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Abstract: We present a new method for multi-source semi-supervised domain adaptation in remote
sensing scene classification. The method consists of a pre-trained convolutional neural network
(CNN) model, namely EfficientNet-B3, for the extraction of highly discriminative features, followed
by a classification module that learns feature prototypes for each class. Then, the classification
module computes a cosine distance between feature vectors of target data samples and the feature
prototypes. Finally, the proposed method ends with a Softmax activation function that converts
the distances into class probabilities. The feature prototypes are also divided by a temperature
parameter to normalize and control the classification module. The whole model is trained on both
the unlabeled and labeled target samples. It is trained to predict the correct classes utilizing the
standard cross-entropy loss computed over the labeled source and target samples. At the same
time, the model is trained to learn domain invariant features using another loss function based
on entropy computed over the unlabeled target samples. Unlike the standard cross-entropy loss,
the new entropy loss function is computed on the model’s predicted probabilities and does not
need the true labels. This entropy loss, called minimax loss, needs to be maximized with respect
to the classification module to learn features that are domain-invariant (hence removing the data
shift), and at the same time, it should be minimized with respect to the CNN feature extractor to
learn discriminative features that are clustered around the class prototypes (in other words reducing
intra-class variance). To accomplish these maximization and minimization processes at the same time,
we use an adversarial training approach, where we alternate between the two processes. The model
combines the standard cross-entropy loss and the new minimax entropy loss and optimizes them
jointly. The proposed method is tested on four RS scene datasets, namely UC Merced, AID, RESISC45,
and PatternNet, using two-source and three-source domain adaptation scenarios. The experimental
results demonstrate the strong capability of the proposed method to achieve impressive performance
despite using only a few (six in our case) labeled target samples per class. Its performance is already
better than several state-of-the-art methods, including RevGrad, ADDA, Siamese-GAN, and MSCN.

Keywords: semi-supervised scene classification; domain adaptation; convolutional neural networks;
deep learning; remote sensing; EfficientNet-B3

1. Introduction

In remote sensing (RS), new images of the earth are acquired at an ever-increasing
rate [1]. All these new images need to be processed to perform useful tasks. Scene
classification is an important processing step in many real-world applications of remote
sensing [2,3]. Deep neural networks, and in particular convolutional neural networks
(CNN), are the state-of-the-art tools for scene classification [3–5]. However, CNN requires
large amounts of labeled data to be trained well. Over the years, tens or even hundreds
of thousands of RS images have been collected and labeled. Thus, one would think that
we have enough labeled data to train a universal CNN model for RS scene classification.
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Unfortunately, this is not true due to another problem related to the data distribution gap or
shift between different scene datasets taken at different times and with different sensors. In
practical terms, this problem means that even if you train a CNN model on one dataset and
achieve near-perfect classification performance, it does not guarantee good performance
on another dataset. Oftentimes, you need to retrain the CNN model on the new dataset,
which requires manually labeling many new training samples.

To alleviate this problem and remove or reduce the need for labeling new datasets,
domain adaptation (DA) techniques are proposed. In DA techniques, there are two do-
mains, which are source and target. The source domain has a dataset that is already labeled,
while the target domain has a dataset that has very few or no samples labeled. However,
our goal is to have a CNN model, that is trained on the source dataset, achieve the same
high performance on the target dataset. In other words, DA techniques aim to transfer the
information gained from the source domain to the target domain to remove or reduce the
burden of manual labeling of new data. We can group DA techniques into unsupervised or
semi-supervised types. In unsupervised DA techniques, we assume that the target domain
has no labeled samples, whereas, in semi-supervised DA, we assume that some labeled
samples in the target dataset are available.

In this work, we focus on semi-supervised DA techniques and propose a method based
on the pre-trained EfficientNet CNN model [6] and a new loss function called minimax
entropy [7]. The pre-trained EfficientNet CNN model is used as a feature extractor after
removing its top layer. Then, we add a new classification layer that computes a distance
metric between the feature vectors of the dataset and a prototype feature vector that
represents each class. Finally, we apply a Softmax activation function on the distances
in order to convert them to probabilities. To optimize the proposed model, we optimize
the standard cross-entropy loss as well as the novel minimax entropy loss [7]. The cross-
entropy loss ensures that we learn discriminative features for the classification task, while
minimax entropy loss aims at removing the distribution discrepancy between source and
target domains.

The minimax entropy loss function is computed on the current predicted labels of
the target dataset and does not need its true labels, which means it can be applied to the
unlabeled target samples. However, this new loss function needs to be maximized to learn
features that are domain-invariant (hence removing the data shift), and at the same time
minimized to learn discriminative features that are clustered around the class prototypes
(in other words reducing intra-class variance). To accomplish these maximization and
minimization processes at the same time, we use an alternating training approach, where
we alternate between the two processes. The main contributions of the paper are as follows:

• We propose a novel method for the classification of remote sensing scenes under
a semi-supervised domain adaptation scenario with multiple sources. Hence, the
newly proposed method is called a Multi-Source Semi-Supervised Domain Adaptation
Network (SSDAN).

• The proposed method is based on the pre-trained EfficientNet CNN model for feature
extraction followed by a classification layer that computes a distance between feature
vectors and a Softmax activation function.

• The model loss function is composed of cross-entropy loss on labeled data combined
with a secondary minimax loss on the entropy of unlabeled data. The minimax loss
is minimized and maximized in an alternating fashion to learn features that are both
domain-invariant and class discriminating at the same time.

