
remote sensing  

Article

Cross-Dimension Attention Guided Self-Supervised Remote
Sensing Single-Image Super-Resolution

Wenzong Jiang 1, Lifei Zhao 1, Yanjiang Wang 2, Weifeng Liu 2 and Baodi Liu 2,*

����������
�������

Citation: Jiang, W.; Zhao, L.; Wang,

Y.; Liu, W.; Liu, B. Cross-Dimension

Attention Guided Self-Supervised

Remote Sensing Single-Image

Super-Resolution. Remote Sens. 2021,

13, 3835. https://doi.org/10.3390/

rs13193835

Academic Editors: Igor Yanovsky and

Jing Qin

Received: 22 August 2021

Accepted: 20 September 2021

Published: 25 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Oceanography and Space Informatics, China University of Petroleum (East China),
Qingdao 266580, China; s19160040@s.upc.edu.cn (W.J.); s20160035@s.upc.edu.cn (L.Z.)

2 College of Control Science and Engineering, China University of Petroleum (East China),
Qingdao 266580, China; yjwang@upc.edu.cn (Y.W.); liuwf@upc.edu.cn (W.L.)

* Correspondence: liubaodi@upc.edu.cn

Abstract: In recent years, the application of deep learning has achieved a huge leap in the performance
of remote sensing image super-resolution (SR). However, most of the existing SR methods employ
bicubic downsampling of high-resolution (HR) images to obtain low-resolution (LR) images and use
the obtained LR and HR images as training pairs. This supervised method that uses ideal kernel
(bicubic) downsampled images to train the network will significantly degrade performance when
used in realistic LR remote sensing images, usually resulting in blurry images. The main reason
is that the degradation process of real remote sensing images is more complicated. The training
data cannot reflect the SR problem of real remote sensing images. Inspired by the self-supervised
methods, this paper proposes a cross-dimension attention guided self-supervised remote sensing
single-image super-resolution method (CASSISR). It does not require pre-training on a dataset, only
utilizes the internal information reproducibility of a single image, and uses the lower-resolution
image downsampled from the input image to train the cross-dimension attention network (CDAN).
The cross-dimension attention module (CDAM) selectively captures more useful internal duplicate
information by modeling the interdependence of channel and spatial features and jointly learning
their weights. The proposed CASSISR adapts well to real remote sensing image SR tasks. A large
number of experiments show that CASSISR has achieved superior performance to current state-of-
the-art methods.

Keywords: remote sensing image; image super-resolution; self-supervised; attention module

1. Introduction

In the field of remote sensing, HR remote sensing images have rich textures and critical
information. They play an important role in remote sensing image analysis tasks such
as fine-grained classification [1,2], target recognition [3,4], target tracking [5,6] and land
monitoring [7]. However, due to equipment limitations, it is hard to obtain HR remote
sensing images. At present, most datasets are composed of LR images instead of HR images.
Therefore, image SR technology has shown great potential and has been a research hotspot
in recent decades.

Image SR is the process of restoring an HR image from a given LR image. It is a
very ill-posed process because multiple HR solutions are mapped to one LR input. Many
image SR methods have been proposed to solve this ill-posed problem, including early
interpolation-based methods [8], reconstruction-based methods [9], and recent learning-
based methods [10–13].

Recently, image SR methods [10,14,15] based on deep convolutional neural networks
(CNN) have made significant progress. For the first time, Dong et al. [10] proposed an
SRCNN containing a three-layer convolutional neural network, which achieved better
performance than traditional methods. Affected by the residual network (ResNet) [16],
VDSR [11] and DRCN [17] increased the network depth to 20 and used a large number of
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residual structures, and the effect was significantly improved compared to SRCNN. Later,
more CNN-based image SR methods [18–20] used residual learning strategies. With the
introduction of the attention mechanism [21,22], several methods [23,24] began to aggregate
the attention mechanism into the SR model, which greatly enhanced the representation
ability of static CNN and improved the performance of the image SR network.

These deep learning-based methods [11,17,20] design a very deep and complex CNN
and train it for a long time (days or weeks) through a large number of high-quality ex-
ternal datasets. Most of these kinds of external datasets use fixed bicubic downsampling
operations to construct training data pairs, such as the DIV2K [25] dataset. Similarly, the
input image in the test phase is still obtained by bicubic core downsampling. However,
real LR remote sensing images do not meet these conditions. In this ‘non-ideal’ situation,
these supervised methods often produce poor results. The main reason is that the bicubic
downsampled image cannot reflect the degradation process of the real LR image.

Inspired by many unsupervised image enhancement methods [26–33] and attention
mechanism model [21,22], in this paper, we introduce cross-dimension attention guided
self-supervised remote sensing single-image super-resolution method (CASSISR). The
CASSISR does not require pre-training on a dataset, uses the internal reproducibility of
the internal information of a single image, and merely utilizes the lower-resolution images
extracted from the input image itself to train the attention guided convolutional network.
Therefore, the CASSISR has great advantages in ‘non-ideal’ situations.

