two sub-networks, an attention-based feature
pyramid (AFPN) sub-network and a coarse-to-fine contour sub-network.

The main contributions of this study are the following:

1. A coarse-to-fine contour sub-network is developed for better-capturing building
contour, which employs a significant loss in an iteration learning way and achieves
great improvement in the refinement of building contour;

2. An AFPN sub-network is designed to introduce an attention mechanism into the
feature pyramid network (FPN [8]) and improve the ability to detect small buildings;

3. A new metric index contour score (CS) is derived from the differences between pre-
dicted contours and ground truths to evaluate model performance further. The
CS provides a new exploration in assessing the performance of image instance
segmentation models;

4. Experiments on three diverse building extraction datasets, two public datasets (WHU
aerial image dataset [3] and CrowdAI mapping challenge dataset [CrowdAI] [9]) and
a self-annotated dataset are conducted. Experimental results demonstrate that the pro-
posed method shows advantages over existing state-of-the-art instance segmentation
methods.

This study is organized as follows. Section 2 reviews related works. Section 3 provides
details on the proposed network. Section 4 describes datasets, implementation details,
evaluation metrics, and baseline models. Section 5 presents experimental results. Section 6
elaborates the ablation study and discusses the effects of edge detection operators, loss
functions, and hyperparameters. Finally, Section 7 concludes this study.

2. Related Work

The building extraction methods can be classified into three categories [10–12]: pixel-
based, object-oriented, and deep-leaning methods. The pixel-based method mainly empha-
sizes the spectral characteristic [13,14], while ignoring features such as geometry [15,16],
texture [17] and context information [18]. Hence, most pixel-based methods result in
irregular building shapes and require further processing such as shape refinement and
vectorization [19]. The object-oriented method identifies the building as a whole, which
can extract regular buildings but cannot segment complex masks. In recent years, deep
learning-based methods, such as convolutional neural networks (CNNs) and recurrent
neural networks, have shown effective and superior performance in automatically learning
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high-level and discriminative features in extracting buildings [2,20–22]. Related studies
can be further grouped into building extraction based on semantic segmentation and
building extraction based on instance segmentation, which are discussed in the following
two subsections.

2.1. Building Extraction Based on Semantic Segmentation

Building extraction can be considered a binary pixel classification task. Pixel-based
semantic segmentation methods have been adopted to extract buildings from remote
sensing imagery, making significant progress. Many studies have explored different CNN-
based semantic segmentation methods for improving the accuracy of building extraction.
For example, Alshehhi et al. [20] proposed a single patch-based CNN architecture to
extract roads and buildings. Low-level features of roads and buildings (e.g., asymmetry
and compactness) of adjacent regions are integrated with CNN features during the post-
processing stage to improve the performance. Xu et al. [23] designed an image segmentation
neural network, based on the deep residual networks, and used a guided filter to extract
buildings.

With the advent of the fully convolutional network (FCN) [24] that performs image
segmentation and pixel-wise labeling synchronously via an end-to-end encode-decoder
framework, numerous variants of FCNs were successfully employed to building extraction.
Shrestha et al. [2] presented an enhanced FCN framework for building extraction by
applying conditional random fields. Ye et al. [21] proposed an attention-based re-weighting
FCN to extract buildings from aerial imagery. Ji et al. [3] proposed a Siamese FCN model
to obtain better segmentation accuracy.

Apart from FCN, more encoder–decoder-based models that fuse different levels of fea-
tures more comprehensively, such as U-Net [25], are also preferred in building extraction.
Li et al. [26] designed and combined several strategies (i.e., data augmentation, post-
processing, and integration of the GIS map data and satellite images) with the U-Net–based
semantic segmentation model to extract building footprints. Duan et al. [22] inserted iden-
tity skip connection into the U-net network for samples training to improve the accuracy of
building extraction. Furthermore, the Deeplab series [27,28] has been widely exploited to
extract buildings, employing atrous spatial pyramid pooling to aggregate multi-scale con-
textual information with a larger field of view. Chen et al. [29] proposed a dense residual
neural network, which used a deeplabv3+net encoder–decoder backbone, in combination
with a densely connected CNN and residual network (ResNet [30]) structure.

Benefiting from the rapid growth of available remote sensing data and computing
power, the semantic segmentation technology on building extraction has achieved a break-
through. However, this kind of method cannot distinguish inter-connected objects of the
same category. That is, it may fail to separate adjacent building instances and cause errors
in building contours.