• We apply our method to the multi-source domain adaptation problem using four bench-
mark RS scene datasets and show its superiority compared to state-of-the-art methods.

The rest of this article is organized as follows. In Section 2, the related work is reviewed.
In Section 3, the proposed method is discussed in detail. In Section 4, experiments are
discussed and results are provided. Finally, Section 5 concludes this article.
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2. Related Work

In typical DA techniques, we need to learn how to classify images and at the same
time remove the data distribution shift between domains. In past research work in domain
adaptation, various methods used two main approaches to remove the data distribution
shift. The first approach is based on reducing the distribution discrepancy between source
and target domains by aligning distribution means and variances. The second approach is
based on generative and adversarial network (GAN) models which use a generator and
discriminator to generate features that are both domain-invariant as well as discriminative
for classes.

Some of the methods based on the distribution alignment approach include the early
work by Ganin et al. [8], who propose a method using deep neural networks. They
add a simple new gradient reversal layer to the deep network that performs gradient
ascent instead of descent to achieve domain invariance. As the training advances, the
methodology advances the development of “deep” highlights that are (i) discriminative for
the fundamental learning task on the source domain and (ii) invariant regarding the shift
between the domains.

Conditional adversarial domain adaptation, presented by the authors in [9], is a
principled system that conditions adversarial transformation models on discriminative
data passed on in the classifier expectations. The proposed conditional domain adversarial
network (CDAN) is planned with two novel molding techniques: (1) multilinear molding
that catches the cross-covariance between classifier expectations and feature representations
to improve the discriminability, and (2) entropy molding that controls the vulnerability of
classifier forecasts to ensure the adaptability.

Another way these methods differ from each other is the type of distance used to
measure distribution shift (as opposed to Euclidean distance). In [10], a novel way, based
on Wasserstein Distance Guided Representation Learning (WDGRL), of learning domain
invariant feature representations is proposed. WDGRL works in two ways: (1) guess the
empirical Wasserstein space between the target samples and source by utilizing the neural
network, denoted by the domain critic, and (2) minimize the assessed Wasserstein distance
in an ill-disposed way by improving the feature extractor network. The domain adaptation
lies in its slope property and the promising speculation bound, which are viewed as benefits
of the Wasserstein distance.

In [11], the authors proposed fragmented multisource learning over a two-directional
information move, i.e., cross-domain transfer from each source to target, and cross-domain
move. Specifically, in cross-domain bearing, they send idle low-position move learning
guided by iterative design, figuring out how to move to the target domain information
from every source. This training fortifies the model to make up for any lost information
in each source by the total target information. However, in cross-source learning, solo
complex regularization and viable multisource arrangement are investigated to mutually
make up for missing information, starting with one bit of source then moving onto the next.

The other group of methods uses a GAN architecture to learn image features that
are domain-invariant. In a GAN, there is a generator and a discriminator. The generator
generates feature representations from input images, while the discriminator tries to
discriminate which ones come from the source domain and which ones come from the
target domain. The generator is rewarded when the discriminator fails to discriminate
between source and target domain features. The success of the generator means that it
generates features that are domain-invariant. Now, of course, we must make sure that with
these features we can still discriminate between classes.

One of the pioneering methods in this area is the work Tzeng et al. [12], who layout a
novel generalized adaptation framework based on the new concept of adversarial learning.
The new framework consolidates discriminative modeling, unfastened weight sharing, and
GAN loss, which they named Adversarial Discriminative Domain Adaptation (ADDA).
They demonstrated that ADDA is more powerful yet extensively more straightforward
than contending domains’ ill-disposed techniques.
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To battle the domain and the category shifts amongst many sources, the author in [13]
used what is called a deep cocktail network (DCTN). Based on the theoretical results
in a previous study, it was shown that the weighted combination of source distribution
represents the target distribution. Moreover, the multi-source unsupervised domain adap-
tation via DCTN can be performed using two stages: (i) Limit the error between each of
the source domains and the target domains by deploying multi-way adversarial learning.
Furthermore, it denotes the possibilities where a target sample belongs to a different source
domain by obtaining the source-specific perplexity. (ii) To classify target samples, the
multi-source category classifiers must be integrated with perplexity scores. Additionally,
utilizing the pseudo-labeled samples of the target together with the samples of the source
to update the multi-source classification classifier as well as the feature extractor. DCTN is
evaluated on three domain adaption benchmarks that show the promise of the framework.

When it comes to remote sensing, soon after the ADDA method by Tzeng et al. [12]
appeared, Wang et al. [14] proposed a method inspired by ADDA for remote sensing pixel
classification. Later on, the ADDA method was also applied to scene classification in [15].
The reverse gradient (RevGrad) method by Ganin et al. [8] has also been used in remote
sensing scene classification in [16].

Another early work in remote sensing pixel classification is the work by Othman et al. [17].
They generated an initial feature illustration of images by relying on the power of pre-trained
CNNs. After that, they improved learning by using outcome features on top of a pre-trained
CNN. Then, they minimized the regularization terms within the fine-tuning stage to learn the
weights of the created network. These regularization terms include the cross-entropy fault on
the marked source data, the greatest mean between the target and source data distribution,
and the mathematical construction of the target data. In addition, they suggested a mini-batch
gradient-based optimization technique with a dynamic batch size for the alignment of the
target and source distributions to obtain robust hidden representations.

