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Abstract: Water wave monitoring is a vital issue for coastal research and plays a key role in geo-
morphological changes, erosion and sediment transportation, coastal hazards, risk assessment, and
decision making. However, despite missing data and the difficulty of capturing the data of nearshore
fieldwork, the analysis of water wave surface parameters is still able to be discussed. In this paper, we
propose a novel approach for accurate detection and analysis of water wave surface from Airborne
LiDAR Bathymetry (ALB) large-scale point clouds data. In our proposed method we combined
the modified Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering
method with a connectivity constraint and a multi-level analysis of ocean water surface. We adapted
for most types of wave shape anatomies in shallow waters, nearshore, and onshore of the coastal
zone. We used a wavelet analysis filter to detect the water wave surface. Then, through the Fourier
Transformation Approach, we estimated the parameters of wave height, wavelength, and wave
orientation. The comparison between the LiDAR measure estimation technique and available buoy
data was then presented. We quantified the performance of the algorithm by measuring the precision
and recall for the waves identification without evaluating the degree of over-segmentation. The
proposed method achieves 87% accuracy of wave identification in the shallow water of coastal zones.

Keywords: water wave detection; point cloud; Airborne LiDAR Bathymetry (ALB); shallow waters;
nearshore coastal zone; monitoring

1. Introduction

Water wave surface monitoring at nearshore plays a key role in facilitating the updat-
ing of basic geographic information including geomorphological change, coastal hazards,
erosion, and sediment transportation. It aids the management and maintenance of coastal
areas. In addition to the function of damaging and warning system, there is a high probabil-
ity of nearshore infrastructures being damaged in locations with waves. Hence, it is crucial
to detect the waves before they reach coastal zones. The main challenge of ocean water
wave detection is primarily due to the difficulty of acquiring high-quality data especially in
the nearshore and breaking surf zone. Figure 1 shows several typical waves on nearshore
shallow water.

Wave height estimation analysis has been ongoing research throughout the last cen-
tury. Many researchers have studied the measurement of wave heights in coastal zones
via Synthetic Aperture Radar (SAR) satellite imaging. Traditionally, a theoretical and
parametric analysis was performed for the retrieval of the two-dimensional ocean waves
spectra from SAR [1–3]. In the literature review, the C-band of Sentinel-1 SAR imagery
has a wide range of products for ocean wave analysis (e.g., [4–6]). Parameters such as the
peak of wavelengths and wave direction are calculated from C-band Scan SAR images
spectra with a semi-empirical algorithm. Smit et al. [7] assimilate significant wave height
from a deployed network of free-drifting satellite-connected surface weather buoys. Their
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assimilation strategy improves forecast accuracy with a 27% reduction in root-mean-square
error in significant wave heights overall.

(a) Nearshore waves (b) Nearshore waves

(c) Tsunami waves (d) Tsunami waves

Figure 1. Waves on nearshore.

Furthermore, wave spectra derived from SAR images acquired by ENVISATs and
SEASAT SAR were studied (e.g., [8–11]). The wave spectra inversion scheme is tailored
for shallow water. The results were compared to in situ measurements by seven sensors,
deployed in a field experiment. They found a reasonable agreement between in situ and
SAR observations for wave heights and directions. The TanDEM-X SAR satellite also was
used for ocean surface observations. There is a sensor capability within the contexts of
tidal current mapping and wind-driven ocean currents as well as detection of areas with
surface films [12,13].

Some other researchers employ Artificial Neural Networks (ANN) on SAR images. For
instance, Ardhuin et al. [14] and Wang et al. [15] used ANN to understand the nonlinear
relationship between the input SAR images parameters and output geophysical wave
parameters with a data combination of altimeters and in situ buoys. Likewise, deep
learning was applied to forecast time series of Significant Wave Height (SWH) [16]. They
proposed a machine learning technique to create a model that relates the ocean image
properties to geophysical wave parameters and predicts the sea state parameters. Their
datasets comprise the SWH and wind speed data which were captured from six buoy
stations in the Taiwan Strait and its adjacent waters.

Besides normal meteorological conditions, measurement of wave heights in ice zones
can be implemented through SAR imaging Sentinel 1A [17,18]. They developed a nonlin-
ear algorithm to assess the phase-resolved deterministic maps of wave-induced orbital
velocities. The performance of their method for the estimation of wave parameters is
expected to work best when the shortest wave components can be neglected. Despite
some good results, ocean waves are not always visible in SAR images and there is a gap in
detection criteria in terms of wave height, length, and direction [10]. Therefore, researchers
investigated other approaches.