2.2. Building Instances Extraction Based on Instance Segmentation

With the arrival of the instance segmentation method pioneered by Mask R-CNN,
studies on building instance extraction have been advanced. For example, Zhao et al. [4]
presented a method combining Mask R-CNN with building boundary regularization to
produce better-regularized polygons. Wen et al. [6] proposed an improved Mask R-CNN
method to detect the rotated bounding boxes of buildings and segment them from complex
backgrounds simultaneously. Liu et al. [7] designed a multi-scale U-shaped CNN building
instance extraction framework with edge constraint to extract precise building masks.
Wu et al. [31] proposed an improved anchor-free instance segmentation method based
on CenterMask [32] with spatial and channel attention-guided mechanisms to achieve
balanced performance in terms of speed and accuracy.

Although the above approaches have facilitated the progress of building instance
extraction, they are still insufficient in the accurate extraction of buildings, resulting from
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the lack of consideration for the optimization of building contours and the identification of
small buildings.

3. Methodology

This study proposes a coarse-to-fine contour optimization network to enhance the per-
formance of building instance extraction from high-resolution remote sensing imagery. The
architecture of the proposed network is illustrated in Figure 2. The following subsections
will describe the two main components of the network: the attention-based FPN (AFPN)
sub-network and the coarse-to-fine contour sub-network. The AFPN introduces channel
attention into each layer of the original feature pyramid network (FPN) to improve the
identification of small buildings, and the coarse-to-fine contour sub-network is designed to
accurately extract building contours via two-cascaded contour optimization learning.

Figure 2. Overview of the proposed network for building instance extraction: (a) AFPN sub-network,
(b) coarse-to-fine contour sub-network.

3.1. AFPN Sub-Network

In the proposed network, the AFPN sub-network is designed to improve the identifi-
cation of small buildings, introducing channel attention into each layer of the classical FPN,
as shown in Figure 2a. The sub-network captures foreground information of small and big
buildings in each layer of the pyramid network via foreground channel attention learning.

The detailed structure of the attention component is illustrated in Figure 3. The
module consists of a global average pooling (GAP), a 1D convolution, a Sigmoid operation,
and an element-wise multiplication.

Figure 3. Structure of AFPN. Pi is the i-th layer of FPN.

First, at the i-th layer Pi of AFPN, a GAP is used to aggregate the features xi of the
pyramid with the dimension of H×W × C into a channel descriptor yi with the dimension
of 1× 1× C, similar to [33], where C is the number of the channels at each layer.
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Then, a 1D convolution is used to learn the attention weights representing the im-
portance of foreground information in each channel. It drives the network’s preference
to focus on the foreground information of small buildings at each layer of AFPN. The
attention weights ωi can be calculated as follows:

ωi = σ(C1D(yi)), (1)

where C1D indicates 1D convolution, and σ denotes a Sigmoid function. The attention
weight ωi is used to weigh the importance of features for achieving building foreground
information. It enforces a high weight for building foreground features and a low weight
for complex background features.

Finally, the foreground attention features can be calculated by an element-wise multi-
plication operation as follows:

χ̃i = H(χi, ωi), (2)

where H(•) denotes element-wise multiplication.
A bottom-up connection is added from the low-layer to the top layer of the pyramid

(presented by the red line in Figure 2a) to reduce further information loss of small buildings
in the FPN’s top layer, following [34]. With this connection, the AFPN can retain features of
small buildings without any additional model complexity, guaranteeing the effectiveness
of the sub-network.

3.2. Coarse-to-Fine Contour Sub-Network

After obtaining the foreground attention features, a two-stage coarse-to-fine contour
sub-network is designed to extract building instance contours in an end-to-end manner.
Specifically, a coarse-to-fine contour sub-network consists of a coarse contour branch
and a refined contour branch. The structure of the coarse-to-fine contour sub-network is
illustrated in Figure 4.

Figure 4. Structure of coarse-to-fine contour sub-network: (a) coarse contour branch, (b) refined
contour branch.

3.2.1. Coarse Contour Branch

Given the learned attention features as the input, the coarse contour branch first uses
a de-convolutional layer as the mask branch. It then employs a Sobel operator [35] and two
simple convolution operations to identify coarse building contours, as shown in Figure 4a.