In [18], the authors represented a classification technique for cross-domain semi-
supervised remote sensing imaging, called classifier-constrained deep adversarial domain
adaption (CDADA). However, describing the semantic substance of scenes before the
adaptation cycle relies upon a deep convolutional neural network for building feature
representations. After that, the technique aligns the feature distribution of the target and
the source by using adversarial domain adaptation, precisely by using two variable land-
cover classifiers as it considers boundaries of land-cover choice between classes to isolate
them from the main boundaries of the land-cover class by expanding their distance. Finally,
under the classifier constraint and far from the original, the generator makes vigorous
adaptable features.

The authors in [19] present an asymmetric adaptation neural network (AANN) tech-
nique. Before the variation cycle, they used the features obtained from a pre-trained CNN
to feed to a denoising autoencoder to decrease dimensionality. At that point, in the AANN,
the first hidden layer maps the named source information to the target domain, while the
subsequent layers control the partition between the classes of land-cover. To become famil-
iar with its weights, the model limits a target work made out of two misfortunes identified
with the space between the target and source information dispersions and class partition.

Another example is the work presented in [20], which proposes a methodology de-
pendent on adversarial learning and Pareto-based ranking. Specifically, between the target
and source domains, the technique aligns the distribution discrepancy utilizing entropy
enhancement. Through the alignment cycle, the method detects candidate samples of the
ambiguous class from the objective domain by way of a Pareto-based ranking strategy.

Zhang et al. [21] propose a domain adaptation method called correlation subspace
dynamic distribution alignment (CS-DDA). They created two strategies to assess the
sources’ and target domains’ effects based on the characteristics of remote sensing scenes.
They included subspace correlation maximization and dynamic statistical distribution
alignment. Subspace correlation maximization would ensure source domain mapping to
common subspaces to keep the source domain information. However, dynamic statistical
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distribution alignment is aimed to minimize the conveyance error between adjusted target
and source domains.

Siamese-GAN is an algorithm proposed in [22] for cross-domain characterization in
aerial vehicle images, dependent on generative adversarial networks. It studies invariant
component depictions for both labeled and unlabeled images which are pending from
two distinct domains. To achieve this aim, in an adversarial way, the authors trained two
Siamese encoder–decoder sub-networks joined with a discriminator sub-network. The
encoder–decoder network has the task of organizing the spread of the two domains in
a common space regularized by the propagation limit, while the discriminator hopes to
remember them. After this stage, they feed the ensuing encoded labeled and unlabeled
samples to another feature made out of two fully connected layers for classification.

Recently, a few researchers have started to focus on the multi-source domain adapta-
tion problem, where there are multiple source domains and only one target domain. The
authors in [15] proposed MB-Net, which is a multi-branch neural network for tackling the
issue of information transformation from a remote sensing scene gained with various sen-
sors over assorted areas and labeled by various specialists. The authors’ point of view is to
take in invariant feature representation from various source domains with labeled images
and one target domain with unlabeled images. To this end, they characterized a target for
MB-Net that lessens the various domain shifts at both decision levels and feature represen-
tation, while holding the capacity to segregate between various classes of land-cover. The
whole model is trainable from end-to-end employing the backpropagation algorithm.

The authors in [23] consider the case of multiple incomplete sources. They proposed
a partition model to isolate the known and unknown classes. To coarsely isolate the
known/unknown classes in the target domain, they trained different source classifiers
on the various source domains. The target images with high likenesses to source images
are chosen as known classes, while the target images with low similitudes are chosen as
belonging to unknown classes. At that point, a paired classifier trained with the chosen
images is utilized to isolate all images for the target domain. Finally, only the known
classes are used in the cross-domain classification and alignment. The target images
obtain names by coordinating the speculations of different classifiers of sources on the
known classifications.

Lu et al. [16], in 2020, proposed a strategy to classify the target domain images by
using different complementary source domains. Their method is called a multi-source
compensation network (MSCN). They began by exploiting the pre-trained CNN, which
will allow them to learn feature representations for every domain. Then, they developed a
cross-domain alignment module to decrease the domain shift among the source domains
and target domain, which they reduced by mapping the features of the datasets in the
two domains into a combined feature space. In the end, they used a classifier module to
check the source categories and make a target classifier. They used four different remote
sensing scene classification datasets to create two cross-domain classification datasets. The
validity of this method was checked by performing many experiments. They achieved
an average accuracy of 81.23% and 81.97% on the two complementary sources and three
complementary sources datasets, respectively.

The distribution discrepancy domain adaptation methods are generally weaker be-
cause they only try to align source and target distributions through a few statistics, such as
mean or variance, which may not be enough. The methods based on GAN architectures
tend to perform better because they are more successful in aligning the source and tar-
get distributions by discovering a common feature representation through deep learning.
However, they risk increasing inter-class confusion in the target domain while focusing
too much on learning a domain-invariant feature space. It is very critical to make sure that
the learned features are as highly discriminative for the target domain classes as they are
for the source domain ones. Both GAN-based and non-GAN-based approaches fail at this
goal, and to be fair, it is difficult to achieve this goal because there are not enough labeled
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target samples. However, usually, there are large amounts of unlabeled target data at our
disposal, which is exploited in different ways by the various domain adaptation methods.

Our work also exploits the unlabeled target data, albeit in a different way. We compute
a new minimax entropy loss over the unlabeled data to optimize two objectives: (1) the
domain invariance of the learned deep features, and (2) the compactness of the target classes
(which minimizes inter-class interference). We achieve these two objectives by following
a different training strategy, where we alternate between minimizing and maximizing
this minimax entropy loss. Our work also deals with the multi-source domain adaptation
problem, for which there are only a few works in the remote sensing community [15,16,23].