The cross-scale recurrence of small pieces of information in a single image has proven
to be a very powerful feature of natural images [26,34]. Through our research, we found
that the cross-scale repetition of internal information in remote sensing images is more
powerful than natural images. As shown in Figure 1, the small-scale information in the red
frame can be found in other places within the same picture (large-scale information in the
blue frame). The CASSISR takes advantage of the cross-scale internal reproducibility of
image-specific information and trains attention guided convolutional networks with LR
images and their downsampled lower-resolution images to infer the LR–HR relationship.
Then, the trained network is applied to the LR input image to produce the SR output.

Figure 1. Cross-scale internal information reproducibility of remote sensing images. The information inside the same
picture (small-scale information in the red frame) can be found in other places (large-scale information in the blue frame) for
the existence of different scales.

In order to better learn the cross-scale information within the image and improve the
performance of the image SR network, we propose a cross-dimension attention mechanism
module (CDAM). Different from SENet [21] and CBAM [22], we consider the interactivity
between the channel dimension and the spatial dimension by modeling the interdepen-
dence of the channel and the spatial feature, jointly learning the feature weight of the
channel and spatial, and selectively capturing more useful internal duplicate information.
In order to verify the validity of CASSISR, we construct the ‘ideal’ remote sensing dataset,
‘non-ideal’ remote sensing dataset, and real-world remote sensing dataset. We conduct
a lot of experiments on these three types of datasets. Although the effect of CASSISR
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on the ‘ideal’ remote sensing dataset does not exceed that of the supervised SOTA-SR
methods, the generated results are still surprising, even if CASSISR only trains through
one image. However, for the ‘non-ideal’ remote sensing dataset and real-world remote
sensing dataset, CASSISR greatly exceeds the SOTA-SR methods, and the visual effects
also have obvious advantages.

In summary, our contributions in this paper are summarized as follows:

1. We introduce a cross-dimension attention guided self-supervised remote sensing
single-image super-resolution method (CASSISR). Our CASSISR only needs one
image for training. It takes advantage of the reproducibility of the internal information
of a single image, does not require prior training in the dataset, and only uses the
lower-resolution images extracted from a single input image itself to train the attention
guided convolutional network (CDAN), which can better adapt to real remote sensing
image super-resolution tasks.

2. We propose a cross-dimension attention mechanism module (CDAM). It considers the
interaction between the channel dimension and the spatial dimension by modeling
the interdependence between the channel and the spatial feature, jointly learning
the feature weight of the channel and the spatial, selectively capturing more useful
internal duplicate information, improving the learning ability of static CNN.

3. We conduct a large number of experiments on the ‘ideal’ remote sensing dataset, ‘non-
ideal’ remote sensing dataset, and real-world remote sensing dataset, and compare
the experimental results with the SOTA-SR methods. Although there is only one
training image for CASSISR, it still obtains more favorable results.

2. Related Work

After the efforts of a large number of researchers, the computer vision community has
proposed a large number of image SR methods, including interpolation-based methods [8],
reconstruction-based methods [9], and CNN-based methods [10,11]. This section briefly
reviewed the related work of the CNN-based SR methods, remote sensing SR methods,
and attention mechanisms.

2.1. CNN-Based SR Method

Recently, CNN-based SR networks have been extensively studied. As a pioneering
work, Dong et al. [10] propose a shallow three-layer convolutional network (SRCNN) for
image SR and achieves satisfactory performance. They use bicubic interpolation to enlarge
the LR image to the target size and then adopt a three-layer convolutional network to fit
the non-linear mapping. Subsequently, Kim et al. [11] introduce the residual structure
and design a VDSR model with a deeper network structure so that the model has a wider
receptive field. Dong et al. [35] directly learn the mapping of LR images to HR images
by using deconvolution in FSRCNN. To further improve the performance, Lim et al. [18]
propose a deep and wide network EDSR composed of the remaining blocks modified by
stacking and removed the batch normalization (BN) layer. Zhang et al. [15] utilize all
hierarchical features of all convolutional layers in RDN through dense connections.

2.2. Remote Sensing SR Method

SR algorithms based on deep learning have also been applied to SR tasks in the field
of remote sensing. Inspired by VDSR [11], Huang et al. [36] propose a remote sensing deep
residual learning network RS-DRL. Lei et al. [37] propose a ‘Multi-Fork’ CNN architec-
ture for training in an end-to-end manner. Xu et al. [38] introduce a new deep memory
connection network (DMCN), which reduces the time required to reconstruct the resolu-
tion of remote sensing images. Gu et al. [39] use residual squeeze and excitation blocks
to model the dependence among channels, which improves the representation ability.
Wang et al. [40] propose an adaptive multi-scale feature fusion network and use sub-pixel
convolution for image reconstruction. However, these remote sensing SR methods require
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long-term training through a large number of synthetic external datasets, and it is difficult
to adapt to real-world LR remote sensing images.