Specifically, the Sobel operator is used to extract two-channel building contour po-
sitions in horizontal and vertical directions. Then, two 3× 3 convolutions further learn
building contour representation from the extracted coarse contour positions. The coarse
contour of building S0 can be modeled as follows:

S0 = C1D(ξ(Fm)), (3)

where C1D denotes 1× 1 convolution, ξ(•) represents the Sobel operator, and Fm denotes
mask features from the mask branch.
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Once the coarse contours are achieved, they will be fed into the next branch to guide
more precise contour extraction.

3.2.2. Refined Contour Branch

Although the rough building contours are extracted by the above coarse contour
branch and closer to the ground truth, the deviation between the coarse and true contours
still exists. A refined contour branch is introduced into our model to reduce the devia-
tion, as shown in Figure 4b. Following the idea of Deepsnake [36], the refined contour
branch consists of three parts: circular convolution block, fusion block, and a deviation
prediction head.

The circular convolution block includes eight circular convolution layers with residual
skip connections for further adjusting the contour deviation ∆S in all layers of this branch.
The ∆S is defined as follows:

∆S = S0 − S, (4)

where S is the ground truth of the building contours. To fuse the information across all
contour points at multiple scales, the fusion block concatenates features from all circular
convolution layers and feeds them into a 1× 1 convolution layer followed by max pooling.
Followed by the fused block, the prediction head applies three 1× 1 convolution layers to
the fused features and outputs the vertex-wise deviation.

The objective of the refined contour branch is to learn a nonlinear regression from the
coarse contours S0 to the minimum of the deviation ∆S. The final learned deviation adjusts
and refines final contours by filling and merging operations.

3.2.3. Loss Function

A contour loss [37] is introduced into the general mask regression loss in Mask R-CNN,
which is additional supervision information to optimize the contour learning, minimize the
deviation, and achieve more precise contours for building extraction. The overall training
objective is the combination of the following four losses:

Ltotal = Lcls + Lbbox + Lmask + Lcontour, (5)

where classification loss Lcls, regression loss Lbbox and mask loss Lmask are inherited from
Mask R-CNN. The classification loss is given as follows:

Lcls = −
1

Ncls
∑ log2[p

∗
i pi + (1− p∗i )(1− pi)], (6)

where Ncls is the number of classes, and p∗i is the class label, pi is the predicted class. The
mask loss is written as follows:

Lmask = −y log y∗ − (1− y) log(1− y∗), (7)

where y∗ is the mask label and y is the predicted mask. The regression loss is given
as follows:

Lbbox = ∑ smoothL1(ti − t∗i ), (8)

where t∗i is the box label and ti is the predicted box.
The contour loss function Lcontour(pc, yc) is defined as follows:

Lcontour(pc, yc) = LDice(pc, yc) + λLBCE(pc, yc), (9)

LDice(pc, yc) = 1− ∑H×W
i pi

cyi
c + ε

∑H×W
i (pi

c)
2 + ∑H×W

i (yi
c)

2 + ε
, (10)

LBCE = 1− ∑H×W
i pi

cyi
c + ε

∑H×W
i (pi

c)
2 + ∑H×W

i (yi
c)

2 + ε
, (11)
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where pc and yc denote the predicted contour and the corresponding ground truth contour,
respectively; LDice(pc, yc) and LBCE(pc, yc) are pixel loss [38] and binary cross-entropy loss,
respectively; and λ is a hyper-parameter that is used to adjust the proportion of each loss in
the loss function. The contour loss encourages the predicted contours to match the ground
truth contours according to the predicted deviation adaptively. Furthermore, to avoid a
zero in the denominator of Equation (10), the default value of the ε is set as 1.

4. Experiments
4.1. Datasets

The proposed method was evaluated on three building segmentation datasets: the
WHU aerial image dataset, CrowdAI, and the self-annotated dataset.

4.1.1. WHU Aerial Image Dataset

The WHU aerial image dataset is proposed by Ji et al. [3]. The dataset has a large
variation in image characteristics, including different lighting and atmospheric, sensor
qualities, scales and building architectures. Some samples are illustrated in Figure 5. The
spatial resolution of the images is 0.3 m. The dataset covers approximately 450 km2 and
more than 187,000 buildings with different sizes and appearances in Christchurch, New
Zealand. Aerial images and corresponding ground truth images are provided in the dataset
containing 8188 RGB images with 512 × 512 pixels. The dataset is divided into the training
set with 4736 images, a validation set with 1036 images and a test set with 2416 images.