3. Proposed Method

In semi-supervised DA, we have a set of labeled source domains denoted by {Ds
1,Ds

2,
. . . , Ds

m} and a target domain, Dt, with a few labeled samples per class. Every source dataset
is made out of a set of images and their corresponding labels, Ds

m =
{ (

Xs
i,m , ys

i,m
) }Nm

i=1,
where Xs

i,m is the ith image of the mth source dataset, ys
i,m is corresponding labels, and Nm

is the number of samples for the source domain Ds
m. We also have a target dataset with

only a few labeled samples, Dt
l =

{ (
Xt

i , yt
i
) }Nt

i=1, and the rest of the samples make up

the unlabeled set Dt
u =

{ (
Xu

i
) }Nu

i=1. Semi-supervised DA aims to assemble a machine
learning model that can move the information from the domain of the source to the domain
of the target and achieve high classification accuracy on the target dataset. Here, we assume
that the datasets in all domains share a similar arrangement of classes and define C as the
number of classes. We also assume that all source datasets used during the DA experiment
are available at the same time.

Next, in this section, we briefly introduce the EfficientNet CNN family of models, and
in particular, the EfficientNet-B3 model [6,24] which we selected as a backbone. Then, we
describe the proposed SSDAN architecture and its loss functions.

3.1. EfficientNet-B3 Pre-Trained CNN Model

Tan and Le [6] proposed a new family of advanced CNN models called EfficientNet.
They showed that the EfficientNet models outperformed all past models in terms of
the number of parameters and classification accuracy (computed with ImageNet). They
achieved this performance by using an automatic mobile neural architecture search (MNAS)
method to search for the best CNN model architecture in terms of accuracy [25]. Using this
automatic search method, a baseline model called EfficientNet-B0 is defined. Then, seven
larger models (from B1 to B7) are defined using uniform scaling of the resolution, width,
and depth of the CNN.

The architecture of the base model combines many concepts and ideas that have
been useful in enhancing the performance of CNN models, including (1) a new activa-
tion function called the Swish function, (2) a squeeze-and-excitation module, (3) inverted
residual connections, and (4) linear bottlenecks. The first idea, which is the Swish activa-
tion function, is the authors’ contribution, while the last three ideas are borrowed from
the literature.

This new activation function called Swish [6] is shown in Figure 1. It has a shape
similar to the function of ReLU and the function of LeakyReLU and hence shares a por-
tion of their great performance benefits. However, unlike these two, it is a smoother
activation function.
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Figure 1. Plots of the new Swish activation function [26] compared to other activation functions.

Formally, the Swish function is defined in Equation (1):

fSwish(x) =
x

1 + e−βx (1)

During the training of the CNN model, β ≥ 0 is a parameter that can be learned.
However, if → ∞ , fSwish is similar to the ReLU function, only smoother, while fSwish
becomes the linear activation function if β = 0.

The squeeze-and-excitation (SE) concept was first proposed by Hu et al. [27]. The
basic idea is to learn the interdependencies among the different channels of feature maps.
The SE module adds a secondary branch to any convolutional layer which learns special
weights for each channel during training. The output of the SE module is a feature map
with channels that are scaled by their respective weights, such that the overall accuracy
of the model is improved. The authors in [27] have used this concept in the ImageNet
competition of 2017 (ILSVRC2017) [28] and have improved the results from the previous
year by 25%.

Figure 2 presents an illustration of inverted residual blocks which is borrowed from
the MobileNetV2 CNN model [29]. The original residual blocks are defined by Residual-
Nets [30] on wide layers, i.e., the skip connections exist between layers with a large number
of channels, as shown in Figure 2a. In the inverted residual block, the skip connection is
between the narrow layers having a smaller number of channels, as shown in Figure 2b.
This idea improves the performance of the model at the cost of increasing the number of
parameters and the computational cost. To avoid the problem of the increased number of
parameters, the developers of the EfficientNet model proposed to change the hidden layer
inside the block from the 2D convolution operation to depth-wise 2D convolution operation
(see Figure 2b). This latter operation reduced the number of parameters drastically, at
the cost of a minor decrease in performance. However, due to other features used by the
EfficientNet CNN model, the overall performance still outperforms the competition.

Linear bottlenecks are another idea borrowed from the MobileNetV2 model. It im-
plies that, for the layer, which is shown in green color, we utilize a linear activation
function. This is known as a bottleneck layer because the number of channels is small at
this connection layer.

Finally, all these ideas are combined into one block of layers, called Mobile inverted
bottleneck convolution (MBConv), as shown in Figure 3. The figure shows two types of
blocks: MBConv1 and MBConv6. MBConv1 is used only at the beginning of the model,
while MBConv6 is used thereafter. The MBConv6 block may use different kernel sizes (3×3
and 5×5), and some of them contain an inverted residual connection while others do not.



Remote Sens. 2021, 13, 3861 8 of 19

Figure 2. Illustration of the inverted residual block: (a) regular residual block where skip connection is between feature
maps with a large number of channels, and (b) inverted regular residual block.

Figure 3. Illustration of the MBConv blocks in the EfficientNet CNN model. The figure shows two types of blocks: MBConv1
(always used at the start of the model) and MBConv6 (used within the model).