2.3. Attention Mechanism

In recent years, the attention mechanism has been widely used in various com-
puter vision tasks and has become an essential part of the neural network structure.
Jaderberg et al. [41] propose for the first time an effective spatial attention mechanism
(STN) that can locate the target and learn the corresponding deformation and then pre-
process it to reduce the difficulty of model learning. Hu et al. [21] introduce an effective
channel attention learning mechanism (SENet), which models the importance of each
feature channel to enhance or suppress the importance of different channels for different
tasks. Gao et al. [42] introduce GSoP and introduce a second-order pool to achieve more
effective functional aggregation. Hu et al. [43] use deep convolution to explore spatial
expansion to gather features. Woo et al. [22] propose CBAM, which uses average pooling
and maximum pooling to aggregate features, and combines channel attention and spatial
attention. Introducing the attention mechanism into the SR model further improves the
SR performance [23]. However, these attention models model independently in the spa-
tial dimension or the channel dimension, ignoring the interaction between the channel
dimension and the spatial dimension.

3. Materials and Methods

In this section, we first introduce the overall overview of cross-dimension attention
guided self-supervised remote sensing single-image super-resolution (CASSISR). Then we
give the detailed structure of the proposed cross-dimension attention mechanism module
(CDAM). Finally, we introduce the loss function and parameter settings of the network.

3.1. Overall Network Overview

The LR image can be assumed to be the result of convolution downsampling of the
HR image and the blur kernel k and adding noise n. The relationship between the LR image
and HR image can be modeled as:

ILR = (IHR ∗ k) ↓s +n (1)

where ILR denotes the LR image, IHR denotes the HR image, ∗ denotes the convolution
operation, k denotes the blur kernel, ↓s denotes the downsampling with a scale factor of s
and n denotes the noise. For the SR of real-world remote sensing images, IHR is unknown,
and k and n are also not fixed. It is unreasonable for the supervised CNN-based SR methods
to use fixed bicubic downsampling to construct the training data pair. These methods
ideally model the relationship between the LR image and SR image:

ILR = IHR ↓s (2)

where ILR and IHR represent the LR and HR image, respectively, and ↓s represents the
downsampling with a scale factor of s. This kind of network trained on a large number of
ideal datasets will certainly generate better results when used for images that have also
been downsampled by the bicubic kernel. However, when the input is a real-world image
or an image that is not bicubic downsampled, the generated result will be blurry. The
LR images of this ideal bicubic downsampling structure do not conform to the complex
situation of the real-world LR images. Therefore, in the case of real-world SR, there is only
one original LR image. How can we solve this problem?

We mainly use the powerful internal information repetitiveness of remote sensing
images. In the same remote sensing image, specific information will repeatedly appear at
different scales and positions. Therefore, the CASSISR does not require prior training on
paired datasets and only requires a given single low-resolution image as input. Figure 2
shows the overall network structure. Given a low-resolution input image LR, a lower-
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resolution image obtained by reducing the scale of the image LR is 1
s × LR (where s is the

super-resolution scale factor). We design a cross-dimension attention network (CDAN)
and train it to reconstruct the input low-resolution image LR from the lower-resolution
image 1

s × LR. Then, we use the image LR as the input of the trained CDAN to generate the
required high-resolution image HR (HR = s× LR). The cross-dimension attention network
can better capture the non-local features of the image and improve the learning ability of
the network. Among them, CDAM is the proposed cross-dimension attention module,
which we will introduce in detail in the next section.

Figure 2. The overall structure of cross-dimension attention guided self-supervised remote sensing single-image super-
resolution (CASSISR). Among them, CDAM is the proposed cross-dimension attention module.

3.2. Cross-Dimension Attention Module

The existing channel attention mechanism mainly focuses on channel dimension
information and ignores the spatial dimension information, while the spatial attention
mechanism ignores the channel dimension information. These models do not consider
the interactivity between the channel dimension and the spatial dimension. To solve this
problem, we propose a cross-dimension attention module (CDAM), which can selectively
capture more useful internal duplicate information by modeling the interdependence of
channel and spatial features, and jointly learning the feature weights of the channel and
spatial. The structure of the proposed CDAM is shown in Figure 3.

Figure 3. The structure of the cross-dimension attention module. C× H ×W denotes a feature map with the number of
channels C, the height of H and the width of W. ⊗ denotes matrix multiplication. � denotes element-wise multiplication.

Suppose that the feature maps F ∈ RC×H×W are the input of CDAM, C is the number
of channels, H and W are the height and the width of the feature maps, respectively. We use
global average pooling to compress the global spatial information into a channel descriptor,
and then obtain the weight matrix Tc ∈ RC×1×1 of different channel information through
the convolutional layer, Relu and sigmoid activation functions. We obtain the weight
matrix Ts ∈ R1×H×W of different spatial information through the convolutional layer and
the sigmoid activation function. Then we matrix multiply the channel information weight
matrix and the spatial information weight matrix, and then obtain the cross-scale channel
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spatial attention weight T ∈ RC×H×W through the convolutional layer and the sigmoid
activation function. Finally, the cross-dimension channel-spatial attention weight T and the
input feature F are subjected to element-wise multiplication to obtain a weighted feature
map F̃ ∈ RC×H×W . The cross-dimension attention module can be formulated as follows:

Tc = Sigmoid( f 1×1(ReLU( f 1×1(Avg(F))))) (3)

Ts = Sigmoid( f 1×1(F)) (4)

F̃ = (Sigmoid( f 1×1(Tc ⊗ Ts)))� F (5)

where Avg is the global average pooling, f 1×1 is the convolution operation with a filter size
of 1× 1, ⊗ is the matrix multiplication and � is the element-wise multiplication. Different
from the previous spatial attention and channel attention [21,22,44], we model the cross-
dimension interdependence of channel and spatial feature information through jointly
learning channel and spatial feature weights and the mutual influence and interdependence
between channels and spatial features to learn the channel-spatial attention weight better.

