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Abstract: Object detection and segmentation have recently shown encouraging results toward image
analysis and interpretation due to their promising applications in remote sensing image fusion
field. Although numerous methods have been proposed, implementing effective and efficient object
detection is still very challenging for now, especially for the limitation of single modal data. The use
of a single modal data is not always enough to reach proper spectral and spatial resolutions. The
rapid expansion in the number and the availability of multi-source data causes new challenges for
their effective and efficient processing. In this paper, we propose an effective feature information–
interaction visual attention model for multimodal data segmentation and enhancement, which utilizes
channel information to weight self-attentive feature maps of different sources, completing extraction,
fusion, and enhancement of global semantic features with local contextual information of the object.
Additionally, we further propose an adaptively cyclic feature information–interaction model, which
adopts branch prediction to decide the number of visual perceptions, accomplishing adaptive
fusion of global semantic features and local fine-grained information. Numerous experiments on
several benchmarks show that the proposed approach can achieve significant improvements over
baseline model.

Keywords: deep learning; image segmentation; transfer learning; remote sensing image

1. Introduction

Recently, deep learning (DL) technology has attracted more and more attention in a
variety of fields with satisfying results. The convolutional neural network (CNN), as one
of the deep learning network models, has greatly promoted the progress of remote sensing
technology. Remote sensing image analysis has been a hot topic, and it has been widely
utilized in many fields such as urban planning, land-used management, and environmental
surveillance. Many conventional approaches employed hand-crafted features to achieve
object segmentation and tracking. However, these methods cannot achieve an important
performance for the complicated appearance changes of the ground objects in very high
resolution (VHR) aerial imagery. In the past decade, deep learning-based semantic segmen-
tation has played an important part in the remote sensing applications. The block diagram
of remote sensing systems framework is shown in Figure 1.

Deep learning-based remote sensing methods have many practical applications; the
collected remote sensing data from sensors should be processed, and only the available
informative could be recorded for future usages, such as event detection, human–computer
interaction, video abstraction, object tracking [1], scene segmentation [2], urban manage-
ment and planning [3], etc. Although much work has been done over recent years, effective
object segmentation and tracking approaches for object segmentation and tracking in
complex scenarios remain challenges.
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Figure 1. Block diagram of remote sensing systems framework.

Object segmentation and tracking technology are some of the important components
in the field of computer vision. Deep learning (DL) technology and correlation filter (CF)
technology have reported great potentials for real-time segmentation and tracking tasks.
The original CF method performs excellent inference speed by utilizing element-wise
multiplications in fast Fourier transform. However, the robustness of baseline approaches
often drops considerably in several complex scenarios. In the last five years, many effective
deep network architectures have been widely applied to remote sensing data processing
and have become integral parts of our everyday lives. Currently, most existing DL methods
rely heavily on the abundant training data. Additionally, the deep learning models are
trained on large data offline via an end-to-end framework and aggressively learn the
network model parameters online. These methods have shown promising applications in
some challenging benchmarks.

However, there are two weaknesses for inaccurate object position prediction. One is
the inadequate feature fusion of multilayer response maps. The other is the limitation of
single modal. The use of single modal data is not always enough to reach proper spectral
and spatial resolutions. Thus, multiple source data acquired by sensors onboard different
platforms should be combined.

The growth of multimodal data poses a challenge for efficient data processing tech-
nology. The existing object detection deep network architectures are designed for various
vision tasks. However, the targets contain few pixels in remote sensing images and exhibit
arbitrary perspective transformations, thus many technical challenges are left open.

In this paper, we design a real-time convolutional framework for remote sensing data
detection and segmentation. The proposed framework is capable of conducting mid-level
fusion of multiple sources of data. Experiments were carried out on some common datasets.
The contributions of the paper can be summarized as follows.

(1) We propose an effective feature information–interaction visual attention model
for multimodal data fusion and enhancement, which utilizes channel information to
weight self-attentive feature maps of multi-source data, completing extraction, fusion, and
enhancement of global semantic feature with local contextual information of the object.

(2) To improve the effectiveness of multi-source feature fusion, we further develop an
adaptively cyclic feature information–interaction model, which adopts branch prediction to
decide the number of visual perceptions, accomplishing adaptive fusion of global semantic
features and local fine-grained information.

