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Abstract: It is extremely important and necessary for low computing power or portable devices to
design more lightweight algorithms for image super-resolution (SR). Recently, most SR methods
have achieved outstanding performance by sacrificing computational cost and memory storage, or
vice versa. To address this problem, we introduce a lightweight U-shaped residual network (URNet)
for fast and accurate image SR. Specifically, we propose a more effective feature distillation pyramid
residual group (FDPRG) to extract features from low-resolution images. The FDPRG can effectively
reuse the learned features with dense shortcuts and capture multi-scale information with a cascaded
feature pyramid block. Based on the U-shaped structure, we utilize a step-by-step fusion strategy
to improve the performance of feature fusion of different blocks. This strategy is different from the
general SR methods which only use a single Concat operation to fuse the features of all basic blocks.
Moreover, a lightweight asymmetric residual non-local block is proposed to model the global context
information and further improve the performance of SR. Finally, a high-frequency loss function
is designed to alleviate smoothing image details caused by pixel-wise loss. Simultaneously, the
proposed modules and high-frequency loss function can be easily plugged into multiple mature
architectures to improve the performance of SR. Extensive experiments on multiple natural image
datasets and remote sensing image datasets show the URNet achieves a better trade-off between
image SR performance and model complexity against other state-of-the-art SR methods.

Keywords: single image super-resolution; lightweight image super-resolution; U-shaped residual
network; dense shortcut; effective feature distillation; high-frequency loss

1. Introduction

Single image super-resolution (SISR) aims to reconstruct a high-resolution (HR) image
from its low-resolution (LR) image. It has a wide range of applications in real scenes,
such as medical imaging [1–3], video surveillance [4], remote sensing [5–7], high-definition
display and imaging [8], super-resolution mapping [9], hyper-spectral images [10,11], iris
recognition [12], and sign and number plate reading [13]. In general, this problem is inher-
ently ill-posed because many HR images can be downsampled to an identical LR image.
To address this problem, numerous super-resolution (SR) methods are proposed, including
early traditional methods [14–17] and recent learning-based methods [18–20]. Traditional
methods include interpolation-based methods and regularization-based methods. Early
interpolation methods such as bicubic interpolation are based on sampling theory but
often produce blurry results with aliasing artifacts in natural images. Therefore, some
regularization-based algorithms use machine learning to improve the performance of SR,
mainly including projection onto convex sets (POCS) methods and maximum a posteri-
ori (MAP) methods. Patti and Altunbasak [15] consider a scheme to utilize a constraint
to represent the prior belief about the structure of the recovered high-resolution image.
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The POCS method assumes that each LR image imposes prior knowledge on the final
solution. Later work by Hardie et al. [17] uses the L2 norm of a Laplacian-style filter over
the super-resolution image to regularize their MAP reconstruction.

Recently, a great number of convolutional neural network-based methods have been
proposed to address the image SR problem. As a pioneering work, Dong et al. [21,22]
propose a three-layer network (SRCNN) to learn the mapping function from an LR image
to an HR image. Some methods focus mainly on designing a deeper or wider model
to further improve the performance of SR, e.g., VDSR [23], DRCN [24], EDSR [25], and
RCAN [18]. Although these methods achieve satisfactory results, the increase in model
size and computational complexity limits their applications in the real world.

To reduce the computational burden or memory consumption, CARN-M [26] proposes
a cascading network architecture for mobile devices, but the performance of this method
significantly drops. IDN [27] aggregates current information with partially retained local
short-path information by an information distillation network. IMDN [19] designs an
information multi-distillation block to further improve the performance of IDN. RFDN [28]
proposes a more lightweight and flexible residual feature distillation network. However,
these methods are not lightweight enough and the performance of image SR can still be
further improved. To build a faster and more lightweight SR model, we first propose a
lightweight feature distillation pyramid residual group (FDPRG). Based on the enhanced
residual feature distillation block (E-RFDB) of E-RFDN [28], the FDPRG is designed by
introducing a dense shortcut (DS) connection and a cascaded feature pyramid block (CFPB).
Thus, the FDPRG can effectively reuse the learned feature with DS and capture multi-scale
information with CFPB. Furthermore, we propose a lightweight asymmetric residual non-
local block (ANRB) to capture the global context information and further improve the
SISR performance. The ANRB is modified from ANB [29] by redesigning the convolution
layers and adding a residual shortcut connection. It can not only capture non-local contex-
tual information but also become a lightweight block benefitting from residual learning.
Combined with the FDPRG, ANRB, and E-RFDB, we build a more powerful lightweight
U-shaped residual network (URNet) for fast and accurate image SR by using a step-by-step
fusion strategy.

In the image SR field, L1 loss (i.e., mean absolute error) and L2 loss (i.e., mean
square error) are usually used to measure the pixel-wise difference between the super-
resolved image and its ground truth. However, using only pixel-wise loss will often
cause the results to lack high-frequency details and be perceptually unsatisfying with
over-smooth textures, as depicted in Figure 1. Subsequently, content loss [30], texture
loss [8], adversarial loss [31], and cycle consistency loss [32] are proposed to address this
problem. In particular, the content loss transfers the learned knowledge of hierarchical
image features from a classification network to the SR network. For the texture loss, it is still
empirical to determine the patch size to match textures. For the adversarial loss and cycle
consistency loss, the training process of generative adversarial nets (GANs) is still difficult
and unstable. In this work, we propose a simple but effective high-frequency loss to
alleviate the problem of over-smoothed super-resolved images. Specifically, we first extract
the detailed information from the ground truth by using an edge detection algorithm (e.g.,
Canny). Our model also predicts a response map of detail texture. The mean square error
between the response map and detail information is taken as our high-frequency loss,
which makes our network pay more attention to detailed textures.