Figure 5. Samples of the WHU aerial imagery dataset. The ground truth of the buildings is in cyan.

4.1.2. CrowdAI

CrowdAI consists of 280,000 satellite images for training and 60,000 images for
testing. The image samples are provided in JPEG format with an image resolution of
300 × 300 pixels, and their annotations are provided in the MS-COCO format. Some sam-
ples from the CrowdAI are demonstrated in Figure 6. The dataset has a wide variety of
buildings with different sizes and shapes.
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Figure 6. Samples of CrowdAI. The ground truth of buildings is in cyan.

4.1.3. Self-Annotated Building Instance Segmentation Dataset

The self-annotated building instance dataset [39] images are acquired from Google
Earth (Google Inc., Mountain View, CA, USA.) and are manually annotated. As shown in
Figure 7, the dataset consists of 7260 tiles, and 63,886 building instances in four Chinese
cities: Beijing, Shanghai, Shenzhen and Wuhan. Each image has a size of 500 × 500 pixels
with a resolution of 0.29 m/pixel. The dataset contains a large number of non-orthophoto
images. Some samples from the self-annotated building instance segmentation dataset are
shown in Figure 8. A total of 7260 labeled images are split into 5985 images for training
and 1275 for testing.

Figure 7. Distribution of the self-annotated building instance segmentation dataset.
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Figure 8. Samples of the self-annotated building instance segmentation dataset. The ground truth of
the buildings is in cyan.

4.2. Implementation Details

All the experiments were implemented in the Pytorch framework and were carried
out on a 2080 GPU. A stochastic gradient descent (SGD [40]) with a learning rate of 0.0025
was adopted as an optimizer. The shared convolutional layers were initialized with the
released pre-trained ResNet-50 [30] model. The weight decay rate was set to 0.0001 with a
momentum value of 0.9.

To increase the diversity of training samples, rotate, flip, noise, blur and brightness
operations were applied to each remote sensing image, which enlarged the volume of the
datasets about six times.

4.3. Evaluation Metrics

In this study, the standard MS COCO metrics [41] were employed for evaluating
the task, including the mean average precision (AP), and mean average recall (AR) over
multiple intersection over union (IoU) values. IoU is given in Equation (12) below:

IoU =
area(Mp ∩Mgt)

area(Mp ∪Mgt)
, (12)

where Mp and Mgt denote the predicted mask and the corresponding ground truth, respectively.
Specifically, AP and AR are computed at 10 IoU overlap thresholds ranging from 0.50

to 0.95 in steps of 0.05 following [41]. AP@0.5 : 0.95 is calculated as Equation (13), and AR
is given in Equation (14).

AP@0.5 : 0.95 =
AP0.50 + AP0.55 + ... + AP0.90 + AP0.95

10
, (13)
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AR =
∫ 1

0.5
recall(x)dx =

2
n

n

∑
i=1

max(IoU(gti)− 0.5, 0). (14)

Furthermore, APs is used to measure further the performance of the methods on
detecting small buildings with an area < 32× 32 pixels.

IoU is mainly used to evaluate model performances by quantifying the size of the
common region between predicted results and ground truths, which cannot yet directly
and finely evaluate the performance of predicted contour lines. To further measure the
quality of the extracted building contours, a new measure indicator called contour scores
(CS) was proposed. The CS is defined as follows:

CS = 1− log
∑n

i dmax

∑n
i dmin

. (15)

As shown in Figure 9, dmax and dmin denote the max length and the min length between
the real contour and the predicted contour in the same direction, respectively. That is, the
closer the two contours are, the closer the CS is to 1, and vice versa. Compared with IoU,
CS is better for examining the performance of predicted contours.

Figure 9. Schematic diagram of CS.

In the equation, the contour is calculated as a whole, and evaluating the quality of
building contours accurately is easy, especially that of small buildings. Meanwhile, CS is
more robust regardless of the shape of the building.