(3) Our experiments reveal that the proposed appro6ach can provide competitive
advantages with respect to baseline methods.

The rest of the paper is summarized as follows. In Section 2, we review related work.
Section 3 introduces our approach for object segmentation tasks in detail. In Section 4,
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we report results on some common datasets. Section 5 discusses the advantages of our
approach. Section 6 summarizes this paper.

2. Related Works

Recently, extensive studies of object segmentation and tracking methods were sur-
veyed. Deep learning based methods can produce satisfying results. In the following, we
mainly review the key methods that related to our approach.

Deep learning approaches: Deep learning technology is utilized to enhance the ro-
bustness of visual tasks (e.g., segmentation, classification, and tracking). Some known
methods combine DL models with CF to perform accuracy segmentation and tracking
such as HCF (hierarchical convolutional features) [4], MOS (multiscale optimized segmen-
tation) [5], DeepSRDCF (convolutional features for correlation filter) [6], ECO (efficient
convolution operators) [7], benchmarking [8], SSCF (spatial semantic convolutional fea-
tures) [9], RNT (residual network tracker) [10], GAN-RI (GAN re-identification) [11], and
DRDN (deep residual dense network) [12]. Another approach utilizes classification and
regression networks to formulate object segmentation and tracking tasks, such as SMIS
(supervised methods image segmentation) [13], FCNT (fully convolutional networks) [14],
DeepTrack [15], and CNN-SVM [16]. The benefit of the above methods is obviously that the
high-level semantic features of deep network model are utilized to match objects. However,
the computational complexity is not increased due to online update mechanisms of the
object template.

In the last five years, several effective deep network models were trained on large
classification datasets offline and employed to segment and track objects online, including
MDNet (multi-domain network) [17], CFNet (correlation filter network) [18], ACFN (atten-
tional correlation filter network) [19], etc. Recently, the Siamese network model [20–24] suc-
cessfully solved the inaccurate performances. SINT (Siamese instance network tracker) [20]
regards the tracking problem as a verification task and learns a similarity measure for object
matching in each frame. The representative approaches contain SiamRPN++ [21], deeper
and wider Siamese tracker [22], DaSiamRPN [23], and so on. In the VITAL method [25],
hard samples are generated through utilizing adversarial learning, and an effective loss
function is leveraged to address the class imbalance problem. These kinds of methods
promote the development of deep learning models and obtain satisfying evaluations on sev-
eral challenging datasets. However, most deep learning models suffer from under-fitting
problems because of a lack of training samples.

Correlation filter approaches: The approaches based on the correlation filter frame-
work achieved promising results between speed and accuracy [26–34]. They are classified
into two categories: baseline methods and improved regularization methods.

Several baseline methods are presented to improve speed and accuracy by utilizing
scale prediction [27], spatial regularization [28,35], and long-term tracking [29]. Initially, the
MOSSE method was first introduced into object tracking by using a single feature channel.
Then, Henriques et al. [26] proposed an effective kernelized tracking method (KCF) using
the circular correlation solution scheme for ridge regression. Danelljan et al. [27] trained
DCF using a scale pyramid representation to handle the scale variations of the object.
However, baseline methods are constrained in the detection region due to the equality of
patch size and filter size.

To solve above problems, some improved regularization methods were developed,
which include SRDCF [28], DeepSRDCF [6], ECO [7], STRCF [30], C-COT [31], CSR-
DCF [32], ATOM [33], MCPF [36], etc. In ACFN [19], a subset is chosen from the associated
CFs as an attention scheme to improve the performance. To alleviate the unwanted
boundary effects, they further propose a spatial constraint [28] to penalize the correlation
filter coefficients during the training process. Several approaches combine correlation filters
with high-level semantic features, which produces a remarkable advance in performance.
CSR-DCF [32] exploits color histograms as features to obtain a saliency response map in
the Fourier domain, which trains the attention network model in an end-to-end way.
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Transfer learning approaches: There have been many efforts to utilize the transfer
learning for processing remote sensing imagery [37]. The first successful application of
these models to object tracking was presented by Wang et.al. [38]. They pre-trained a
stacked denoising auto-encoder (SDAE) from an ILSVRC dataset and then transferred it to
an object tracking task. Since then, some supervised transfer learning-based approaches
have been presented to segment and track object. They offline-train deep models using
other datasets as source domains and then use the learned model online to obtain satisfy-
ing accuracy in the target domain. However, the high computational cost is an obvious
deficiency. Some transfer learning-based methods utilize the features from different deep
network layers to improve tracking performance. Gao et al. [39] exploited the extracted
prior knowledge from the Gaussian processes learning to improve the robustness. In [40],
an effective offline-trained meta-updater was presented to achieve robust tracking perfor-
mance, which consisted of an online local tracker, a meta-updater, a re-detector, and an
online verifier in the long-term tracking framework.