Remote Sens. 2021, 13, 3848 3 of 21

LR HR (a) CARN [26]

(b) IMDN [19] (d) Ours(c) RFDN[28]

Figure 1. Visual results for ×3 SR on “img074” from Urban100. Our method obtains better visual
quality than other SR methods.

The main contributions of this work can be summarized as follows:

(1) We propose a lightweight feature distillation pyramid residual group to better capture
the multi-scale information and reconstruct the high-frequency detailed information
of the image.

(2) We propose a lightweight asymmetric residual non-local block to capture the global
contextual information and further improve the performance of SISR.

(3) We design a simple but effective high-frequency loss function to alleviate the problem
of over-smoothed super-resolved images. Extensive experiments on multi-benchmark
datasets demonstrate the superiority and effectiveness of our method in SISR tasks. It
is worth mentioning that our designed modules and loss function can be combined
with the numerous advancements in the image SR methods presented in the literature.

2. Related Work

In previous works, methods of image SR can be roughly divided into two categories:
traditional methods [17,33,34] and deep learning-based methods [18,19,35,36]. Due to the
limitation of space, we only briefly review the works related to deep learning networks for
single image super-resolution, attention mechanism, and perceptual optimization.

2.1. Single Image Super-Resolution

The SRCNN [22] is one of the first pioneering works of directly applying deep learning
to image SR. The SRCNN uses three convolution layers to map LR images to HR images.
Inspired by this pioneering work, VDSR [23] and DRCN [24] stack more than 16 convolution
layers based on residual learning to further improve the performance. To further unleash
the power of the deep convolutional networks, EDSR [25] integrates the modified residual
blocks into the SR framework to form a very deep and wide network. MemNet [37] and
RDN [38] stack dense blocks to form a deep model and utilize all the hierarchical features
from all the convolutional layers. SRFBN [39] proposes a feedback mechanism to generate
effective high-level feature representations. EBRN [40] handles the texture SR with an
incremental recovery process. Although these methods achieve significant performance,
they are costly in memory consumption and computational complexity, limiting their
applications in resource-constrained devices.

Recently, some fast and lightweight SISR architectures have been introduced to tackle
image SR. These methods can be approximately divided into three categories: the knowl-
edge distillation-based methods [19,27,28], the neural architecture search-based meth-
ods [41,42], and the model design-based methods [26,43]. Knowledge distillation aims to
transfer the knowledge from a teacher network to a student network. IDN [27] proposes
an information distillation network for better exploiting hierarchical features by separation
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processing of the current feature maps. Based on IDN, an information multi-distillation
network (IMDN) [19] is proposed by constructing cascaded information multi-distillation
blocks. RFDN [28] uses multiple feature distillation connections to learn more discrimina-
tive feature representations. FALSR [41] and MoreMNAS [42] apply neural architecture
search to image SR. The performance of these methods is limited because of limitations
in strategy. In addition, CARN [26] proposes a cascading mechanism based on a resid-
ual network to boost performance. LatticeNet [43] proposes a lattice block in which two
butterfly structures are applied to combine two residual blocks. These works indicate
that the lightweight SR networks can maintain a good trade-off between performance and
model complexity.

2.2. Attention Mechanism

The attention mechanism is an important technique which has been widely used
in various vision tasks (e.g., classification, object detection, and image segmentation).
SENet [44] models channel-wise relationships to enhance the representational ability of the
network. Non-Local [45] captures long-range dependencies by computing the response
at a pixel position as a weighted sum of the features at all positions of an image. In the
image SR domain, RCAN [18] and NLRN [46] improve the performance by considering
attention mechanisms in the channel or the spatial dimension. SAN [35] proposes a second-
order attention mechanism to enhance feature expression and correlation learning. CS-
NL [47] proposes a cross-scale non-local attention module by exploring cross-scale feature
correlations. HAN [48] models the holistic interdependencies among layers, channels,
and positions. Due to the effectiveness of attention models, we also embed the attention
mechanism into our framework to refine the high-level feature representations.

2.3. Perceptual Optimization

In the image SR field, the objective functions used to optimize models mostly contain
a loss term with the pixel-wise distance between the prediction image and the ground
truth image. However, researchers discovered that using this function alone leads to
blurry and over-smoothed super-resolved images. Therefore, a variety of loss functions
are proposed to guide the model optimization. Content loss [30] is introduced into SR to
optimize the feature reconstruction error. EnhanceNet [8] uses a texture loss to produce
visually more satisfactory results. MSDEPC [49] introduces an edge feature loss by using
the phase congruency edge map to learn high-frequency image details. SRGAN [31] uses an
adversarial loss to favor outputs residing on the manifold of natural images. CinCGAN [32]
uses a cycle consistency loss to avoid the mode collapse issue of GAN and help minimize
the distribution divergence.

3. U-Shaped Residual Network

In this section, we first describe the overall structure of our proposed network. Then,
we elaborate on the feature distillation pyramid residual group and the asymmetric non-
local residual block, respectively. Finally, we introduce the loss function of our network,
including reconstruction loss and the proposed high-frequency loss.

3.1. Network Structure

As shown in Figure 2, our proposed U-shaped residual network (URNet) consists
of three parts: the shallow feature extraction, the deep feature extraction, and the final
image reconstruction.
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Figure 2. The architecture of the proposed U-shaped residual network (URNet).

Shallow Feature Extraction . Almost all previous works only used a 3× 3 standard
convolution as the first layer in their network to extract the shallow features from the input
image. However, the extracted features are single scale and not rich enough. The impor-
tance of richer shallow features is ignored in subsequent deep learning methods. Inspired
by the asymmetric convolution block (ACB) [50] for image classification, we adapt the ACB
to SR domain to extract richer shallow features from the LR image. Specifically, 3× 3, 1× 3,
and 3× 1 convolution kernels are used to extract features from the input image in parallel.
Then, the extracted features are fused by using an element-wise addition operation to
generate richer shallow features. Compared with the standard convolution, the ACB can
enrich the feature space and significantly improve the performance of SR with the addition
of a few parameters and calculations.