In this work, we present an efficient method based on the EfficientNet-B3 CNN
model, which is one of eight variants in a family of EfficientNet models denoted by B0
to B7 [6]. All of these models have been pre-trained by the ImageNet dataset [28] (the
largest annotated image dataset available) by their original authors [6] and distributed to
the research community online. B0 is the smallest and least accurate (~5.3 million weights
and top-1 accuracy on ImageNet of 77.3%), whereas B7 is the largest and most accurate
(~66 million weights and top-1 accuracy of 84.4%). EfficientNet-B3 is in the middle with
12 million weights and top-1 accuracy on the ImageNet of 81.7%. Furthermore, we have
used the EfficientNet-B3 model in previous work [5,24], where we contributed effective
improvements to the model and demonstrated the strong capabilities of this model in
supervised scene classification. However, we note that given more computational resources,
other larger, more accurate models can also be used in the currently proposed method.

The detailed architecture of the EfficientNet-B3 model is illustrated in Table 1 showing
the overall sequence of MBConv blocks and the other initial and final extra layers used.
Here, BN stands for BatchNormalization layer, GAP stands for global average pooling
layer, and FC stands for fully connected layer.

3.2. SSDAN Model Description and Optimization

The proposed architecture of SSDAN is shown in Figure 4. It is composed of two main
parts, the EfficientNet-B3 model denoted by G, which acts as a feature extractor, and a
classifier module F, which computes a distance metric followed by a Softmax activation
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function. The classifier module also uses a temperature parameter, T, which controls the
magnitude of its output. The idea of using a temperature parameter to scale and adjust the
Softmax was discussed by Hinton et al. [31] in the context of model distillation. Then, it
was used in the context of the few-shot learning scenarios, where it was shown to provide
positive effects on classification performance [32–34].

Table 1. Detailed layers and blocks in the EfficientNet-B3 model.

Operator Output Map Size # Channels # Times

input 256×256 3
Stem Conv3×3 + BN + Swish 128×128 40

Block 1 MBConv1, k3×3 128×128 24 2
Block 2 MBConv6, k3×3 64×64 32 3
Block 3 MBConv6, k5×5 32×32 48 3
Block 4 MBConv6, k3×3 16×16 96 5
Block 5 MBConv6, k5×5 8×8 136 5
Block 6 MBConv6, k5×5 7×7 232 6
Block 7 MBConv6, k3×3 7×7 384 2

Conv1×1 + BN + Swish 7×7 1536
GAP + FC + Softmax 1×1 1000

Figure 4. Overview of the proposed SSDAN model.

Formally, let Gθ(x) be the feature map output by the pre-trained model G, where θ
is the set of model weights. We first apply a normalization step by dividing each feature
vector by its norm:

Fnorm =
Gθ(x)
‖Gθ(x)‖ (2)

Then, the classifier module will take this as an input and compute the following term:

WT Gθ(x)
‖Gθ(x)‖ (3)

where the weight matrix, WT , contains C weight vectors that act as prototype features for
each class.
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These prototype features (weight matrix, WT) are learned during training. Finally, the
result is scaled with the temperature parameter and passed through the Softmax activation
function to compute the class predictions:

p(x) = so f tmax
(

1
T

WT Gθ(x)
‖Gθ(x)‖

)
(4)

Recall that DA techniques need to learn how to classify images and at the same
time remove the data distribution shift between domains. First, to train the model for
classification, we need to minimize the standard cross-entropy loss between predicted
class probabilities and true class labels. To compute this loss, from both target and source
domains, we utilize the labeled samples as follows:

Lce= −
1

Ns+Nt

Ns+Nt

∑
i=1

C

∑
k=1

1(yik= k)ln
(

Softmax
(

1
T

WT Gθ(x)
Gθ(x)

))
(5)

where Ns and Nt are the number of labeled samples from source and target sets respectively,
C is the number of classes, yik is the true label, and (1) is an indicator function that returns
one if the included statement is true, otherwise, it returns zero. The formula inside the ln
function is the same as the one in Equation (4) and is the output of the Softmax layer of the
pre-trained feature extractor model G.

Minimizing the loss, Lce, ensures that the model learns discriminative features for the
source dataset and the few labeled target samples. However, because of the dataset shift
problem, this does not mean that these features will be discriminative for the whole target
dataset. To solve this problem, the semi-supervised approach exploits the set of unlabeled
data to align the distributions of the target domain and source domain. As mentioned
earlier, we will use entropy to measure domain invariance of the learned class prototypes,
which is computed over the unlabeled dataset as follows:

εu = − 1
Nu

Nu

∑
i=1

C

∑
k=1

p(y = k|x) ln[ p(y = k|x) ] (6)

where Nu is the number of unlabeled samples and p(y = k|x) is the prediction probability
of class k for unlabeled element x. More precisely, p(y = k|x) is the kth probability vector
of p(x) defined in Equation (4).

Recall that in information theory, higher entropy values mean a more uniform distri-
bution of probabilities. Thus, when we maximize the entropy, εu, we are encouraging the
model to learn more uniformly distributed probabilities for the unlabeled data, making the
learned prototypes more domain-invariant. On the other hand, to obtain discriminative
features on unlabeled target samples, we want to cluster unnamed target features about
the learned prototypes. The features must be assigned to one of the prototypes with greater
confidence probability, resulting in the required discriminative features. To achieve that,
we need to decrease the entropy, εu. This is a contradiction in a sense because we need to
maximize εu and minimize it at the same time. A solution to this problem is to alternate
the maximization and minimization steps. Repeating this entropy maximization and en-
tropy minimization process should yield discriminative features that are at the same time
domain-invariant.