Other approaches: Benedek et al. [41] proposed a novel object-change modeling ap-
proach based on multitemporal marked point processes, which simultaneously exploits
low-level change information between the time layers and the object-level building descrip-
tion to recognize and separate changed and unaltered buildings. Xu et al. [42] developed
an image segmentation neural network based on the deep residual networks and used a
guided filter to extract buildings in remote sensing imagery. Grinias et al. [43] proposed a
novel segmentation algorithm based on a Markov random field model and obtained good
classification performance. Shi et al. [44] constructed a convolutional network based on a
generative adversarial network to discriminate between ground truth maps and generated
maps by the segmentation model.

3. Methodology

In this section, we first introduce the problem and the motivation and then give a
detailed description of deep network architecture and channel attention. Finally, we apply
our deep network architecture to object segmentation and tracking.

3.1. Problems and Motivations

In the remote sensing field, the Single Shot MultiBox Detector (SSD) [45] is one of
the most representative detection methods with respect to speed and accuracy trade-off.
Nevertheless, some drawbacks limit the accuracy of the algorithm. First, the semantic
information of shallow layers is weak, and it fails to capture global dependent information
to predict small and dense clusters of objects in RS images. Second, the feature maps
from medium layers present the problem of feature confusion, which makes it difficult
to accurately regress bounding boxes. Finally, the deep layers have less object contextual
information, making it fail to predict large objects confidently.

Inspired by information guidance between self-attentive models [37], we propose a
feature information–interaction model, which introduces feature map channel weights on
the self-attentive module and takes a weighted mechanism to focus on the regional block.
On this basis, an adaptively cyclic information–interaction visual model is developed to
solve the problem of insufficient feature fusion, which concentrates on the feature map
more than once to distinguish the background clutter.

3.2. Feature Information–Interaction Model

As mentioned above, the existing self-attentive models associate the internal informa-
tion of feature maps and concentrate on the local information of the object, ignoring the
inter-channel feature information association, i.e., the global semantic feature information
of the object. To tackle the problem, we propose a feature information–interaction model
(FIM), where weighted channels of feature maps are proposed to perceive the global se-
mantic and the local fine-grained features of the object. The overall structure of FIM is
shown in Figure 2.
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Given the feature map, U∈RH×W×C, U1∈RH×W×C, U2∈RH×W×C/8, and U3∈RH×W×C/8

are obtained through the convolution operator. The channel attention and the self-attentive
modules are achieved by these feature maps. For the channel attention, global average
pooling and sigmoid are utilized to get the feature map of the weighted channel, and the
resulting feature map is U12∈R1×1×C. For the self-attention module, we utilize dimen-
sion transformation to obtain the intermediate response map, and the weighted channel
supervision information is utilized to assist the intermediate self-attention feature map.

U22∈RH×W×C, U23∈R1×1×C, and U32∈RH×W×C are obtained to represent the en-
hanced feature maps with global semantic features and local fine-grained information.
Additionally, we merge the original feature map U into enhanced feature maps for enrich-
ing semantic feature information. Therefore, the adaptively weighted attention information
can be obtained through threshold multiply and add operations in Equation (1).

U14 = (1 + α)(U12 ⊗U22)⊕ (1− α)U (1)

where U14 is the enhanced feature map; U12, U22, and U are the intermediate layer infor-
mation, and α denotes the predicted threshold through convolution; ⊕ and ⊗ stand for
element-add and element-multiply operations, respectively. Then, self-attentive feature
maps can be obtained in spatial dimension by using Equations (2) and (3).