Deep Feature Extraction. We use a U-shaped structure to extract deep features. In the
downward flow of the U-shaped framework, we use the enhanced residual feature distilla-
tion block (E-RFDB) of E-RFDN [28] to extract features because the E-RFDN has shown its
excellent performance in the super-resolution challenge of AIM 2020. In the early stage of
deep feature extraction, there is no need for complex modules to extract features. Therefore,
we only stack N E-RFDBs in the downward flow. The number of channels of the extracted
feature map is halved by using a 1× 1 convolution for each E-RFDB (except the last one).

Similarly, the upward flow of the U-shaped framework is composed of N basic
blocks including N − 1 feature pyramid residual groups (FDPRG, see Section 3.2) and
an E-RFDB. Based on the U-shaped structure, we utilize a step-by-step fusion strategy
to fuse the features by using a Concat and FDPRG in the downward flow and upward
flow. Specifically, the output features of each module in the downward flow are fused
into the modules in the upward part in a back-to-front manner. This strategy transfers the
information from a low level to a high level and allows the network to fuse the features
of different receptive fields, resulting in effectively improving the performance of SR.
The number of channels of the feature map increases with the use of the Concat operation.
Especially for the last Concat, using the FDPRG will greatly increase the model complexity.
Therefore, only one E-RFDB is used to extract features in the last upward flow.

Image Reconstruction. After the deep feature extraction stage, a simple 3× 3 con-
volution is used to smooth the learned features. Then, the smoothed features are further
fused with the shallow features (extracted by ACB) by an element-wise addition operation.
In addition, the regression value of each pixel is closely related to the global context infor-
mation in the image SR task. Therefore, we propose a lightweight asymmetric residual
non-local block (ANRB, described in Section 3.3) to model the global context informa-
tion and further refine the learned features. Finally, a learnable 3× 3 convolution and
a non-parametric sub-pixel [51] operation are used to reconstruct the HR image. Sim-
ilar to [19,25,28], L1 loss is used to optimize our network. In particular, we propose a
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high-frequency loss function (see Section 3.4) to make our network pay more attention to
learning high-frequency information.

3.2. Feature Distillation Pyramid Residual Group

In the upward flow of the U-shaped structure, we propose a more effective feature
distillation pyramid residual group (FDPRG) to extract the deep features. As shown in
Figure 3, the FDPRG consists of two main parts: a dense shortcut (DS) part based on three
E-RFDBs and a cascaded feature pyramid block (CFPB). After the CFPB, a 3× 3 convolution
is used to refine the learned features.

E-RFDB E-RFDBE-RFDB CFPB

C
o
n
v
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0

1w 0

2w

0

3w
1

3w

2

3w

1
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Figure 3. The feature distillation pyramid residual group (FDPRG). W j
i is a learnable parameter.

Dense Shortcut. Residual shortcut (RS) connection is an important technique in
various vision tasks. Benefitting from the RS, many SR methods have greatly improved the
performance of image SR. RFDN also uses the RS between each RFDB. Although the RS
can transfer the information from the input layer of the RFDB to the output layer of the
RFDB, it lacks flexibility and simply adds the features of two layers. Later, we consider
introducing a dense concatenation [52] to reuse the information of all previous layers.
However, this dense connection is extremely GPU memory intensive. Inspired by the dense
shortcut (DS) [53] for image classification, we adapt the DS to our SR model by removing
the normalization in DS, because the DS has the efficiency of RS and the performance of
the dense connection. As shown in Figure 3, the DS is used to connect the M E-RFDBs in a
learnable manner for better feature extraction. In addition, the algorithm proves through
experiments that the addition of DS reduces the memory and calculations, while slightly
improving performance.

Cascaded Feature Pyramid Block. For the image SR task, the low-frequency infor-
mation (e.g., simple texture) for an LR input image does not need to be reconstructed
by a complex network, which allows more information in the low-level feature map.
High-frequency information (e.g., edges or corners) needs to be reconstructed by a deeper
network, so that the deep feature maps contain more high-frequency information. Hence,
different scale features have different contributions to image SR reconstruction. Most previ-
ous methods do not utilize multi-scale information, which limits the improvement of image
SR performance. Atrous spatial pyramid pooling (ASPP) [54] is an effective multi-scale
feature extraction module, which adopts a parallel branch structure of convolutions with
different dilation rates to extract multi-scale features, as shown in Figure 4a. However,
the ASPP structure is more dependent on the setting of dilation rate parameters and each
branch of ASPP is independent of the other.

Different from the ASPP, we propose a more effective multi-scale cascaded feature
pyramid block (CFPB) to learn the different scale information, as shown in Figure 4b.
The CFPB is designed by cascading multi-different scale convolution layers in a parallel
manner. Then, the features of the different branches are fused by a Concat operation.
The CFPB uses the idea of convolution cascading so that the next layer multi-scale features
can be superimposed on the basis of the receptive field of the previous layer. Even if the
dilation rate is small, it can still represent a larger receptive field. Additionally, in each
parallel branch, the multi-scale features are no longer independent, which makes it easy
for our network to learn multi-scale high-frequency information.
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3.3. Asymmetric Non-Local Residual Block

The non-local mechanism [45] is an attention model, which can effectively capture the
long-range dependencies by modeling the connection relationship between a pixel position
and all positions. In the image SR task, it is image-to-image learning. Most existing works
only focus on learning detailed information while ignoring the long-range feature-wise
similarities in natural images, which may produce incorrect textures globally. For the image
“img092” (see Figure 8), other SR methods have learned the details of the texture (dark
lines in the picture), but the direction of these lines is completely wrong in the global scope.
The global texture learned by the proposed URNet after adding the non-local module is
consistent with the GT image.