3.3. Network Settings and Loss Function

Because the training of a single image does not require a deep and complex network,
we set the number of cross-dimension attention modules (CDAM) of the cross-dimension
attention network (CDAN) to only 6. We use the Adam optimizer [45], where the learning
rate starts from 0.0001, and the reconstruction error is linearly fitted periodically. When the
standard deviation is greater than the slope of the linear fitting, the learning rate is divided
by 10, and training is stopped when the learning rate reaches 10−6. At the same time, we
also enhance the data by rotating (0◦, 90◦, 180◦, 270◦) and specular reflection in the vertical
and horizontal directions. We use the L1 loss function to minimize the error between the
true value and the predicted value and optimize the L1 loss.

L1(θ) =
n

∑
i=1
|LR− CDAN(

1
s
× LR)| (6)

where θ is the CDAN parameter, LR is the input low-resolution image, and 1
s × LR is the

lower-resolution image obtained by reducing the s times scale of the image LR.

4. Results

In this section, we first introduce the ‘ideal’ remote sensing dataset, the ‘non-ideal’
remote sensing dataset, and the real-world remote sensing dataset. Then we conduct exper-
iments on these three types of datasets to compare the CASSISR with existing algorithms.
For ‘ideal’ remote sensing dataset and ‘non-ideal’ remote sensing dataset, we use PSNR and
SSIM as metrics to quantitatively compare the CASSISR algorithm with existing algorithms
and show the visualization results. Because the real-world remote sensing dataset has
no real images of the ground truth for reference in the testing stage, we only show the
qualitative results of visual comparison.

4.1. Datasets Construction
4.1.1. ‘Ideal’ Remote Sensing Dataset

We randomly select images from 6 remote sensing datasets (i.e., RSSCN7 dataset [46],
RSC11 dataset [47], WHU-RS19 dataset [48], UC-Merced dataset [49], AID dataset [50], and
NWPU45 dataset [51]) according to categories, and then LR images obtained by bicubic
downsampling to form an ‘ideal’ remote sensing dataset.

RSSCN7 dataset [46]: This dataset contains 2800 aerial scene images in 7 typical scene
categories (i.e., grassland, forest, farmland, parking lot, residential area, industrial area,
river, and lake). The size of each image is 400× 400 pixels. We randomly select 10 images
from each category, obtain LR images through bicubic downsampling, and use these
70 images as the test dataset.
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RSC11 dataset [47]: This dataset covers high-resolution remote sensing images of
several American cities, including Washington D.C., Los Angeles, San Francisco, New
York, San Diego, Chicago, and Houston, including 1232 images of 11 complex scene
categories, such as forests, grasslands, ports, tall buildings, low buildings, overpasses,
railways, residential areas, roads, sparse forests, and storage tanks. The size of each image
is 512× 512 pixels. We randomly select 10 images from each category, obtain LR images
through bicubic downsampling and use these 110 images as the test dataset.

WHU-RS19 dataset [48]: This dataset consists of 1005 images in 19 different scene
categories, including airports, beaches, bridges, commercial areas, deserts, farmland,
football fields, forests, industrial areas, grasslands, mountains, parks, parking lots, etc.
The size of each image is 600 × 600 pixels. We randomly select 10 images from each
category, obtain LR images through bicubic downsampling and use these 190 images as
the test dataset.

UC-Merced dataset [49]: This dataset consists of 2100 images in 21 land use categories,
including agriculture, airplanes, baseball fields, beaches, buildings, small churches, etc.
The size of each image is 256 × 256 pixels. We randomly select 10 images from each
category, obtain LR images through bicubic downsampling and use these 210 images as
the test dataset.

AID dataset [50]: This dataset consists of 10,000 images in 30 aerial scene categories,
including airports, bare ground, baseball fields, beaches, bridges, centers, churches, com-
mercials, dense residences, deserts, farmlands, forests, etc. The size of each image is
600× 600 pixels. We randomly select 10 images from each category, obtain LR images
through bicubic downsampling and use these 300 images as the test dataset.

NWPU45 dataset [51]: This dataset consists of 31,500 images of 45 scene categories,
including airport, baseball diamond, basketball court, beach, bridge, chaparral, church,
etc. The size of each image is 256× 256 pixels. We randomly select 10 images from each
category, obtain LR images through bicubic downsampling and use these 450 images as
the test dataset.

4.1.2. ‘Non-Ideal’ Remote Sensing Dataset

To better simulate the situation of real-world remote sensing images, we use randomly
generated anisotropic Gaussian kernels to blur and downsample the above 6 datasets [52].
The size of the kernels is 11 × 11, with random lengths λ1, λ2 ∼ µ(0.6, 5) distributed
independently on each axis, rotated by a random angle θ ∼ µ[−π, π]. In this way, we
constructed a ‘non-ideal’ remote sensing datasets, including RSSCN7-blur dataset, RSC11-
blur dataset, WHU-RS19-blur dataset, UC-Merced-blur dataset, AID-blur dataset, and
NWPU45-blur dataset, which are closer to real LR images.