Microwave-radar based products were used for ocean surface observation (e.g., [19–21]).
This research monitors the surface roughness, which is the source of the radar signal.
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Hwang et al. [21] studied on surface roughness and foam which are the two main contribu-
tors to ocean surface microwave thermal emission. Other research used GNSS reflectometry-
based on the signal-to-noise ratio (SNR) for ocean surface observation. The distance be-
tween an antenna and the water surface is considered by analyzing the oscillation of the
SNR observation [22–25]. The relationship between the sea surface roughness and the
attenuation of the SNR oscillation will help to estimate the numerous significant wave
height (SWH) by analyzing the SNR signal. The lack of dimension of the surface roughness
spectrum and wind speed is empirically parameterized and defined as the ratio of wind
friction velocity and phase speed of the surface roughness wave component [26]. Regard-
ing numerical mathematics models, a developed model was proposed for the elevation
spectrum of wind-generated ocean waves. The proposed model is a modification of the
spectrum. The result of these modifications is a model simplification compared with the
Pierson model [27].

Some other researchers have investigated the wave breaking analysis of the nearshore
zones in both field study and laboratory experiments. In the outdoor field study, research
was conducted at a tropical microtidal intermediate sandy beach to investigate the short-
term swash-zone hydrodynamics and morphodynamics under variable wave conditions.
The data was obtained from a 2D Light Detection and Ranging (LiDAR) scanner for wave
height calculation at the lower foreshore and swash-induced topographic changed [28].
Another outdoor field experiment used 2D LiDAR scanners deployed from the pier at
Saltburn-by-the-Sea, the UK for 6 days. The scanners monitored the surface elevation of
nearshore waves from the breaking point to the run-up limit of temporal and spatial to
capture the time-varying free surface throughout the surf and swash zones [29]. In the
indoor laboratory experiment [30], the breakpoint location and time-varying water surface
wave breaking were measured by mixing LiDAR and Sonar data. They used three SICK
LMS511 commercial 2D LiDAR scanners along with multibeam sonar to obtain a complete
surface elevation. Bryan et al. [30] obtained a good performance on breaking point location
and changing wave height with an assessment of LiDAR data.

Additionally, some other methods were done on 2D imagery data such as infrared
imagery and stereo frames. In this case, Deep Convolutional Neural Networks (DCNNs)
perform to estimate wave breaking types from infrared imagery at the surf zone. Then, they
classify the breaker type through logistic regression on the extracted image features. Their
classification accuracy reached 89% and 93% [31,32]. In other research, the development
of a remote wave gauging technique performs to estimate wave height and period from
the imagery of waves in the surf zone. In this study, their implementation was done on
the three image-based datasets. The suggested network is trained using integration of
coincident images and in situ wave measurements. They achieved RMS errors of 0.14 m
and 0.41 s for height and period [33]. In particular, [34–36] proposed a series of procedures
for coastal wave-tracking using coastal video imagery with deep neural networks. The
existing methods consist of stereo frames based methods. The speed of instant wave speed
in the video domain is estimated through learning the behavior of propagated waves in
the surf zone.

Recently, Airborne LiDAR widely used for coastal shallow water monitoring [37–39].
In this regard, the impact of upstream offshore wind farms on sea wave state has been
studied with systematic flights deploying an airborne laser scanner. The analysis of the
spectral energy distribution represented a re-distribution of the wave energy within the
downstream area with enhanced energy at smaller wavelengths. Their results clearly show
the effect of upstream wind at a distance of 55 km. Moreover, the wave profiles and coastal
sea topography were studied with a commercial portable 2D laser scanner deployed from
a fixed-wing aircraft. It presents sea surface topography and wave profiles on low altitude
surveys (<300 m). Relative observed wave heights compared with a waverider buoy
located in the same area during the LiDAR survey. The results show variations of the sea
surface to within approximately 10 cm. In recent research, airborne LiDAR was used to
measure ocean waves. The LiDAR data captured in the German Bight and processed for
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significant wave height which could be used to improve Wave Analysis Model (WAM). The
results showed that SWH varied between 0.4 m and 2.3 m, and data is validated against
buoy measurements during direct overpasses. They have below 15% deviation with the
outputs of the third-generation numerical WAM [35,40].