However, the classic Non-Local module has expensive calculation and memory con-
sumption. It cannot be directly applied to the lightweight SR network. Inspired by the
asymmetric non-local block (ANB) [29] for semantic segmentation, we propose a more
lightweight asymmetric non-local residual block (ANRB, shown in Figure 5) for fast and
lightweight image SR. Specifically, let X ∈ RC×H×W represent a feature map, where C and
H ×W are the numbers of channels and spatial size of X. We use three 1× 1 convolutions
to compress multi-channel features X into single-channel features Xφ, Xθ , Xγ, respectively.
Afterwards, similar to the ANB, we use the pyramid pool sampling algorithm [55] to
sample only S(S� N = H ×W) representative feature points from the Key and Value
branches. We perform four average pooling operations to obtain four feature maps with
sizes of 1× 1, 3× 3, 6× 6, 8× 8, respectively. Subsequently, we flatten and expand the
four maps, then stitch them together to obtain a sampled feature map with a length of 110.
Then, the non-local attention can be calculated as follows:

Xφ = fφ(X), Xθ = fθ(X), Xγ = fγ(X), (1)

θP = Pφ(Xφ), γP = Pγ(Xγ), (2)

Y = So f tmax(XT
φ ⊗ θP)⊗ γP, (3)

where fφ, fθ , and fγ are 1× 1 convolutions. Pφ and Pγ represent the pyramid pooling
sampling for generating the sampled features θP and γP. ⊗ is matrix multiplication and Y
is a feature map containing contextual information.

The last step of the attention mechanism generally uses dot multiplication to multiply
the generated attention weight feature map Y with the original feature map to achieve the
function of attention. However, the value of a large number of elements in Y, a matrix
of 1× H ×W, is close to zero due to the So f tmax operation and the characteristics of the
So f tmax function itself: ∑H

i ∑M
j (So f tmax(yij)) = 1. If we directly use the operation of the

dot multiplication for attention weighting, it will inevitably cause the value of the element
in the weighted feature map to be too small, making the gradient disappear, which makes
the gradient impossible to iterate.
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Figure 5. The asymmetric non-local residual block (ANRB).

In order to solve the above problems, we use the addition operation to generate the
final attention weighted feature map Xweighted = H1×1(Y) + X, allowing the network to
converge more easily, where H1×1(·) is a 1× 1 convolution operation to convert the single-
channel feature map Y into a C-channel feature map for the subsequent element-wise sum.
Benefitting from the channel compression and the sampling operation, the ANRB is a
lightweight non-local block. The ANRB is used to capture global context information for
fast and accurate image SR.

3.4. Loss Function

In the SR domain, L1 loss (i.e., mean absolute error) and L2 loss (e.g., mean squared er-
ror) are the most frequently used loss functions for the image SR task. Similar to [18,19,25,51],
we adopt L1 loss as the main reconstruction loss function to measure the differences be-
tween the SR images and the ground truth. Specifically, the L1 loss is defined as

L1 =
1
N

N

∑
i=1

∥∥∥Ii
HR − Ii

SR

∥∥∥
1
, (4)

where Ii
SR, Ii

HR denote the i-th SR image generated by URNet and the corresponding i-th
HR image used as ground truth. N is the total number of training samples.

For the image SR task, only using L1 loss or L2 loss will cause the super-resolved
images to lack high-frequency details, presenting unsatisfying results with over-smooth
textures. As depicted in Figure 6, comparing the natural image and the SR images generated
by SR methods (e.g., RCAN [18] and IMDN [19]), we can see the reconstructed image is
over-smooth in detailed texture areas. By applying edge detection algorithms to natural
images and SR images, the difference is more obvious.
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Ground truth (img006.png)

Ground truth (cropped) RCAN [18] IMDN [19]

Ground truth (Canny) RACN (Canny) IMDN (Canny)

Figure 6. Ground truth/SR images and their edge images extracted by Canny operator.

Therefore, we propose a simple but effective high-frequency loss to alleviate this
problem. Specifically, we first use the edge detection algorithm to extract the detailed
texture maps of the HR and the SR images. Then, we adopt mean absolute error to measure
the detailed differences between the SR image and the HR image. This process can be
formulated as follows:

Lh f =
1
N

N

∑
i=1

∥∥∥Hc(Ii
HR)− Hc(Ii

SR)
∥∥∥

1
, (5)

where Hc denotes edge detection algorithm. In this work, we use Canny to extract detailed
information from the SR images and the ground truth, respectively. Therefore, the training
objective of our network is L = αLh f + βL1, where α and β are weights and used to adjust
these two loss functions.

4. Experiments
4.1. Datasets and Metrics

DIV2K [56] is a high-quality image dataset, which contains 1000 DIVerse 2 K resolution
RGB images including various scenes, such as animals, plants, and landscapes. The HR
DIV2K is divided into 800 training images, 100 validation images, and 100 testing images.
Similar to [19,27,28], we train all models with the DIV2K training images, and the corre-
sponding LR images are generated by bicubic down-sampling the HR image with ×2, ×3,
×4 scale, respectively. To better evaluate the performance and generalization of our pro-
posed URNet, we report the performance on four standard benchmark datasets including
Set5 [57], Set14 [58], B100 [59], and Urban100 [16]. Following the previous works [19,26,28],
the peak signal-to-noise ratio (PSNR) [60] and structural similarity index (SSIM) [61] are
used to quantitatively evaluate our model on the Y channel in the YCbCr space converted
from RGB space. PSNR is used to measure the differences between corresponding pixels
of the super-resolved image and ground truth. SSIM is used to measure the structural
similarity (e.g., luminance, contrast, and structures) between images.