U24 = αU22 ⊕ βU23 (2)

U34 = (1 + α)(U23 ⊗U32)⊕ (1− α)U (3)

where U24 and U34 are the enhanced feature maps; U, U22, U23, and U32 are the intermedi-
ate layer information. α and β are the predicted thresholds, and we set α + β = 1 empirically.
Finally, the threshold weighting scheme is utilized to generate the resulting feature map
through Equation (4).

Uf = α(U14)⊕ β(U24)⊕ γ(U34) (4)

where Uf is the resulting feature map; U14, U24, and U34 are the intermediate enhanced
features; α, β, and γ are adaptive thresholds.
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3.3. Adaptively Cyclic Feature Information–Interaction Model

To enrich the global semantic feature and the local contextual information of the object,
we propose an adaptively cyclic information–interaction model (ACFIM) to strengthen the
ability of feature extraction. Concretely speaking, the convolutional prediction module is
developed to control the location and the number of visual perceptions and adaptively
concentrates on the feature map more than once, better distinguishing the similarities and
the differences between objects.

Based on our knowledge and experience, the feature maps of the shallow layer have
enriched local fine-grained information of the object, and the feature maps of the deep
layer contain abundant global semantic features of the object.

Therefore, cycle times and locations of feature fusion between shallow, medium, and
deep layers are different. For the feature maps of the shallow layer, we set three times
default for the cyclic model to better enrich and represent the global feature flow of the
object. For the feature maps of the medium and the deep layers, we set two times default
for the cyclic model for fine-tuning the information flow between low-level fine-grained
features and high-level semantic features. In addition, we set an intermediate threshold δ

for deciding the cyclic location to better adapt the enhanced feature map. If δ is less than
a predefined threshold (0.5 in the paper), we merge the enhanced feature map into the
original feature map for loop initialization. Otherwise, we merge it into the intermediate
feature map for information fusion and initialization.

3.4. Objective Loss Function

The overall loss function of SSD is defined as a weighted sum of the confidence loss
and the localization loss; more detailed 6information can be referenced in [15]. In our model,
we adopt focal loss for confidence to address the problem of class imbalance. In addition,
we slightly adjust the parameters between the default anchors and the ground-truth boxes,
as shown in Equations (5) and (6).

Lloc(x, p, g, d) =
N

∑
i∈pos

∑
m∈{cx,cy,w,h}

xk
ijL1(pm

i − km
j ) (5)

kcx
j = (gcx

j − dcx
i )/dw

i /var1

kcy
j = (gcy

j − dcy
i )/dh

i /var1

kw
j = log(

gw
j

dw
i
+ var2)

kh
j = log(

gh
j

dh
i
+ var2)

(6)

3.5. Online Segmentation and Tracking

Given the object location of the first frame with annotation, we construct an initial
training set by using a data augmentation scheme, which includes 20 positive samples.
Then, the backbone model is fine-tuned with training samples of the first frame.

The appearance of the object in the process of object data processing may change.
To capture the appearance variations, we update the object template with the previous
video observations. First, we define a fixed length unit L to store the object state at every
frame and update the object template if the length unit reaches a fixed number of elements.
The element with the maximum saliency score in the length unit is utilized to update the
template of the object.

Thus, the updated template is expressed as:

c̃u = (1− η)cf + ηcp (7)

where η denotes an empirical learning parameter; c̃u∈Rkn×1 stands for a new object
template, which consists of the initial object template cf∈Rkn×1 and the last updated
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template cp∈Rkn×1. The feature of the object is concatenated into a column vector as the
initial template at the original frame. Then, the initial template of the object combines with
the new updated template to alleviate the drift of the object.

In the test stage, in each frame, we crop several search regions centered at the object
location of the last frame by using the multiple scales scheme. Then, these search regions
are inputted to the ResNet-50 network model to extract the object features. The fine-grained
features of the object are considered as the CF layer. The high-level object feature is obtained
according to the channel attention module. Furthermore, we randomly draw the object
candidates x = {x1, x2, . . . , xN} based on the object location in the previous frames. Finally,
the candidate states in search region are computed by Equation (8).

x∗t = argmax
j=1,...,N

S(xj) (8)

The object states with the highest response value are regarded as the final tracking
result. Then, we update the object template by using training samples obtained in previous
sequences in every 20 frames.