Except for surface detection, the internal waves in shallow water are detected under
the right conditions along with a plankton layer associated with a density gradient [41–43].
Likewise, two-dimensional measurements of ocean wave displacement were studied via
an airborne LiDAR scanning system. The active ranging by the scanning optics can obtain
passive measurements of surface emissivity and process them into a binary image. These
measurements can provide information on the average statistics and the spatial distribution
of breaking waves [44].

Few efforts used 3D LiDAR point clouds for ocean water wave detection and analysis.
Our proposed method was done on large-scale 3D LiDAR point cloud dataset. Our
method can adapt to different types of oceanic, river, and wetlands water wave shape.
Figure 2 represents the flowchart of our method. The main contributions of this paper are
summarized as follows:

(1) Presenting a novel water wave detection pipeline—interpretable method—which can
simultaneously target different types of water waves in Airborne LiDAR Bathymetry
(ALB) point clouds.

(2) Estimation of wave parameters such as wave height, wave length, and wave orientation.
(3) Exploring a modified Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) method with a connectivity constraint and a multi-level 2.5D analysis of
water surface. The paper continues below.

Figure 2. Flowchart of detection and analysis of 3D ocean water wave surface on Airborne LiDAR Bathymetric (ALB)
Point Clouds.

The proposed method, experimental results, and discussion are described in Sections 2–4
respectively. Furthermore, the last section presents the conclusion and future directions.
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2. Materials and Methods
2.1. Data Description

The ALB LiDAR data in this paper are captured by a RIEGL VQ-880-G scanning
system, as shown in Figure 3. The RIEGL VQ-880-G scanning system integrates laser
scanners, RGB camera, and inertial navigation devices which are installed on traveling
aircraft to capture accurate, high density, and precise 3D point clouds. As opposed to
airborne topographic LiDAR, which uses an infrared wavelength of 1064 nm, bathymetric
LiDAR systems use a green wavelength of 532 nm to penetrate the water column for
measuring the seafloor. The infrared laser beam pattern is linear and the green laser beam
acts in a circular pattern.

Figure 3. Airborne LIDAR Bathymetry system (RIEGL VQ-880-G).

The dataset recorded by 3D LiDAR sensor is mounted on a moving air-vehicle passing
through various coastal-urban scenes. The data was acquired in the beachside areas of
Tampa Bay, Florida, United States, on 15 October 2015, during 1 flight in the afternoon
(Time zone—GMT-05:00). Figure 4 shows the flight trajectory of Airborne LiDAR. The
study area covers a large geospatial area (latitude 27◦51′35′′ N, longitude 82◦50′54′′ W), as
a part of Florida beachside. The total number of ALB point clouds at shallow water are
around 5 million points by 1.2 km × 1.8 km around.

The raw captured point cloud is adjusted with the National Oceanic and Atmospheric
Administration (NOAA) benchmarks as ground control points. This transformation results
in having geo-referencing for further calculation. Figure 5 shows the wave in deep and
shallow water through an Airborne LiDAR Bathymetry (ALB) system at coastal urban
zone. Likewise, it represents the original and geo-referenced bathymetry point clouds.

The proposed method combines a modified DBSCAN clustering method with a
connectivity constraint and a multi-level 2.5 D analysis to detect water wave surface. Our
approach is adaptive for most types of wave shape anatomies in deep and shallow waters,
nearshore and onshore. Figures 6 and 7 show the global and detailed pipeline of water
wave detection. The input ALB point clouds are shifted onto the refined coordinates system,
by selection planar surface inlier and discretization to voxel indices. The resulting voxel
indices set will be used for the 2.5D projection. In detail, the description of each step of our
pipeline is shown in Algorithm 1.
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Figure 4. An Airborne LiDAR Bathymetry (ALB) measurement taken in Tampa bay, Florida,
15 October 2015, during 1 flight in the afternoon (Time zone—GMT-05:00). The maximum alti-
tude flight is 504.617 m. The distance between buoys station 1 and 2 is 20 km and between buoys
station 1 and 3 is 40 km.