4.1.3. Real-World Remote Sensing Dataset

To better reflect the advantages of CASSISR, we directly extract the original images
from the OSCD dataset [53] as the real remote sensing dataset. This dataset includes
24 pairs of multispectral images taken from the Sentinel-2 satellite between 2015 and
2018, including Brazil, the United States, Europe, the Middle East, and Asia. The spatial
resolution of the image is between 10, 20, and 60 m, with different sizes. Since there is no
ground truth for reference during the verification phase, we only show the results of the
visual comparison.

4.2. Experiments on ‘Ideal’ Remote Sensing Dataset

Research on the ‘ideal’ remote sensing dataset is not our research focus, but we still
compare CASSISR with CNN-based SR methods and remote sensing SR methods. As
shown in Table 1, we report the quantitative comparison results of the scale factors ×2 and
×4 on the ‘ideal’ remote sensing image dataset. Among them, SRCNN [10], FSRCNN [35],
EDSR [18], SRMD [12], RDN [15], RCAN [23], SAN [13], and CS-NL [54] are CNN-based
SR methods, and LGCNet [37], DMCN [38], DRSEN [39], DCM [40], and AMFFN [55] are
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remote sensing SR methods. The result of the CNN-based SR methods is tested with the
pre-trained model of the DIV2K [25] dataset. For remote sensing SR methods, we directly
use the results given in the original paper, and these methods are also pre-trained through
a large number of synthetic datasets. However, our CASSISR has not been pre-trained with
a large number of datasets.

Table 1. The quantitative results of CASSISR, CNN-based SR methods, and remote sensing SR methods on the ‘ideal’ remote
sensing dataset (bicubic downsampling). Our CASSISR results are highlighted, and the best results are underlined. Please
note that CASSISR only uses one image for training, while other methods are trained on large datasets.

Method Scale RSSCN7 RSC11 WHU-RS19 UC-Merced AID NWPU45
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×2 31.26/0.8595 30.55/0.8501 34.70/0.9216 31.74/0.8872 34.63/0.9068 31.38/0.8741
SRCNN [10] ×2 32.74/0.8982 32.12/0.8915 36.04/0.9497 33.85/0.9238 35.94/0.9367 33.03/0.9128
FSRCNN [35] ×2 32.90/0.9007 32.28/0.8946 36.37/0.9521 34.29/0.9288 36.24/0.9392 33.27/0.9160
EDSR [18] ×2 33.51/0.9082 33.15/0.9050 37.73/0.9572 35.61/0.9391 37.48/0.9451 33.96/0.9231
SRMD [12] ×2 33.37/0.9063 32.71/0.9008 37.41/0.9553 35.09/0.9347 37.23/0.9431 33.77/0.9210
RDN [15] ×2 33.50/0.9089 33.19/0.9060 37.54/0.9577 35.65/0.9405 37.31/0.9455 33.95/0.9238
RCAN [23] ×2 33.68/0.9107 33.42/0.9081 38.01/0.9592 36.03/0.9426 37.70/0.9469 34.16/0.9256
SAN [13] ×2 33.72/0.9115 33.48/0.9087 38.18/0.9599 36.01/0.9424 37.69/0.9468 34.37/0.9286
CS-NL [54] ×2 33.68/0.9105 33.41/0.9076 37.98/0.9589 36.06/0.9429 37.68/0.9467 34.13/0.9252

LGCNet [37] ×2 −−/−− −−/−− −−/−− 33.80/0.8917 −−/−− 32.86/0.8788
DMCN [38] ×2 −−/−− −−/−− −−/−− 34.19/0.8941 −−/−− 33.07/0.8842
DRSEN [39] ×2 −−/−− −−/−− −−/−− 34.79/0.9470 −−/−− 34.40/0.9385
DCM [40] ×2 −−/−− −−/−− −−/−− 33.65/0.9274 −−/−− −−/−−
AMFFN [55] ×2 −−/−− −−/−− −−/−− 35.00/0.9360 −−/−− 35.30/0.9348
CASSISR(Our) ×2 33.01/0.9027 32.23/0.8956 36.69/0.9514 34.21/0.9261 36.64/0.9399 33.23/0.9153

Bicubic ×4 27.36/0.6794 26.48/0.6509 28.93/0.7468 26.50/0.6968 29.31/0.7442 26.90/0.6851
SRCNN [10] ×4 28.11/0.7203 27.23/0.6937 29.84/0.7913 27.67/0.7464 30.16/0.7827 27.82/0.7321
FSRCNN [35] ×4 28.20/0.7238 27.31/0.6979 29.81/0.7928 27.81/0.7509 30.23/0.7855 27.93/0.7367
EDSR [18] ×4 28.74/0.7452 27.86/0.7249 30.66/0.8159 28.81/0.7869 31.08/0.8084 28.52/0.7615
SRMD [12] ×4 28.63/0.7407 27.72/0.7184 30.57/0.8124 28.53/0.7764 30.93/0.8034 28.40/0.7563
RDN [15] ×4 28.77/0.7471 27.87/0.7272 30.67/0.8177 28.91/0.7917 31.10/0.8106 28.55/0.7637
RCAN [23] ×4 28.87/0.7510 27.98/0.7329 30.83/0.8218 29.14/0.7988 31.26/0.8146 28.68/0.7689
SAN [13] ×4 28.90/0.7503 28.08/0.7338 30.96/0.8233 29.20/0.7993 31.34/0.8150 28.74/0.7689
CS-NL [54] ×4 28.92/0.7508 28.01/0.7305 30.91/0.8218 29.38/0.8041 31.30/0.8135 28.71/0.7674