4.2. Implementation Details

In order to clearly see the improvement effect of our method relative to RFDN, our
model parameters and calculations are set as almost or less than RFDN’s counterparts
to exceed the performance of RFDN. The deeper or wider the convolutional network is,
the better the performance is. Based on this, we tend to use as many modules as possible
in the two flow branches. The number of channels, determining the width of the network,
should not be too small. Therefore, we set N = 4, and the minimum number of channels to
8. Considering the complexity of the model, we use the most basic structure in [53], that is,
setting M = 3. Then, considering the three-channel halving operations of the downward
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flow and the three Concat operations of the upward flow, we set the basic channel number
of our URNet to 64. Specifically, for the four E-RFDBs in the downward flow (from top to
bottom), the number of input channels is 64, 32, 16, and 8, respectively, while the number
of input channels in the four modules in the upward flow (from bottom to top) is just
the opposite.

Following the EDSR [25], the training data are augmented with random horizontal
flips and 90 rotations. In the training phase, we randomly extract 32 LR RGB patches with
the size of 64× 64 from all the LR images in every batch. Our model is optimized by Adam
with β1 = 0.9, β2 = 0.999, and ε = 10−8. The batch size is set to 32. The learning rate is
initialized as 5× 10−4 and halved for every 2× 105 iterations for 1000 epochs. Each epoch
has 1000 iterations of back-propagation. Similar to the IMDN [19], the hyper-parameter of
Leaky ReLU is set as 0.05. The weight parameters of the loss function are set as α = 0.25
and β = 1.0, respectively. The proposed method is implemented with PyTorch on a single
GTX 1080Ti GPU.

4.3. Ablation Studies

To better validate the effectiveness of different blocks in our network, we conduct a
series of ablation experiments on DIV2K. We first utilize the step-by-step fusion strategy to
design a baseline model (denoted as URNet-B) based on the E-RFDB. Then, we gradually
add different modules to the URNet-B. Detailed ablation experiment results are presented
in Table 1. After adding the ACB into the URNet-B, the PSNR increases to 35.56 dB. Adding
the DS and CFPB, we can see that the performance of image SR has increased from 35.56 dB
to 35.59 dB. After adding all the blocks into the URNet-B, the PSNR increases to 35.62 dB.
This is mainly because our model can consistently accumulate the hierarchical features to
form more representative features and it is well focused on spatial context information.
These results demonstrate the effectiveness of our ACB, FDPRG (including DS and CFPB),
and ANRB.

Table 1. Ablation experiment results of different blocks on DIV2K val. Bold indicates the best
performance (×2 SR).

URNet-B X X X X X

ACB X X X X
FDPRG/DS X X X
FDPRG/CFPB X X
ANRB X

PSNR (dB) 35.54 35.56 35.58 35.59 35.62

Afterwards, we conduct ablation experiments on the four benchmark datasets on
×2 scale SR to validate the effectiveness of our proposed high-frequency loss Lh f against
other loss functions widely used in the field of SR (see Section 2.3). For the adversarial
loss and the cyclic consistency loss, these two loss functions are suitable for the GAN,
but not for our proposed URNet. Therefore, we only report the comparison results with
the other five loss functions (see Table 2). For the content loss (denoted as Lc) and the
texture loss (denoted as Lt), we use the same configuration with SRResNet [31] and
EnhanceNet [8], respectively. We observe a trend that using content loss or texture loss
yields worse performance. In practice, these two loss functions are used in combination
with the adversarial loss in the GAN of SR.
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Table 2. Performance of different loss functions. Best results are bolded (×2 SR).

Set5 Set14 B100 Urban100

L1
PSNR 38.020 33.685 32.228 32.356
SSIM 0.9606 0.9184 0.9003 0.9303

L2
PSNR 37.999 33.692 32.181 32.184
SSIM 0.9605 0.9191 0.8998 0.9291

Lc
PSNR 35.823 31.776 30.283 30.145
SSIM 0.9350 0.8763 0.8439 0.8822

Lt
PSNR 35.267 31.230 29.870 29.587
SSIM 0.9328 0.8747 0.8518 0.8900

L1 + Lh f
PSNR 38.063 33.684 32.240 32.415
SSIM 0.9608 0.9187 0.9005 0.9310

As shown in Figure 7, we visualize the performance difference for the other three loss
functions (including L1, L2, and L1 + Lh f ). Compared with L1 and L1 + Lh f , the perfor-
mance of L2 on the four datasets is generally lower, especially on Urban100 with richer
texture details. This is because the L2 loss uses the square of the pixel value error, so
high-value differences are more important than low-value differences, resulting in too
smooth results (in the case of minimum error values). Therefore, the L1 loss function is
more widely used than the L2 loss in the image super-resolution [25,62]. After adding the
high-frequency loss Lh f to the total loss function, the performance of image SR achieves
significant improvement on both Set5 and Urban100. Compared with only using L1 loss,
our high-frequency loss also achieves comparable PSNR and SSIM scores on the Set14 and
B100 datasets. Our high-frequency loss performs especially well on Urban100 because
the dataset has richer structured texture information. The high-frequency loss makes our
network more focused on the texture structure of images.

Set5 Set14 B100 Urban100
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Figure 7. Comparison results of the performance difference between the three loss functions. We take
PSNR/SSIM scores of L1 as a baseline and the PSNR/SSIM scores of L2 and the proposed L1 + Lh f
are subtracted from it, respectively.

In order to further gain a clearer insight on the improvements of the step-by-step fusion
strategy based on the U-shaped structure, we conduct experiments to compare this strategy
and the general Concat operation to fuse the features of all blocks. Specially, we train the
URNet-B and E-RFDN from scratch with the same experiment configurations to validate
the effectiveness of this fusion strategy, because these two models are built based on the E-
RFDB and using different fusion strategies. The experiment results are presented in Table 3.
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We can see that the URNet-B not only achieves significant performance improvements on
the four benchmark datasets, especially in Urban100 (PSNR: +0.11 dB), but also has fewer
parameters (URNet-B: 567.6 K vs. E-RFDN: 663.9 K) and calculations (FLOPs: 35.9 G vs.
41.3 G). These results demonstrate that the step-by-step fusion strategy can not only reduce
model complexity but also effectively preserve the hierarchical information to facilitate
subsequent feature extraction.