4. Results
4.1. Implementation Details

In the study, we implemented our approach on the framework of Pytorch with an
NVIDIA GTX 2080Ti GPU and an Intel i7 CPU (32G RAM) and utilized SSD as our baseline
model. The proposed visual attention model was embedded into the extra four prediction
modules. During the training stage, without bells and whistles, we followed the original
SSD strategies, which included data augmentation, backbone network, scale, and aspect
ratios for the predefined anchors. In the paper, the learning rate schedule was slightly
changed to obtain a better performance.

4.2. PASCAL VOC2007

The PASCAL VOC dataset [46] contains 20 object categories. The pixel size of the
image varies and is usually (horizontal view) 500 × 375 or (longitudinal view) 375 × 500.
The mean average precision was used to measure the performance of the object detection
network (http://host.robots.ox.ac.uk/pascal/VOC/) (accessed on 14 May 2021).

We trained our model on the PASCAL VOC2007 dataset and the VOC2012 trainval set
and tested our model on the VOC2007 test set. We utilized a 10−3 learning rate for the first
80,000 iterations, then decreased it to 10−4 for the next 20,000 iterations and 10−5 for the
remaining 20,000 iterations. In addition, we adopted a “warmup” strategy that gradually
ramped up the learning rate, which contributed to stabilizing the training process. The
momentum and the weight decay were set to 0.9 and 0.0005, respectively.

Table 1 shows experimental results on the PASCAL VOC test set, which were trained
with VOC07 trainval and VOC12 trainval sets. The proposed approach obtained 79.7%
mAP with 300 × 300 input images and 82.1% mAP with 512 × 512 input images, exceeding
the latest SSD300* by 2.2 points and SSD512* by 2.6 points.

Table 1. Results on PASCAL VOC2007 test set (07 + 12 denotes data are trained with VOC07 and
VOC12 trainval sets).

Method Data mAP

SSD300* 07 + 12 77.5
SSD512* 07 + 12 79.5
Ours300 07 + 12 79.7
Ours512 07 + 12 82.1

In Table 2, we compare the proposed method with other methods under the same
baseline model. For fairness and simplicity, we simply replaced our module with other

http://host.robots.ox.ac.uk/pascal/VOC/
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visual attention models. Our method considers object feature information–interaction
under visual perception and obtains the best accuracy among all models. Without bells
and whistles, the baseline model SSD with FIM achieved 79.48% mAP on the VOC2007 test
set, which proves the effectiveness of our method which concentrates on semantic feature
and contextual information interaction.

Table 2. Comparison of mAP for different attention models (07 + 12 denotes data are trained with
VOC07 and VOC12 trainval sets).

Attention Model Data Feature Fusion mAP

Non-local Network [37] 07 + 12 Element-wise sum 78.12
GCNet [40] 07 + 12 Element-wise sum 78.11
BAM [47] 07 + 12 Element-wise sum 77.61

CBAM [48] 07 + 12 Element-wise sum 77.90
SKNet [49] 07 + 12 Element-wise sum 78.16
FIM (Ours) 07 + 12 Element-wise sum 79.48

ACFIM (Ours) 07 + 12 Element-wise sum 79.70

4.3. MS COCO

The COCO dataset [50] is a large, rich object detection, segmentation, and subtitle
dataset. This dataset is mainly extracted from complex daily scenes. Targets in images
are calibrated by accurate segmentation. Images include 91 categories of objects, 328,000
images, and 2500,000 labels. Thus far, the largest dataset with semantic segmentation
provides 80 categories, more than 330,000 images, among which 200,000 are annotated (
http://cocodataset.org/#home) (accessed on 15 May 2021).