4.4. Baselines

In this study, the proposed method was compared with four baselines, including Mask
R-CNN, Hybrid Task Cascade(HTC), CenterMask and SOLOv2 on three datasets. Mask
R-CNN [5] is the most popular for building instance extraction, which adds a network
branch to the original Faster R-CNN [42] for predicting segmentation masks on each Region
of Interest (RoI). HTC [43] effectively integrates cascade into instance segmentation by
interweaving detection and segmentation features together for joint multi-stage processing.
CenterMask [32] is a simple and efficient anchor-free instance segmentation method that
achieves significant performance at real-time speed. SOLOv2 [44] takes one step further
by dynamically learning the mask head of the object segmenter such that the mask head
is conditioned on the location. It can dynamically segment each instance in the image
without resorting to bounding box detection. All the methods adopted the same settings,
except Centermask which used Vovnet-39 [32] as a backbone.

5. Results
5.1. Evaluation with the WHU Aerial Image Dataset

Table 1 shows the comparison results on the WHU aerial image dataset. Our method
achieves the best results of the five methods, reaching AP@0.5 : 0.95 and CS values of
69.8% and 79.5%, respectively. In terms of AP of small (APs), the proposed method exceeds
10.1%, 6.3%, 6.0% and 12.0% compared with Mask R-CNN, HTC, CenterMask and SOLOv2,
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respectively. It suggests that our method effectively extracts building instances because
it can produce more accurate building contours and is more effective for small-scale
buildings detection.

Table 1. Comparison of different network extraction methods on the WHU aerial image dataset. The
best results are highlighted in bold.

Model AP@0.5 : 0.95 AP@0.5 APs AR CS

Mask R-CNN [5] 0.601 0.884 0.473 0.649 0.685
HTC [43] 0.643 0.900 0.511 0.688 0.760

CenterMask [32] 0.658 0.830 0.514 0.695 0.739
SOLOv2 [44] 0.614 0.878 0.454 0.661 0.737

Proposed model 0.698 0.906 0.574 0.743 0.795

To further observe the results, some samples are illustrated in Figure 10. As the red
boxes from column(b) to column(e) in the first and second rows show, the buildings are not
well segmented with precise contours in the results of the comparison models. In contrast,
as the red box in column(f) shows, the proposed model generates clearer contours of
individual buildings. In the third row, some small-scale buildings are overlooked by the
baseline methods, but are successfully detected by our method. These results indicate that
the proposed method has superior performance compared with the baseline methods.

Figure 10. Visualized results of building instance extraction using the WHU aerial image dataset:
(a) the original remote sensing imagery, (b) Mask R-CNN, (c) HTC, (d) CenterMask, (e) SOLOv2,
(f) Proposed model.

5.2. Evaluation with CrowdAI

The experimental results on CrowdAI are listed in Table 2. The proposed method
achieves a higher AP@0.5 : 0.95 of 64.9%, compared with baselines. The AP of small (APs)
outperforms that of Mask R-CNN, HTC, CenterMask and SOLOv2 by 4.0%, 1.3%, 3.9%
and 3.0%, respectively. Furthermore, the values of CS indicate that the extracted contours
of our method are more precise than those of the four baselines.
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Table 2. Comparison of different network extraction methods on CrowdAI. The best results are
highlighted in bold.

Model AP@0.5 : 0.95 AP@0.5 APs AR CS

Mask R-CNN [5] 0.600 0.886 0.367 0.649 0.724
HTC [43] 0.630 0.903 0.394 0.684 0.746

CenterMask [32] 0.623 0.903 0.378 0.686 0.753
SOLOv2 [44] 0.612 0.888 0.377 0.658 0.734

Proposed model 0.649 0.905 0.407 0.706 0.776

As shown in Figure 11, the proposed method still generates more accurate building
contours than those of the baselines on CrowdAI.

Figure 11. Visualized results of building instance extraction using CrowdAI: (a) the original remote
sensing imagery, (b) Mask R-CNN, (c) HTC, (d) CenterMask, (e) SOLOv2, (f) Proposed model.

5.3. Evaluation with the Self-Annotated Building Instance Segmentation Dataset

To demonstrate the performance of the proposed method, the proposed method was
examined using the self-annotated building instance segmentation dataset. The dataset
contains non-orthophoto images with complex backgrounds, which makes building in-
stance extraction challenging. As shown in Table 3, the values of evaluation metrics of all
models are lower than those of the two above datasets. The proposed method obtains more
precise results than the four baselines, reaching AP@0.5 and CS values of 68.3% and 54.6%,
respectively. Experimental results on this dataset show that our method is still promising.

Table 3. Comparison of different network extraction methods on the self-annotated building instance
segmentation dataset.The best results are highlighted in bold.