Table 3. The comparison of different fusion strategies (the step-by-step and Concat the features of all
blocks). URNet-B achieves the best PSNR (dB) scores on the four benchmark datasets (×2 SR).

Method Set5 Set14 B100 Urban100 Params FLOPs

E-RFDN [28] 37.99 33.56 32.19 32.16 663.9 K 41.3 G
URNet-B 38.03 33.56 32.20 32.27 567.6 K 35.9 G

4.4. Comparison with State-of-the-Art Methods

In this section, numerous experiments are described on the four public SR benchmark
datasets mentioned above. We extensively compare our proposed method with various
state-of-the-art lightweight SISR methods, including Bicubic, SRCNN [21], FSRCNN [63],
VDSR [23], DRCN [24], LapSRN [64], DRRN [65], MemNet [37], IDN [27], SRMDNF [66],
CARN [26], IMDN [19], and RFDN-L [28]. Similar to [18,25], we also introduce a self-
ensemble strategy to improve our URNet and denote the self-ensembled one as URNet+.

Quantitative Results by PSNR/SSIM. Table 4 presents quantitative comparisons for
×2, ×3, and ×4 SR. For a clearer and fairer comparison, we re-train the RFDN-L [28] by
using the same experimental configurations as in their paper. We test the IMDN [19] (using
the official pre-trained models (https://github.com/Zheng222/IMDN, accessed on 15
September 2021)), RFDN-L, and our URNet with the same environment. The results of
other methods come from their papers. Compared with all the aforementioned approaches,
our URNet performs the best in almost all cases. For all scaling factors, the proposed
method achieves obvious improvement in the Urban100 dataset. These results indicate
that our algorithm could successfully reconstruct satisfactory results for images with rich
and detailed structures.

Qualitative Results. The qualitative results are illustrated in Figure 8. For challenging
details in images “img006”, “img067”, and “img092” of the Urban100 [16] dataset, we ob-
serve that most of the compared methods would suffer from blurring edges and noticeable
artifacts. IMDN [19] and RFDN-L [28] can alleviate blurred edges and recover more details
(e.g., “img006” and “img067”) but produce different degrees of the fake information (e.g.,
“img092”). In contrast, our URNet gains much better results in recovering sharper and
more precise edges, more faithful to the ground truth. Especially for the image “img092”
on the ×4 SR, the texture direction of the reconstructed edges from all compared methods
is completely wrong. The URNet can make full use of the learned features and obtain
clearer contours without serious artifacts. These comparisons indicate that the URNet can
better recover more informative components in HR images and show satisfactory image
SR results than other methods.

https://github.com/Zheng222/IMDN
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PSNR/SSIM 25.55/0.8078 25.36/0.8027 25.46/0.8052

25.88/0.8203 25.91/0.8178 25.66/0.8133

PSNR/SSIM 20.04/0.8812 20.31/0.8917 20.87/0.9025

21.54/0.9170 21.98/0.9233

PSNR/SSIM 18.20/0.6068 18.20/0.6077 18.27/0.6178

18.91/0.6590 18.95/0.6604 19.04/0.6668

22.54/0.932921.72/0.9245

19.42/0.6798

25.97/0.8332

Figure 8. Visual qualitative comparisons of the state-of-the-art lightweight methods and our URNet on Urban100 dataset
for ×2, ×3, and ×4 SR. Zoom in for best view.

Model Parameters. For the lightweight image SR, the number of model parameters is
a key factor to take into account. Table 4 depicts the comparison of image SR performance
and model parameters on the four benchmark datasets with scale factor ×2, ×3, and ×4,
respectively. To obtain a more comprehensive understanding of the model complexity,
the comparisons of the model parameters and performance are visualized in Figure 9. We
can see that the proposed URNet achieves a better trade-off between the performance of
image SR and model complexity than other state-of-the-art lightweight models.
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Table 4. The average performance of the state-of-the-art methods for scale factor ×2, ×3, and ×4 on the four benchmark
datasets Set5, Set14, B100, and Urban100. Best and second best results are bolded and underlined.

Method Scale Params Set5 Set14 B100 Uban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic

×2

- 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403
SRCNN [21] 8 K 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946
FSRCNN [63] 13 K 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020
VDSR [23] 666 K 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
DRCN [24] 1774 K 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133
LapSRN [64] 251 K 37.52/0.9591 32.99/0.9124 31.80/0.8952 30.41/0.9103
DRRN [65] 298 K 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188
MemNet [37] 678 K 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195
IDN [27] 553 K 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196
SRMDNF [66] 1511 K 37.79/0.9601 33.32/0.9159 32.05/0.8985 31.33/0.9204
CARN [26] 1592 K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256
IMDN [19] 694 K 38.00/0.9605 33.63/0.9177 32.18/0.8996 32.17/0.9283
RFDN-L [28] 626 K 38.03/0.9606 33.65/0.9183 32.17/0.8996 32.16/0.9282
URNet (ours) 612 K 38.06/0.9608 33.68/0.9187 32.24/0.9005 32.42/0.9310
URNet+ (ours) 612 K 38.14/0.9611 33.70/0.9190 32.29/0.9009 32.61/0.9325