To further verify the effectiveness of the proposed method, we trained our model on
MS COCO. We utilized the trainval35 k (118,287 images) for training and evaluated the
results on the minival. The batch size was set to 32 for 300 × 300 input and 16 for 512 × 512
input. We trained the model with 10−3 for the first 280,000 iterations, then 10−4 and 10−5

for the remaining 120,000 and 40,000 iterations. In Table 3, we observe that our method
achieved 27.6% AP@[0.5:0.95], 46.8% AP@0.5, and 28.7% AP@0.75, which improved the
baseline model SSD300* by 2.5, 3.7, and 2.9 points, respectively. Our model with 512 × 512
input images also outperformed the baseline SSD512*.

Table 3. Results on MS COCO benchmark.

Methods
Average Precision, IOU Average Precision, Area

0.5:0.95 0.5 0.75 S M L

SSD300* 25.1 43.1 25.8 6.6 25.9 41.4
SSD512* 28.8 48.8 30.3 10.9 31.8 43.5

Ours (300) 27.6 46.8 28.7 8.9 29.6 42.8
Ours (512) 30.9 51.3 32.8 13.0 35.2 46.4

It is noticeable that our model with 300 × 300 and 512 × 512 input images achieved
8.9% AP and 13.0% AP for small objects, respectively. The proposed method is more
powerful in detection of small objects. For medium and large objects, our method validates
the effectiveness of the feature information–interaction scheme.

4.4. HRSC2016

To further verify the validity of our approach, we conducted the experiments on a
remote sensing dataset collected from Google Earth and harbored it with the complex
scenario, which is called high resolution ship collections 2016 (HRSC2016). On this dataset,
the sizes of the image are between 300 × 300 and 1500 × 900, and the image resolutions
range from 0.4 to 2 m. In addition, the inclined bounding box and te horizontal bounding
box are provided as ground truth for each ship.

http://cocodataset.org/#home
http://cocodataset.org/#home
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Figure 3 shows some representative detection approach evaluations when the thresh-
old was set to 0.6. The experimental report shows the advantages of our approach in dense
ship detection. Multiple-source data were fused, which made the fused features have a
strong discriminative ability and overcame the limitation of a single modal. The proposed
model achieved a higher accuracy and better generalization. In other words, our approach
is more robust to serious background clutter and fragmentary ships by using multiple
sources of fusion information.
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4.5. LaSOT

The LaSOT dataset [51] is a single target tracking dataset with 1400 video sequences;
each video has an average of 2512 frames, where the shortest video has 1000 frames, and
the longest contains 11,397 frames. It is divided into 70 categories, each consisting of
20 video sequences (https://cis.temple.edu/lasot/) (accessed on 24 February 2021).

Our approach was also evaluated on the LaSOT benchmark including 280 videos, and
there was an average of 2500 frames in the dataset, making the appearance change of an
object an important challenge. Figure 4 reports the evaluation results.

The ATOM tracking method uses the ResNet-18 network model to separate the object
from the image. The experiment evaluation results show that our method achieved an
AUC score of 51.6% and had a lower failure rate of 15.1% while obtaining compatible
robustness. Figure 5 gives the qualitative segmentation results of our method and other
competing methods.

https://cis.temple.edu/lasot/
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4.6. Visualization Analysis

The comprehensive experiments were implemented on the ISPRS dataset. The dataset
contains 38 images and consists of a true orthophoto (TOP) obtained from a larger TOP
mosaic and is divided into six land cover classes. On this dataset, 24 classification label
images are provided. The ground truth of the remaining scenes remains unreleased, and
the benchmark is used for test verification. We utilized 15 images for training and nine
images for testing. The network was trained by a data augmentation strategy that is a
major method with rotation and scale variations of images.

Figure 6 reports the visualization results. The first column is the original and the
resized true orthoimages for fair evaluation. The second column is the segmented out-
put of our proposed approach. The last column indicates wrongly classified pixels via
red/green image.
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Figure 7 illuminates the results of the proposed method using some challenging
videos. In the first row of sequences, the object experienced illumination variation and scale
changes. We can see that the proposed approach was able to cope with these challenging
factors and kept in touch with the object successfully, which was attributed to our approach
using both the transfer learning model updating strategy and the attention mechanism.
However, other methods failed to match the object during the tracking process due to
illumination changes and scale changes. MDNet suffered from the illumination changes
and gradually missed the object. ECO did not perform well at the 78th frame.
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Figure 7. Some representative results of comparisons on the benchmark.