LGCNet [37] ×4 −−/−− −−/−− −−/−− 27.40/0.5963 −−/−− 27.35/0.5633
DMCN [38] ×4 −−/−− −−/−− −−/−− 27.57/0.6150 −−/−− 27.52/0.5858
DRSEN [39] ×4 −−/−− −−/−− −−/−− 28.14/0.8153 −−/−− 28.54/0.7846
DCM [40] ×4 −−/−− −−/−− −−/−− 27.22/0.7528 −−/−− −−/−−
AMFFN [55] ×4 −−/−− −−/−− −−/−− 28.70/0.7772 −−/−− 29.47/0.7763
CASSISR(Our) ×4 27.99/0.7163 27.13/0.6913 29.78/0.7868 27.26/0.7334 30.19/0.7813 27.53/0.7216

On the ‘ideal’ remote sensing dataset, even if CASSISR does not exceed the advanced
CNN-based and remote sensing SR methods, it is better than the early methods. This is
because advanced SR methods use deeper and more complex networks, requiring long-
term training, which will take up a lot of computing resources. These methods can indeed
show excellent on the ideal bicubic downsampled LR image, but they are not suitable for
real remote sensing image SR.

4.3. Experiments on ‘Non-Ideal’ Remote Sensing Dataset

The ‘non-ideal’ remote sensing dataset can better simulate the complex situation
of real remote sensing images. We compared CASSISR with CNN-based SR methods
quantitatively and qualitatively. The result of the CNN-based SR methods is tested with
the pre-trained model.
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4.3.1. Quantitative Results

As shown in Table 2, we report the quantitative comparison results of the scale factors
×2 and ×4 between CASSISR and CNN-based SR methods on a ‘non-ideal’ remote sensing
image dataset.

Table 2. The quantitative results of CASSISR and CNN-based SR methods on a ‘non-ideal’ remote sensing dataset (random
Gaussian kernel downsampling). Our CASSISR results are highlighted, and the best results are underlined. Our CASSISR
performs the best.

Method Scale RSSCN7-Blur RSC11-Blur WHU-RS19-Blur UC-Merced-Blur AID-Blur NWPU45-Blur
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×2 27.69/0.7133 26.86/0.6920 29.06/0.7771 26.78/0.7354 29.30/0.7704 27.07/0.7149
SRCNN [10] ×2 27.86/0.7311 27.09/0.7121 29.08/0.7936 27.01/0.7548 29.36/0.7865 27.32/0.7348
FSRCNN [35] ×2 27.87/0.7313 27.11/0.7128 28.96/0.7869 27.04/0.7559 29.48/0.7891 27.33/0.7350
EDSR [18] ×2 27.98/0.7325 27.18/0.7141 29.40/0.7950 27.15/0.7573 29.63/0.7878 27.42/0.7359
SRMD [12] ×2 27.96/0.7313 27.17/0.7126 29.36/0.7938 27.13/0.7561 29.71/0.7889 27.34/0.7326
RDN [15] ×2 27.94/0.7328 27.16/0.7145 29.30/0.7952 27.13/0.7578 29.51/0.7873 27.39/0.7362
RCAN [23] ×2 27.99/0.7328 27.19/0.7146 29.41/0.7952 27.16/0.7579 29.43/0.7820 27.43/0.7361
SAN [13] ×2 27.98/0.7327 27.19/0.7143 29.23/0.7901 27.16/0.7578 29.61/0.7871 27.37/0.7341
CS-NL [54] ×2 27.99/0.7330 27.19/0.7147 29.40/0.7953 27.17/0.7582 29.74/0.7905 27.36/0.7342
CASSISR(Our) ×2 30.01/0.8142 29.56/0.8053 32.66/0.8831 30.69/0.8518 32.69/0.8654 30.06/0.8303

Bicubic ×4 26.52/0.6396 25.68/0.6103 27.65/0.6996 25.16/0.6407 27.96/0.7027 25.81/0.6355
SRCNN [10] ×4 27.01/0.6723 26.19/0.6437 28.21/0.7357 25.99/0.6848 28.37/0.7301 26.39/0.6715
FSRCNN [35] ×4 27.02/0.6730 26.20/0.6445 27.98/0.7286 25.87/0.6808 28.40/0.7285 26.46/0.6737
EDSR [18] ×4 27.18/0.6836 26.35/0.6565 28.47/0.7457 26.22/0.7008 28.81/0.7432 26.61/0.6845
SRMD [12] ×4 27.18/0.6821 26.35/0.6548 28.48/0.7446 26.23/0.6981 28.89/0.7434 26.61/0.6830
RDN [15] ×4 27.16/0.6848 26.34/0.6577 28.41/0.7467 26.09/0.6976 28.73/0.7430 26.59/0.6856
RCAN [23] ×4 27.20/0.6865 26.38/0.6600 28.50/0.7483 26.25/0.7044 28.81/0.7442 26.52/0.6837
SAN [13] ×4 27.22/0.6862 26.40/0.6601 28.54/0.7486 26.25/0.7042 28.84/0.7455 26.59/0.6860
CS-NL [54] ×4 27.21/0.6862 26.39/0.6587 28.55/0.7486 26.28/0.7058 28.94/0.7473 26.59/0.6855
CASSISR(Our) ×4 27.31/0.6896 26.44/0.6613 28.78/0.7558 26.40/0.7082 29.21/0.7493 26.72/0.6867