Thus, two separate loss functions are defined as:

L1==Lce+ ∝ εu (7)

and
L2==Lce − β εu (8)

where ∝ and β are two parameters to control a trade-off between classification on labeled
samples and minimax entropy loss for unnamed target samples. To simplify the model
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further, we let hyper-parameters be the same, ∝ = β. In other words, we need to investigate
one parameter only: ∝. The two loss functions, L1 and L2, are both minimized in an
alternating fashion. Note that minimizing L2 effectively maximizes εu.

4. Experiments’ Results

To evaluate the proposed method, we used four common remote sensing scene
datasets. Namely, we used the UC Merced land-use dataset [35], Aerial Image Datasets
(AID) [36], the Remote Sensing Image Scene Classification (RESISC45) dataset [3], and the
PatternNet dataset [37].

4.1. Original RS Scene Datasets

The UC Merced dataset [35] collection comprises 21 classes of earth scenes, with each
class made out of 100 images. The size of each image is 256 × 256 pixels, and the ground
resolution is 0.3 m. These images are gathered from the United States Geological Survey
(USGS) National Map over different U.S. districts. All the images are of the optical type and
are made out of the R, G, and B bands. The AID dataset [36] is a collection that incorporates
10,000 RGB images with 30 scene classifications. These images are gathered from Google
Earth from different places on earth. They have a huge size of 600 × 600 pixels with
ground resolution from 0.5 to 8 m. The RESISC45 dataset [3] is created by Northwestern
Polytechnical University. This dataset is composed of 45 classes, and each class includes
700 RGB images extracted from Google Earth imagery with a size equal to 256 × 256 pixels.
Finally, the PatternNet dataset [37] is a collection from Google Earth. This dataset has
38 classes, and each class includes 800 RGB images of size 256 × 256 pixels.

4.2. New Domain Adaption Dataset

In this work, we followed the procedure explained in [16] to build an RS domain
adaptation dataset based on the original RS datasets. First, the original datasets used a
different set of classes. Therefore, we need to extract only the common classes. In total, the
authors in [16] defined 12 common classes between the 4 original datasets. Since original
datasets are gathered and marked by various specialists, a similar scene might be labeled
by different names. In [16], new uniform names are utilized to represent the classes of every
dataset. Rectangular Farmland and Circular Farmland in RESISC45 are consolidated to
shape Farm. Airport and Airplane in RESISC45 are consolidated to shape Airfield. Stadium
and Ground Track Field in RESISC45 are joined to form Game Space. Finally, Stadium
and Playground in AID are consolidated to form Game Space class. Thus, these are just
an adjustment in name but not in the included images. The list of new common class
names and their corresponding names in the different datasets are shown in Table 2, while
Table 3 shows the total number of images in all datasets as per the new common class
name. We also present sample images for the four datasets in Figure 5. It can be observed
from this figure that there is a large variance between the datasets in terms of scale and
lighting conditions.

Table 2. List of twelve common classes in the four source datasets.

Original Class Names New Common

Merced RESISC45 AID PatternNet Class Names

Airplane Airport and airplane Airport Airplane Airfield

Harbor Harbor Port Harbor Harbor

Beach Beach Beach Beach Beach

Dense residential Dense residential Dense residential Dense residential Dense residential

Agriculture Rectangular farmland
and circular farmland Farmland Christmas tree farm Farm

Overpass Overpass Viaduct Overpass Overpass
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Table 2. Cont.

Original Class Names New Common

Merced RESISC45 AID PatternNet Class Names

Forest Forest Forest Forest Forest

Game Space Stadium and tennis
court

Stadium and
playground

Basketball court and
football field Game space

Parking lot Parking lot Parking Parking lot Parking space

River River River River River

Sparse residential Sparse residential Sparse residential Sparse residential Sparse residential

Storage tanks Storage tanks Storage tanks Storage tanks Storage tanks

Table 3. List of 12 common classes and number of images in the dataset used in experiments.

Common Classes AID RESISC45 Merced PatternNet

Airfield 360 1400 100 800
Harbor 380 700 100 800
Beach 400 700 100 800

Dense Residential 410 700 100 800
Farm 370 1400 100 800

Overpass 420 700 100 800
Forest 250 700 100 800

Game Space 660 1400 100 1600
Parking Space 390 700 100 800

River 410 700 100 800
Sparse Residential 300 700 100 800

Storage tanks 360 700 100 800
Total 4710 10,500 1200 10,400

Figure 5. Sample image from all four common classes of the datasets used in our experiment.

4.3. Experimental Setup

All experiments are implemented in Google’s Colab environment using the Pytorch
deep learning library. For the pre-trained model used for feature extraction, we selected
the EfficientNet-B3 model in these experiments, but other advanced models can also be
used. We removed the last fully connected layer of the EfficientNet-B3 and used the output
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of the previous layer as the feature vector. In the case of EfficientNet-B3, it has a size of
1 × 1 × 1536. As for the added classification layer, its weight matrix is initialized randomly.

We selected K = 3 labeled samples randomly per class to be samples of labeled target
data. We used the whole source dataset with its labels in addition to the labeled target data
to train the model. Another K = 3 labeled samples from the target dataset were used as
a validation set to decide the early stopping of the training process. Thus, a total of six
labeled samples per class from the target dataset were required in our experiments. We
monitored the accuracy of the validation set, and if there was no improvement for five
consecutive epochs, we stopped the training. The remaining target samples are considered
as the unlabeled target set and were used in the algorithm during training to compute the
entropy loss, εu. During testing, we used this unlabeled set to evaluate the algorithm, by
comparing their predicted labels with the true ones.