In the second and the third rows, these sequences encountered the challenges of scale
variation, occlusion, and low contrast. These challenging factors greatly increased the
difficulty for robust tracking. We can see that the proposed approach performed more
robustly compared with other trackers, which drifted away from the object due to scale
variations and occlusion. The proposed method performed well when the object was
occluded in a complex scenario.

In the rest of the video sequences, most of the trackers missed the object and drifted.
Our algorithm performed with the better accuracy in this scenario. This was mainly due
to the proposed transfer learning model updating strategy and the attention module,
which made the learned network concentrate on the robust object features and reduced the
influence of background clutter within the image area. Overall, the proposed approach
could track the object well in these challenging sequences.

4.7. Quantitative Evaluation

In order to further verify the effectiveness and the feasibility of the proposed method,
we carried out the quantitative evaluation by calculating the accuracy evaluation indicators
on the test set. The accuracy evaluation indicators included the precision ratio (PR), the
recall ratio (RR), and the F1-score.
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The PR is the ratio of true positives to the sum of true positives and false positives,
which is defined as:

PR =
TP

TP + FP
(9)

The RR represents the ratio of true positives to the sum of true positives and false
negatives, which is written as:

RR =
TP

TP + FN
(10)

The F1 score integrates PR and RR. The higher the F1 score is, the better is the result of
the model prediction.

F1 =
2× PR× RR

PR + RR
(11)

where TP (true positive) and TN (true negative) denote the total number of object pixels
and non-object pixels correctly predicted, respectively. FP (false positive) and FN (false
negative) denote the total number of pixels with an incorrect outcome from the object and
the non-object regions, respectively. Total denotes the total number of pixels. The precision
and the recall measures both range from 0 to 1. An F1 score reaches its best value at one
and its worst at zero.

We compared our method with state-of-the-art methods, including GAN [44], FCN [52],
and SegNet [53] on the ISPRS dataset. The evaluation results are reported in Table 4. Our
method outperformed all compared methods on the dataset. We can see that all evaluation
indicators of the proposed method improved compared to state-of-the-art methods. The
main reason is that the proposed method benefits from the feature information–interaction
model (FIM). By introducing FIM, our method weighted channels of feature maps to per-
ceive the global semantic and the local fine-grained features of the object. Moreover, these
deep learning methods can make decisions at multiple layers to improve the accuracy.

Table 4. A comparison between the proposed method with the existing models.

Methods PR RR F1

GAN [44] 0.9310 0.8544 0.8616
FCN [52] 0.9326 0.8645 0.8862

SegNet [53] 0.9499 0.9011 0.9249
Ours 0.9618 0.9307 0.9470

The proposed method achieved state-of-the-art results on the Vaihingen and the
Potsdam datasets in Table 5. It can be clearly observed that the results support the idea
that it is beneficial to use the cyclic feature information–interaction model.

Table 5. The average accuracy for precision, recall, as well as F1 score for buildings in Potsdam and
Vaihingen (OA denotes overall accuracy).

Dataset OA PR RR F1

Postdam 0.9699 0.9623 0.9167 0.9406
Vaihingen 0.9786 0.9613 0.9446 0.9534

5. Discussion

We further carried out the evaluation experiments to explain the contributions of
different modules and different layer features. The AUC scores are reported using different
backbone networks in Table 6.
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Table 6. Ablation experiments of our approach on two datasets. Fine-tune denotes that the network
model is offline-trained.

BackBone Fine-Tune Conv5 Conv4 VOT2018 OTB-100

AlexNet 0.355 0.666

ResNet50

√ √
0.347 0.679

√ √
0.337 0.675

ResNet50

√ √
0.392 0.676

√ √ √
0.408 0.700

Feature selection: Different layer features play a significant part in tracking tasks.
We found that the type of network layers and the number of parameters directly affected
the tracking performance. First, ResNet-50 and AlexNet networks were considered as
backbone networks to evaluate the accuracy of the proposed approach on two popular
benchmarks. The proposed approach and SiamRPN++ exhibited stronger performance,
benefiting from the deeper learning model. In other words, our approach achieved an
obvious improvement by fine-tuning network parameters. In addition, the evaluation
outputs report that conv4 alone achieved the satisfying performance with 0.347 in EAO.
Low-level and high-level features from deep network architecture performed with 5%
drops. Unsurprisingly, significant improvement could be obtained through combining
Conv4 and Conv5.