Compared with CNN-based SR methods, our CASSISR achieves the best results on all
datasets of the two scale factors. For different scale factors of different datasets, the metrics
PSNR and SSIM have improved to varying degrees. For scale factor ×2, our CASSISR has a
significant improvement in PSNR on all datasets. In particular, for the WHU-RS19-blur and
UC-Merced-blur datasets, the PSNR of CASSISR is 3.2 and 3.5 dB higher than the previous
state-of-the-art CNN-based SR methods, respectively. For the RSSCN7-blur, RSC11-blur,
AID-blur, and NWPU45-blur datasets, the PSNR of CASSISR has also improved by at least
2.0 dB. The larger the scale factor, the greater the challenge faced by the image SR methods.
The increase in PSNR of our CASSISR with a scale factor of ×4 is not as significant as that
with a scale factor of ×2. Our CASSISR still has a 0.05∼0.27 dB improvement in PSNR on
different datasets and also achieved the best results.

4.3.2. Qualitative Results

As shown in Figures 4–9, we show the qualitative comparison results of scale factors
×2 and ×4 between CASSISR and CNN-based SR methods on RSSCN7-blur, RSC11-blur,
WHU-RS19-blur, UC-Merced-blur, AID-blur, and NWPU45-blur datasets, respectively. It
can be seen from the above visualization results that for the ‘non-ideal’ remote sensing
dataset, the results of the CNN-based SR methods are fuzzy. In contrast, our CASSISR can
recover more details and generate clearer HR images. Especially when the image has very
strong internal repetitive features, the advantages of our CASSISR are more obvious. For
example, the red house in Figure 4, the boat in Figure 5 and the car in Figure 6 can find
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many corresponding repetitive features from the image itself. It can be seen that for these
images, our CASSISR improves more than the CNN-based SR methods.

Figure 4. Qualitative comparison of scaling factors ×2 and ×4 between CASSISR and CNN-based SR methods on RSSCN7-
blur dataset. Our CASSISR results are highlighted.
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Figure 5. Qualitative comparison of scaling factors ×2 and ×4 between CASSISR and CNN-based SR methods on RSC11-
blur dataset. Our CASSISR results are highlighted.
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Figure 6. Qualitative comparison of scaling factors ×2 and ×4 between CASSISR and CNN-based SR methods on WHU-
RS19-blur dataset. Our CASSISR results are highlighted.
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Figure 7. Qualitative comparison of scaling factors ×2 and ×4 between CASSISR and CNN-based SR methods on UC-
Merced-blur dataset. Our CASSISR results are highlighted.
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Figure 8. Qualitative comparison of scaling factors ×2 and ×4 between CASSISR and CNN-based SR methods on AID-blur
dataset. Our CASSISR results are highlighted.
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Figure 9. Qualitative comparison of scaling factors ×2 and ×4 between CASSISR and CNN-based SR methods on NWPU45-
blur dataset. Our CASSISR results are highlighted.
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4.4. Experiments on the Real-World Remote Sensing Dataset

We evaluated our CASSISR on the real-world remote sensing dataset. We directly
use the original image of OSCD [53] as input. Considering there is no ground truth as a
control, we only show the result of the qualitative comparison. The qualitative comparison
results of CASSISR and CNN-based SR methods in real-world remote sensing dataset are
shown in Figure 10. The results generated by the CNN-based SR methods are low-quality.
This is because the degradation process of real-world LR images is not simple bicubic
downsampling. However, our CASSISR can make good use of the blur kernel estimated by
KernelGAN [52] from the real image to generate a clearer image.

Figure 10. Qualitative comparison between CASSISR and CNN-based SR methods on real-world remote sensing dataset.
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4.5. Ablation Experiment

We replaced our CDAM module with a CBAM [22] module and performed experi-
ments on four datasets of RSSCN7, RSC11, RSSCN7-blur, and RSC11-blur, and performed
a quantitative comparison with our CDAM. The experimental results are shown in Table 3.
On these four datasets, our CDAM is better than CBAM. Compared with CBAM, our
CDAM infers effective 3-D weights by modeling the relationship between channel and
spatial, which is more conducive to the learning of internal features of remote sensing
images and improves the performance of remote sensing image SR.

Table 3. Quantitative comparison of our CDAM and CBAM. Our CDAM results are highlighted,
and the best results are underlined.