At every epoch, we randomly selected two batches of size eight, one consisting of
labeled samples (source and target together) and the other of unlabeled target samples.
The batch of labeled samples contains equal numbers of source and target samples. This
ensures that the model is not biased towards source data versus target data. Using the two
batches, we can calculate the loss functions using Equations (7) and (8).

As for the parameters of the classification module, we set the temperature parameter,
T, to 0.05 following the results of [38], and the trade-off parameter, ∝, was set to 0.1. Finally,
in all experiments, we adopted the Adam optimizer during training with a momentum
of 0.9 and a learning rate that starts at 0.01 and is reduced by a ratio of 0.1 following the
scheduler routine in Pytorch. The training of the model is illustrated using Algorithm 1.

Algorithm 1 SSDAN Algorithm

Input: multi-source domain images, target domain images
Output: labeled target images.
Set parameter:

K = 3, numepoch = 5000, batchsize = 16, learningrate = 0.001, ∝ = 0.1, T = 0.05
Load the pre-trained CNN model (EfficientNet-B3), which acts as a feature extractor
Dt: labeled set includes random K samples per class from target set
Dv: validation set includes other random K samples per class from target set
Du: unlabeled set includes all remaining samples in target set
for epoch = 1 to num_epoch

Divide source dataset samples into num_batches batches of size batches_size randomly
for b = 1 to batches

Selected batches size samples randomly from Dt and add them to the current batch
Compute loss on the batch of labeled data using Equation (5)
Compute entropy loss by Equation (6) using a random batch of size batches_size from Du
Compute loss of Equation (7) and apply backpropagation.
Minimize loss of Equation (8) and apply backpropagation.

Compute the loss on the validation set, Dv, and check for early stopping.
Test model on unlabeled target data.

We utilized the overall accuracy (OA) to evaluate the overall performance of the
proposed method, which is the fraction of accurately classified samples divided over all
samples for testing:

OA =
∑C

i=0 nii

|T| (9)

where C is the number of classes, nii is the number of correctly classified test sam-
ples for class i (found in diagonal of the confusion matrix), and |T| is the total number
of test samples.

4.4. Results for Two-Source Datasets Experiments

For the first set of experiments, here, we present the results of experiments with
two-source datasets, where we assume that we have two datasets in the source domain
and one dataset in the target domain. We selected the three datasets: UC Merced, AID,
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and RESISC45, for these experiments. For brevity and compactness, we denote these
datasets as MD, AD, and ND, respectively. Thus, in total, we can carry three experiments,
where the target domain is set to one of the three datasets and the other two will make
up the source domain. We denote these three experiments as follows:

{
AD, ND}→ MD ,{

AD, MD}→ ND , and
{

MD, ND}→ AD .
The results of these experiments are shown in Table 4. As can be seen, our proposed

method outperformed the previous methods significantly, demonstrating its strong capa-
bilities in addressing the domain adaptation problem. Our method even outperformed a
very recent method called MSCN proposed in [16], which performs domain adaptation
from multi-source domains to one target domain. Our proposed SSDAN method achieved
an overall accuracy of 97.15%, 91.86%, and 91.65% when the targets were UC Merced,
RESISC45, and AID datasets respectively, compared to 84.01%, 79.55%, and 91.59% when
using the MSCN method. On average, the SSDAN method achieved an OA of 93.55%,
which is 8% more than the state-of-the-art MSCN method.

Table 4. OA results for the two-source scenarios and comparison to state-of-the-art methods.

Model
{

AD, ND
}
→MD

{
AD, MD

}
→ND

{
MD, ND}→AD Average

RevGrad [8] 64.06% 68.59% 78.79% 70.48%
ADDA [12] 67.52% 73.03% 81.31% 73.95%
MB-Net [15] 72.35% 75.25% 77.58% 75.03%

Siamese-GAN [22] 78.33% 79.36% 87.28% 81.66%
MSCN [16] 84.01% 79.55% 91.59% 85.05%

SSDAN [ours] 97.15% 91.86% 91.65% 93.55%
Time (s) 2439 9499 4809
# epochs 1400–1500 1500–1600 800–900

We also present, in Figure 6, the loss and accuracy curves as a result of training the
model in the different scenarios of Table 4. Observing the loss curves for the training
and the validation sets, we can see that the model is erratic, which is due to the constant
alternation between minimizing and maximizing the minimax loss. However, the general
trend is still downward. As for the accuracy, first, note that the x-axis is only showing
every 50 epochs where we computed the accuracy on the test dataset. Next, we can observe
that the accuracy on the test set increases steadily, while the accuracy on the validation set
is slightly erratic. This could be explained by the fact that we are using a much smaller
validation dataset (only K = 3 samples from each class). The most interesting observation is
that there is a good correlation between the validation and test accuracies. This validates
our decision to always save the model corresponding to the highest validation accuracy.
In the case of multiple equal highest accuracy, we select the last occurrence, because, in
general, we see that the test accuracy steadily increases with more training epochs.

4.5. Results for Three Datasets in the Source Domain

In this section, we experiment with three datasets in the source domain. To this end,
we needed to use all four datasets: UC Merced, AID, RESISC45, and PatternNet. Again,
we denote them by MD, AD, ND, and PD, respectively. Since we used four datasets, we
were able to perform a total of four experiments, by considering each dataset as the target
domain. The results for these four experiments are shown in Table 5. Again, similar to the
previous two-source scenario, the results are impressive. Our proposed SSDAN method
outperformed all previous methods in all cases. Moreover, the average performance
improvement of the SSDAN method compared to the state-of-the-art method MSCN is an
impressive 12%.
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Figure 6. Loss and accuracy curves from Table 4 experiments: (a)
{

AD, ND}→ MD loss, (b)
{

AD, ND}→ MD accuracy,
(c)
{

AD, MD}→ ND loss, (d)
{

AD, MD}→ ND accuracy, (e)
{

MD, ND}→ AD loss, (f)
{

MD, ND}→ AD accuracy.