Effectiveness of different components: Our method includes CF module, S module,
and A module, and they denote CF layer, SiamRPN, and channel attention component,
respectively. To verify the effectiveness of these modules, the variants of the proposed
approach were implemented: (1) ours (S) denotes the tracking method only utilizing
SiamRPN to predict the location of the object at each frame; (2) ours (CF) is the proposed
approach by combining the shallow layer CF and the deep features representation to predict
the object state at each frame; (3) ours (A) stands for our method with an attention scheme;
and (4) ours (S + CF + A) denotes our proposed approach in the paper. The contribution of
different modules is reported in Table 7.

Table 7. Contribution of different modules for the proposed approach.

Approach Ours (S) Ours (CF) Ours (A) Ours (S + CF + A)

F-score 0.553 0.583 0.597 0.603
Pr 0.551 0.584 0.607 0.613
Re 0.541 0.557 0.565 0.596

FPS 34.7 30.6 21.4 24.8

Table 8 reports the evaluation performance of the variants and verifies that all com-
ponents improved the tracking accuracy. Removal of the channel attention module from
our approach led to a 3.1% precision drop; the precision of the variant dropped by 7.8%
without the correlation filter layer. We can see that the performances of both variants
were comparable to the S module, but the failure examples increased during tracking and
segmentation processing. This is because the channel attention module could focus on the
important part of the image. Thus, the attention scheme was very important to achieve
reliable tracking and segmentation. Our method resulted in a 9.5% EAO and an 8.7%
accuracy improvement due to the rotated bounding box estimation.

Table 8. The impact of different loss terms on five benchmarks.

LSiamRPN Llow Lhigh All

AUC 0.607 0.579 0.586 0.619
Precision 0.878 0.842 0.851 0.887
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Impact of different loss function terms: We compared different loss function terms,
and their impacts are shown in Figure 8. It is quite clear that every loss term made
its contribution to the performance of our approach. Meanwhile, Table 8 illustrates the
performance of every loss term by showing that our approach outperformed every variant.
The loss function indicates the importance of end-to-end training.
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Figure 8. The impact of different losses on five benchmarks.

Figure 9 reports several building segmentation results of the UNet [54] and the ResNet-
50. The yellow, the green, and the red pixels denote “false negative”, “true positive”, and
“false positive”, respectively. As shown in Figure 10, the flyover was wrongly labeled
as building by using the ResNet50 and the UNet network models. We can see that the
proposed method could remove most false alarms due to the introduction of the attention
mechanism into the deep network model, which resulted in generating more precise
segmentation results; this indicates the integration of the attention channel module into
the remote sensing image process helped to improve the performance. Our network
architecture yielded satisfying segmentation results. In addition, generalization ability was
improved due to a data augmentation strategy.
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Failure cases: Although the proposed method could obtain good performance on
public datasets, our method did not achieve the desired results for some farmlands. As
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shown in Figure 10, our method had difficulty in some cases, which were wrongly detected
in the urban construction change areas bounded by green boxes. This might be due to
the ground surface changing that usually happens in farmlands. Moreover, the noises in
labeling might further result in performance drop.

6. Conclusions

In this paper, we proposed a feature information–interaction model for multi-source
data fusion under visual perception, which adopts channel information of feature maps to
weight self-attention feature maps of multiple-source data, completing extraction, fusion,
and enhancement of global semantic feature with object contextual information. Then,
we presented an adaptively cyclic feature information–interaction model, which adopts a
branch prediction mechanism to decide the number of visual perceptions, accomplishing
adaptive fusion of global semantic features and local detailed information repeatedly.
Experimental results demonstrate that the proposed approach significantly improves the
accuracy of the baseline model.

However, our method still needs to be improved in terms of speed and real time. How
to balance the computational complexity and the accuracy remains a big challenge. In the
future, we would like to discover a lower computational complexity. Additionally, better
pre-trained models will be applied to the research with the development of deep networks.
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