Bicubic

×3

- 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349
SRCNN [21] 8 K 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989
FSRCNN [63] 13 K 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080
VDSR [23] 666 K 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
DRCN [24] 1774 K 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276
LapSRN [64] 502 K 33.81/0.9220 29.79/0.8325 28.82/0.7980 27.07/0.8275
DRRN [65] 298 K 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378
MemNet [37] 678 K 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376
IDN [27] 553 K 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359
SRMDNF [66] 1528K 34.12/0.9254 30.04/0.8382 28.97/0.8025 27.57/0.8398
CARN [26] 1592 K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493
IMDN [19] 703 K 34.36/0.9270 30.32/0.8417 29.09/0.8047 28.16/0.8519
RFDN-L [28] 633 K 34.39/0.9271 30.35/0.8419 29.11/0.8054 28.24/0.8534
URNet (ours) 621 K 34.51/0.9281 30.40/0.8433 29.14/0.8061 28.40/0.8574
URNet+ (ours) 621 K 34.60/0.9288 30.48/0.8444 29.19/0.8072 28.57/0.8599

Bicubic

×4

- 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577
SRCNN [21] 8 K 30.48/0.8626 27.50/0.7513 26.90/0.7101 24.52/0.7221
FSRCNN [63] 13 K 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280
VDSR [23] 666 K 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
DRCN [24] 1774 K 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510
LapSRN [64] 251 K 31.54/0.8852 28.09/0.7700 27.32/0.7275 25.21/0.7562
DRRN [65] 298 K 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638
MemNet [37] 678 K 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630
IDN [27] 553 K 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632
SRMDNF [66] 1552 K 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731
CARN [26] 1592 K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837
IMDN [19] 715 K 32.21/0.8948 28.58/0.7810 27.55/0.7353 26.04/0.7838
RFDN-L [28] 643 K 32.23/0.8953 28.59/0.7814 27.56/0.7362 26.14/0.7871
URNet (ours) 633K 32.20/0.8952 28.63/0.7826 27.60/0.7369 26.23/0.7905
URNet+ (ours) 633K 32.35/0.8969 28.71/0.7840 27.66/0.7383 26.41/0.7945

4.5. Model Anaysis

Model Calculations. It is not enough to measure the weight of the model only by the
model parameters. Calculation consumption is also an important metric. In Table 5, we
report the comparison of URNet and other state-of-the-art algorithms (e.g., CARN [26],
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IMDN [19], and RFDN-L [28]) in terms of FLOPs (using a single image with the size
256× 256) and PSNR/SSIM (using the Set14 dataset with the ×4 scale factor). As we
can see, our URNet achieves higher PSNR/SSIM than other methods while using fewer
calculations. These results demonstrate that our method can balance the calculation costs
and the performance of image reconstruction well.

0 250 500 750 1000 1250 1500 1750 2000
Number of parameters (K)

26.5

27.0

27.5

28.0

28.5
PS

NR
 (d

B)

SRCNN

FSRCNN

VDSR DRCN
LapSRN

DRRN MemNet

IDN

SRMDNF

CARNIMDNRFDN
RFDN-L

LatticeNetURNet (our)

LGCN

Figure 9. PSNR vs. the number of parameters. The comparison is conducted on Urban100 with the
×3 scale factor.

Table 5. PSNR/SSIM vs. FLOPs on Set14 (×4).

CARN [26] IMDN [19] RFDN-L [28] URNet (ours)

SSIM 0.7806 0.7810 0.7814 0.7826
PSNR 28.60 28.58 28.59 28.63
FLOPs (G) 103.58 46.60 41.54 39.51

Lightweight Analyses. We also choose two non-lightweight methods and one SOTA
lightweight SISR method, i.e., EDSR [25], RCAN [18], and IMDN [19], for comparison.
We use official codes (https://github.com/cszn/KAIR, accessed on 15 September 2021)
(AIM 2020 efficient super-resolution challenge (https://data.vision.ee.ethz.ch/cvl/aim20/,
accessed on 15 September 2021)) to test the running time of these methods in a feed-forward
process on the B100 (×4) dataset. The results are reported in Table 6. We can observe
that both methods, EDSR and RCAN, outperform our URNet. This is a reasonable result
since they have a deeper and wider network structure that contains large quantities of
convolutional layers and parameters. Actually, the parameters of EDSR and RCAN are
40 M and 16 M, while that of ours is only 0.6 M. However, compared with other methods,
URNet runs the fastest inference speed. Simultaneously, our URNet achieves dominant
performance in terms of parameter usage and time consumption, compared to IMDN.
These comparison results show that our method can obtain fast and accurate image SR.

https://github.com/cszn/KAIR
https://data.vision.ee.ethz.ch/cvl/aim20/
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Table 6. Comparison with non-lightweight and SOTA lightweight methods.

Scale EDSR [25] RCAN [18] IMDN [19] URNet (ours)

Set5
2 38.11/0.9602 38.27/0.9614 38.00/0.9605 38.06/0.9608
3 34.65/0.9280 34.74/0.9299 34.36/0.9270 34.51/0.9281
4 32.46/0.8968 32.63/0.9002 32.21/0.8948 32.20/0.8952

Set14
2 33.92/0.9195 34.12/0.9216 33.63/0.9177 33.68/0.9187
3 30.52/0.8462 30.65/0.8482 30.32/0.8417 30.40/0.8433
4 28.80/0.7876 28.87/0.7889 28.58/0.7810 28.63/0.7826

B100
2 32.32/0.9013 32.41/0.9027 32.18/0.8996 32.24/0.9005
3 29.25/0.8093 29.32/0.8111 29.09/0.8047 29.14/0.8061
4 27.71/0.7420 27.77/0.7436 27.55/0.7353 27.60/0.7369

Urban100
2 32.93/0.9351 33.24/0.9384 32.17/0.9283 32.42/0.9310
3 28.80/0.8653 29.09/0.8702 28.16/0.8519 28.40/0.8574
4 26.64/0.8033 26.82/0.8087 26.04/0.7838 26.23/0.7905

Parameters (K) 43,090 15,592 715 633
FLOPs (G) 3293.9 1044.0 46.6 39.5

Running Time (Sec.) 0.2178 0.2596 0.0939 0.0310

4.6. Remote Sensing Image Super-Resolution

To better evaluate the generalization of our method, we also conduct experiments on
the remote sensing datasets. The natural image SR and remote sensing image SR belong to
different image domains but the same task. Consequently, we can use the URNet trained on
the natural image dataset (i.e., DIV2K) as a pre-trained model and fine-tune the model on
the remote sensing dataset. By transferring the external knowledge from the natural image
domain to the remote sensing domain, our proposed URNet achieves a better performance
on the remote sensing image SR task.