Table 5. OA results for the three-source scenarios and comparison to state-of-the-art methods.

Model
{

AD, MD, ND
}
→PD

{
AD, PD, ND

}
→MD

{
PD, MD, ND}→AD

{
AD, MD, PD

}
→ND Average

RevGrad [8] 78.75% 66.37% 62.83% 67.35% 68.83%
ADDA [12] 68.99% 60.39% 62.39% 65.08% 64.21%
MB-Net [15] 78.38% 73.09% 68.72% 71.96% 73.04%

Siamese-GAN [22] 84.50% 81.42% 77.17% 80.85% 80.92%
MSCN [16] 83.91% 83.83% 79.08% 81.50% 81.97%

SSDAN [ours] 97.54% 98.86% 93.90% 85.27% 93.89%
Time (s) 6793 1931 3389 6860
# epochs 1300–1400 4300–4400 700–800 1000–1100

4.6. Discussion

The experiments that have been carried out illustrate the power of the SSDAN method
in learning highly discriminative features for the target domain, despite having such
a low number of labeled samples per class. To illustrate this power further, we used
the Distributed Stochastic Neighbor Embedding (t-SNE) [39] technique to visualize the
distributions of the target dataset. t-SNE is a non-linear technique used for data exploration
and visualizing high-dimensional data. We used the t-SNE technique to visualize the
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feature vectors (the L2-Normalized output of the feature extractor model G, shown in
Figure 4) learned by the SSDAN model.

We plot the result obtained for the
{

AD, PD, ND}→ MD experiment in Figure 7.
We selected this scenario because it has achieved the most impressive improvement. In
Figure 7a, we plot the visualization of the feature vectors of the unlabeled samples without
domain adaptation, while in Figure 7b, we plot the visualization with domain adaptation
through our SSDAN method. The x and y axes represent the two principal dimensions
(or components) extracted by the t-SNE algorithms, and the different colors represent the
12 common classes of the datasets. One can see how the SSDA method succeeds in learning
feature vectors for the unlabeled samples that are clustered around the labeled samples for
each class, showing high discrimination between classes.

Figure 7. Visualization with t-SNE for the
{

AD, PD, ND}→ MD experiment: (a) features without domain adaptation,
and (b) features with domain adaptation.

SSDAN presents a model that can be trained end-to-end through the backpropagation
algorithm, without the need to tune many parameters. The parameters of SSDAN include
the parameters of the neural network optimizer “Adam”, such as the first and second
moment decay rates and the learning rate. These require little tuning and can be set to
default values. The other parameters of SSDAN include the batch size and number of
epochs. The batch size depends mostly on memory availability, and the actual size does
not matter significantly. The number of epochs is an important parameter. We set the
number of epochs to 5000 and then used early stopping criteria based on the accuracy of
the validation set. The training was stopped if the validation accuracy did not improve
after five consecutive epochs. Under these conditions, the algorithm stopped earlier than
5000 epochs for all datasets and reached good performance. Therefore, the early stopping
criterion is an effective solution for the problem of setting this parameter.

Another important parameter of SSDAN is the number of labeled samples per class K.
However, we did not formally confirm this experimentally, but the accuracy of the method
should increase positively in relation to the number of labeled samples per class.

Finally, note that the SSDAN method must be retrained for any new set of target
dataset samples. During the retraining, the method needs both the source and target
datasets. Thus, if the source dataset is lost or unavailable, then SSDAN cannot be used.
Another limitation is the high computational cost of retraining the model. This is because
the model has to be trained on a large amount of data, which includes the complete source
and target datasets. Specifically, the model uses both datasets to compute the loss function
at every epoch. This is unlike supervised classification, which uses only the training set
(a mere fraction of the target dataset) for computing its loss function.
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5. Conclusions

In this paper, we presented a new method for semi-supervised domain adaptation (SS-
DAN) of remote sensing scene classification. This method uses the pre-trained EfficientNet-
B3 CNN model to extract highly discriminative features. The pre-trained backbone is
followed by a classifier module that learns feature prototypes for each class and computes
a cosine distance between sample feature vectors and the class prototypes. Finally, the
SSDAN architecture finished by applying a Softmax activation function on the output
distances to predict the class probabilities. The proposed model used the standard cross-
entropy loss computed over the labeled samples from both source and target domains, in
addition to the novel minimax entropy loss computed over the unlabeled target samples.
The combined loss function was optimized in an adversarial fashion, where we alternated
between maximizing the minimax entropy loss and minimizing it.

Experimental work was conducted on four datasets with many two-source and three-
source scenarios. The method was evaluated using the overall accuracy metric, and the
obtained results show that the performance of our proposed method is better in comparison
to the state-of-the-art methods RevGrad, ADDA, Siamese-GAN, and MSCN.

In future work, we can change the pre-trained CNN from EfficientNet-B3 to other
more advanced CNN models. We can also find better ways to set the model parameters
T and ∝ based on monitoring the performance of the validation set. Another important
direction is to test our method with more datasets in the source domain. Finally, it is
important to investigate how we can extend the methods to the case when the source and
target domains contain non-shared classes.
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