Model AP@0.5 : 0.95 AP@0.5 APs AR CS

Mask R-CNN [5] 0.392 0.611 0.121 0.558 0.489
HTC [43] 0.414 0.655 0.163 0.520 0.520

CenterMask [32] 0.400 0.670 0.160 0.520 0.517
SOLOv2 [44] 0.413 0.674 0.136 0.563 0.527

Proposed model 0.437 0.683 0.191 0.570 0.546

Figure 12 shows the comparison results for the dataset. For some challenging building
scenes (such as the one represented in the first row of Figure 12), shadow interference (the
second row of Figure 12), and dense distribution of small-scale buildings (the third row of
Figure 12), the proposed method achieves the best performance.
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Figure 12. Visualized results of building instance extraction using the self-annotated building
instance segmentation Dataset: (a) the original remote sensing imagery, (b) Mask R-CNN, (c) HTC,
(d) CenterMask, (e) SOLOv2, (f) Proposed model.

6. Discussion
6.1. Ablation Study

In this section, the ablation study is reported to examine the effectiveness of two key
components in the proposed model. The ablation analysis was performed on the WHU
aerial image dataset. The Mask R-CNN was adopted as the baseline model, and then each
component was added progressively.

As shown in Table 4, the integration of the channel attention block improved the
baseline from 60.1% to 64.7% in terms of AP@0.5 : 0.95. In particular, the AP value of
small (APs) has been promoted from 47.3% to 53.6%. The promotion demonstrates that
introducing an attention block is effective, especially for small buildings. The addition
of the coarse contour branch improves the AP@0.5 : 0.95 and CS from 64.7% to 66.3%
and 76.3% to 77.1%, respectively, implying that the coarse branch can help learn more
building contour features. Finally, the refined contour branch brings AP and CS further
improvements of 69.8% and 79.5%, respectively, demonstrating that more accurate contours
can be obtained by adding the refined contour branch.

Table 4. Ablation study with different components combinations on the WHU aerial image dataset.
The best results are in bold.

Model AP@0.5 : 0.95 AP@0.5 APs AR CS

Mask R-CNN [5] 0.601 0.884 0.473 0.649 0.685
+attention 0.647 0.901 0.536 0.690 0.763

+Coarse contour branch 0.663 0.897 0.546 0.701 0.771
+Refined contour branch 0.698 0.906 0.565 0.737 0.795

The feature representations of without and with attention module in different convo-
lution layers are visualized to understand how the channel attention module improves
the extraction results. By using the channel attention module, the learned features obtain
more foreground information and ignore background information. Therefore, the building
regions can get more attention. As shown in Figure 13, the feature values in the building
area become higher, which means the network can focus more on the foreground features
of buildings. Furthermore, the small building features can also be reinforced during feature
processing. To sum up, with the introduction of the attention module, the proposed model
has superior performance in building instance extraction.
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Figure 13. Visualization of features in different convolution layers: (a) the original remote sensing
imagery, (b) feature maps in conv1 without attention module, (c) feature maps in conv1 with attention
module, (d) feature maps in conv2 without attention module, (e) feature maps in conv2 with attention
module, (f) feature maps in conv3 without attention module, (g) feature maps in conv3 with attention
module.

6.2. Effect of Edge Detection Operators

Taking the WHU aerial image dataset as an example, the performance of several
edge detection operators is discussed, including Sobel [35], Laplace [45] and Canny [46].
As shown in Table 5, the best AP and CS are obtained when applying the Sobel operator.
It can be explained by the fact that the Sobel operator affects smoothing and suppressing
noise [47].

Table 5. Comparison results of edge detection operators on the WHU aerial image dataset. The best
results are in bold.

Method AP@0.5 : 0.95 AP@0.5 APs AR CS

Sobel [35] 0.698 0.906 0.574 0.743 0.795
Laplace [45] 0.691 0.898 0.565 0.737 0.787
Canny [46] 0.675 0.864 0.541 0.716 0.770

6.3. Effect of Contour Loss

In this section, the effect of different contour loss functions on optimized contour
learning is discussed. The comparison experiments are still conducted with the WHU
aerial image dataset [3] as an example. The selected loss functions include dice loss [37,38]
(shown in Equation (10)), binary cross-entropy loss (shown in Equation (11)), and dice loss
and binary cross-entropy loss (shown in Equation (9)), respectively.