Following most remote sensing image SR methods [67–71], we conduct experiments
on the UC Merced [72] land-use dataset. The UC Merced dataset is one of the most popular
image collections in the remote sensing community, which contains 21 classes of land-use
scenes in total with 100 aerial images per class. These images have a high spatial resolution
(0.3 m/pixel). We randomly select 840 images (40 images per class) from the UC Merced as
the training set, and we randomly select 40 images from the training set as a validation
set. Moreover, we construct a testing set named UCTest by randomly choosing 120 images
from the remaining images of the UC Merced dataset. The LR-HR image pair acquisition
operation and implementation details are the same as for experiments on the DIV2K dataset.
The model is trained for 100 epochs with an initial learning rate of 0.0001 and the input
patch size set to 16× 16. Similarly, we also re-train RFDN-L [28] by using the same training
strategies. MPSR [68] randomly selects 800 images from the UC Merced dataset as the
training samples. For a fair and convincing comparison, we re-train the MPSR by using the
same experimental configurations as in their paper and the same dataset as this paper.

The NWPU-RESISC45 [73] dataset is a public benchmark with spatial resolution
varying from 30 m to 0.2 m per pixel. We also randomly select 180 images from the
NWPU-RESISC45 dataset as a testing set (named RESISCTest) to validate the robustness of
our model.

Table 7 shows the quantitative results of the state-of-the-art SR methods on remote
sensing datasets UCTest and RESISCTest for scale factor ×4. We can see that our proposed
URNet and URNet-T (using the pre-trained model) achieve the highest PSNR and SSIM
scores on these two datasets. The methods could gain better performance by using the
strategy of the pre-trained model, which means that this strategy allows low-level feature
information from DIV2K to be shared to another dataset, achieving better performance on
super-resolving remote sensing images. The performance of MPSR is further improved
on UCTest by using the same strategy but fails on RESISCTest because the MPSR-T is a
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non-lightweight model (MPSR-T: 12.3 M vs. URNet-T: 633 K, and MPSR-T: 835.5 G vs.
URNet-T: 39.5 G, in terms of parameters and FLOPs) and more likely to overfit on the
training set.

Table 7. The PSNR/SSIM of UCTest and RESISCTest with a scale factor of ×4. (*-T denotes using the pre-trained model.)

RFDN-L [28] MPSR [68] URNet (ours) RFDN-L-T MPSR-T URNet-T (ours)

UCTest PSNR 29.03 29.09 29.15 29.37 29.34 29.58
SSIM 0.7940 0.7953 0.7968 0.8047 0.8060 0.8102

RESISCTest PSNR 29.06 29.09 29.13 29.09 29.01 29.19
SSIM 0.7710 0.7718 0.7730 0.7721 0.7706 0.7750

To fully demonstrate the effectiveness of our method, we also show the ×4 SR visual
results from UCTest’s “agricultural81” in Figure 10 and RESISCTest’s “harbor_450” in
Figure 11. We can see that our proposed URN-T shows significant improvements, reducing
aliasing, blur artifacts, and better reconstructing high-fidelity image details.

RFDN-L-T MPSR-T URNet-T (our)

RFDN-L MPSR URNet (our)

24.649/0.3028

agricultural81

HR Cropped

PSNR/SSIM

24.653/0.304524.652/0.3036

26.278/0.6387 26.383/0.6833 28.341/0.7646

Figure 10. Comparison of reconstructed HR images of “agricultural81” obtained from UCTest dataset
with 256× 256 pixel images using different methods with a scale factor of ×4.

URNet-T (our)MPSR-TRFDN-L-T

URNetMPSRRFDN-Lharbor_450

HR Cropped

20.749/0.7819

PSNR/SSIM 20.671/0.7802

20.841/0.7826

20.758/0.7805

20.725/0.7771

21.012/0.7899

Figure 11. Comparison of reconstructed HR images of “harbor_450” obtained from RESISCTest
dataset with 256× 256 pixel images using different methods with a scale factor of ×4.
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5. Conclusions

In this paper, we introduce a novel lightweight U-shaped residual network (URNet) for
fast and accurate image SR. Specifically, we design an effective feature distillation pyramid
residual group (FDPRG) to extract deep features from an LR image based on the E-RFDB.
The FDPRG can effectively reuse the shallow features with dense shortcut connections
and capture multi-scale information with a cascaded feature pyramid block. Based on the
U-shaped structure, we utilize a step-by-step fusion strategy to fuse the features of different
blocks and further refine the learned features. In addition, we introduce a lightweight
asymmetric non-local residual block to capture the global context information and further
improve the performance of image SR. In particular, to alleviate the problem of smoothing
image details caused by pixel-wise loss, we design a simple but effective high-frequency
loss to help optimize our model. Extensive experiments indicate the URNet achieves a
better trade-off between image SR performance and model complexity against other state-
of-the-art SR methods. In the future, our method will be applied to super-resolution images
with fuzzy or even real degradation models. At the same time, we will also consider deep
separable convolutions or other lightweight convolutions as an alternative to standard
convolutions to further reduce the number of parameters and calculations.
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