Method Scale RSSCN7 RSC11 RSSCN7-Blur RSC11-Blur
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

+CBAM [22] ×2 32.87/0.8924 32.14/0.8826 29.87/0.8036 29.45/0.7952
+CDAM(Our) ×2 33.01/0.9027 32.23/0.8956 30.01/0.8142 29.56/0.8053

+CBAM [22] ×4 27.86/0.7058 27.03/0.6808 27.26/0.6848 26.33/0.6469
+CDAM(Our) ×4 27.99/0.7163 27.13/0.6913 27.31/0.6896 26.44/0.6613

5. Discussion

At present, most CNN-based SR methods and remote sensing SR methods usu-
ally assume that the image degradation process is bicubic downsampling, as shown in
Equation (2). These methods use bicubic downsampling to construct a large number of
training data pairs for long-term supervised training. However, the real image degradation
process is complicated and is not simple bicubic downsampling. When these supervised SR
methods are tested on real remote sensing images, their performance will drop significantly.
Therefore, we need an SR algorithm that can process real-world remote sensing images.

In this study, we introduced the idea of self-supervised learning, took advantage of
the cross-scale reproducibility of the powerful internal features of remote sensing images,
and proposed the cross-dimension attention guided self-supervised remote sensing single-
image super-resolution algorithm (CASSISR) that only requires one image for training. To
better learn the internal characteristics of remote sensing images, we proposed a novel
cross-dimension attention mechanism module (CDAM). Different from other attention
models, we model the interdependence between the channel and the spatial features, jointly
learn the feature weights of the channel and spatial, and consider the interaction between
the channel dimension and the spatial dimension.

Through comparative experiments on three different types of datasets, our CASSISR
outperforms other SOTA-SR methods in both a ‘non-ideal’ remote sensing dataset and
real-world remote sensing dataset. On the ‘ideal’ remote sensing dataset, although our
CASSISR was trained with only one image, it still achieved competitive results. This
supervised network trained on a large number of datasets can produce better results when
used on images that are also downsampled by the bicubic kernel, but this is not the focus
of our research.

Our self-supervised method can better adapt to different Gaussian blur kernel down-
sampling and real-world LR remote sensing images. For the ‘non-ideal’ remote sensing
dataset, our CASSISR obtains the best results under both ×2 and ×4 scale factors. It can be
seen from Table 2 that both PSNR and SSIM have been significantly increased.

The PSNR: +2.02 dB and +0.09 dB for×2 and×4 scale on RSSCN7-blur, +2.37 dB and
+0.04 dB for ×2 and ×4 scale on RSC11-blur, +3.25 dB and +0.23 dB for ×2 and ×4 scale
on WHU-RS19-blur, +3.52 dB and +0.12 dB for ×2 and ×4 scale on UC-Merced-blur,
+2.95 dB and +0.27 dB for ×2 and ×4 scale on AID-blur, +2.63 dB and +0.11 dB for ×2
and ×4 scale on NWPU45-blur.

The SSIM: +0.0812 and +0.0034 for ×2 and ×4 scale on RSSCN7-blur, +0.0906 and
+0.0012 for ×2 and ×4 scale on RSC11-blur, +0.0878 and +0.0072 for ×2 and ×4 scale on
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WHU-RS19-blur, +0.0936 and +0.0024 for ×2 and ×4 scale on UC-Merced-blur, +0.0749
and +0.0020 for ×2 and ×4 scale on AID-blur, +0.0941 and +0.0007 for ×2 and ×4 scale
on NWPU45-blur.

It can also be seen from the visualization results in Figures 4–9 that the HR images
generated by our CASSISR are clearer. For real-world remote sensing images, our CASSISR
can still generate better results than other CNN-based SR methods. As can be seen from
Figure 10, the result generated by our CASSISR has more details and textures, while
the image generated by the CNN-based SR methods is blurred. The results show that
the CNN-based SR methods trained with an ‘ideal’ dataset are effective in processing
bicubic downsampled images, but the ability to process unknown Gaussian blur kernel
downsampling and real-world LR remote sensing images is insufficient. However, our
CASSISR uses a self-supervised method to learn inter-scale repetitive features within
remote sensing images for SR of remote sensing images. In ‘non-ideal’ and real-world
situations, the performance of CASSISR trained on only one image is better than the
SOTA-SR methods trained on large datasets.

6. Conclusions

In this paper, we propose a cross-dimension attention guided self-supervised remote
sensing single-image super-resolution method (CASSISR), which does not require datasets
for prior training. Only one image is needed to train the cross-dimension attention network
(CDAN). The proposed cross-dimension attention mechanism module (CDAM) models
the interdependence between the channel and spatial feature and jointly learns the feature
weights of the channel and spatial to better capture the global features inside the image.
Experiments have proved that CASSISR can better adapt to real remote sensing image SR
tasks. Using only one image to train the SR model can save a lot of computing resources,
which provides a new idea for the SR of remote sensing images.
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SR super-resolution
HR high-resolution
LR low-resolution
CASSISR cross-dimension attention guided self-supervised remote sensing single image

super-resolution
CDAN cross-dimension attention network
CDAM cross-dimension attention module
CNN convolutional neural networks
ResNet residual network
SOTA state-of-the-art
BN batch normalization
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