As shown in Table 6, when BCE and Dice losses are adopted, the AP@0.5 : 0.95 values
are 2.7% and 0.7% higher than only BCE and only Dice, respectively. The CS values are also
higher than only BCE loss and only Dice loss. Comparison with only BCE loss, negative
Dice loss shows higher values of major metrics including precision, APs, AR, and CS.
Replacing both BCE and Dice losses with only BCE loss or only Dice leads to a weaker
performance in all metrics. These results demonstrate that our proposed contour loss is
a critical factor for improving the performance of building extraction. Meanwhile, both
BCE and Dice losses together also have a better convergence than only BCE loss or only
Dice loss. Moreover, to examine the sensitivity of the hyper-parameter λ in Equation (9),
two experiments are conducted. As the results show, various λ have little effect on the
performance. The best performance is observed when BCE and Dice losses are used and λ
is set to 1.
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Table 6. Comparison results on different loss functions on WHU aerial image dataset. The best
results are in bold.

Loss AP@0.5 : 0.95 AP@0.5 APs AR CS

no contour loss 0.659 0.860 0.516 0.695 0.752
BCE loss 0.671 0.881 0.543 0.701 0.768
Dice loss 0.691 0.898 0.556 0.737 0.787

both Dice and BCE loss (λ = 0.5) 0.696 0.905 0.563 0.743 0.793
both Dice and BCE loss (λ = 2.0) 0.695 0.904 0.562 0.741 0.792
both Dice and BCE loss (λ = 1.0) 0.698 0.906 0.565 0.743 0.795

6.4. More Experiments with Different IoU Thresholds

IoU is used to measure how much our predicted contour overlaps with the ground
truth (the real object contour). Considering that the obtained accuracy is different using
different IoU thresholds, this section uses more IoU thresholds to observe the performance
of the proposed model. As shown in Table 7, the proposed method performs better than
the baselines, and the AP@0.5 : 0.95 of the proposed method exceeds that of Mask R-CNN,
HTC, CenterMask and SOLOV2 by 9.8%, 5.6%, 4.1%, and 8.5%, respectively. The value of
the CS is also higher than those of the four baselines. Furthermore, the AP of our method
can always obtain the best results no matter the IoU being 0.5, 0.6, 0.7, 0.8 or 0.9. The higher
the IoU value is, the more distinct an advantage the proposed method has. For example,
the value of AP of our method is 2.0% higher than that of Mask R-CNN with an IoU of 0.5,
whereas the gap between the two methods increases to 31.9% with an IoU of 0.9. These
experimental results further suggest that the model is robust and excellent.

Table 7. Comparison results with different IoU thresholds. The best results are in bold.

Model AP@0.5 : 0.95 AP@0.5 AP@0.6 AP@0.7 AP@0.8 AP@0.9 CS

Mask R-CNN [5] 0.601 0.886 0.845 0.758 0.561 0.077 0.685
HTC [43] 0.643 0.902 0.875 0.812 0.667 0.213 0.760

CenterMask [32] 0.658 0.830 0.823 0.790 0.712 0.361 0.739
SOLOv2 [44] 0.614 0.878 0.864 0.787 0.613 0.113 0.737

Proposed model 0.699 0.906 0.891 0.846 0.749 0.396 0.795

The precision-recall curves generated from different methods are shown in Figure 14.
All the curves of the proposed methods are located above the other baseline methods in
different IoU thresholds, demonstrating that the proposed method is more appropriate for
extraction building instance and has strong robustness and good stability.

Figure 14. Cont.
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Figure 14. Precision-recall curve with different IoU thresholds: (a) Mask R-CNN, (b) Hybrid Task
Cascade, (c) SOLOv2, (d) Proposed model.

7. Conclusions

This study has proposed a coarse-to-fine contour optimization network to extract
building instances accurately from high-resolution remote sensing images. An attention-
based pyramid sub-network has been introduced to improve the identification of small
buildings, and a two-stage coarse-to-fine contour sub-network has been designed to refine
building instance contours. The proposed method has been evaluated on three challenging
building extraction datasets. The experimental results have indicated that the proposed
model outperforms the state-of-the-art models with higher accuracy and more precise
contours. This study has suggested that introducing the inherent features of buildings into
the model can enhance the ability to generate refined contours of building instances. This
method should provide a reference for applications extracting other objects from remote
sensing images.
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