(a) (b)

(c) (d)

Figure 5. Deep-water and shallow-water waves through Airborne LiDAR Bathymetry (ALB) system.
(a) Waves at surf zone (breaking form). (b): (b1) Waves at near-shore shallow water (<10 m), and
(b2) deep-water (>10 m). The constant wavelength in deep-water and decreased wavelength in
nearshore zone obviously can be seen. (c) Shows the top view of point clouds. Near-shore water
is in gray color and deep-water is in blue color. Coastal urban buildings, trees, and beachside can
be seen on the right side. Points with different reflection intensities are rendered in different colors.
(d) Geo-referenced point cloud with NOAA benchmarks.
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Algorithm 1 waves detection from point clouds()
Input: A point cloud P
Input: nx, ny, nz the number of range subdivisions by axis
Input: α, the standard deviation factor, used for plane inliers selection
Input: θ, the rotation angle step used for the minimum bounding box computation (typi-
cally 1 degree)
Input: The approximate size of the 2.5D height image: m× n
Input: The threshold δ s.t. any fluctuation with a magnitude lower than δ is considered
stationary
Result: A copy of P with and additional field label. The label is 0 for stationary points, ≥0
for waves clusters, and −1 otherwise (e.g., underwater points)

1: (u1, u2, u3), Iplane = LRF(P, nx, ny, nz, α, θ), (LRF is LocalReferenceFrame)
2: Compute Plocal the projection of the point cloud onto the local reference frame
3: Pbins, pmin, r = Discretize(Plocal , nx, ny, nz)
4: Compute the height map:

I, M, m0, n0 = ComputeHeghtMap(Pbin, m, n)
5: Extract Ic the sub-image of I without empty pixels
6: Decompose Ic in low frequency and high frequency coefficients using 2D wavelets

analysis
7: Compute Ilow the reconstruction of I using the low frequency components exclusively
8: Id = I − Ilow
9: Istationary, I+, I− = SeparateFluctuations(Id, δ)

10: I+,labels = DBSCAN(I+,
√

2, connectivetyDistance), we use
√

2 as a growing radius to
exclusively allow merging pixels within 1 pixel of distance the current cluster

11: I−,lables = DBSCAN(I−,
√

2, connetivityDistance)
12: Plabels = AssignLabelsToPointCloud(P, Istationary,I+,labels ,I−,labels)

return: Plabels

Figure 6. Global pipeline of water wave detection.
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Figure 7. Detailed pipeline of water wave detection.

2.2. Planar Surface Extraction

We extract the water surface jointly with a coordinate system (local reference frame)
in which the maximum and minimum 3D points draw a minimum volume bounding box
around the water surface inliers. In this regard, first, we extract 3 principal components
using Principal Component Analysis (PCA). The component with the lowest variance ap-
proximates the water surface’s normal vector since the point cloud is extended horizontally.
Then, to separate the water from under-water surface, we conduct a discretization of the
point cloud that acts like a standardization method. In summary, we divide the range of
coordinates values in each axis to Nbins intervals. Each interval is then indexed from 0 to
Nbins. Afterwards, the 3D space is partitioned into a set of 3D boxes, or voxels, where each
box is referred by 3 bins indices. Every 3D point is then replaced by the coordinates of
the box where it belongs. We then use a linear regression coupled with an outlier detector
as Random Sample Consensus (RANSAC) [45] to find the planar surface with maximum
inliers along with the inlier’s indices (a list of indices from 1 to Npoints). Subsequently,
the inliers are then used exclusively to re-estimate the local reference frame using PCA
followed by an estimation of the minimum bounding box of the planar surface. The axes
of the bounding box form the refined local reference frame. We finally project the input
point cloud onto the refined coordinates system, select planar surface inliers, and discretize
them to voxel indices. In Figure 8, the results of voxel indices set will be used for the
2.5D projection.

2.3. 2.5D Projection

This step aims to project the planar point cloud onto an image of signed distances
to the planar surface. We first create a fictional planar grid parallel to the planar surface
(or share the same normal vector of the detected plane). The 3D plane inliers are then
projected onto the grid. In other terms, we assign to each 3D point the row and column
indices of the grid cell where this point falls into it. Finally, we compute the average height
of points in each cell and store the value in the pixel value corresponding to cell indices.
Figure 9 shows the 2.5D projection. Note that we keep track of points belonging to each
cell by storing their indices and cell indices in a map. This allows the recovery of 3D point
clouds from pixel clusters. The grid size must be carefully chosen to minimize the number
of empty cells while keeping the intrinsic details of the shape of the wave. Since the tile
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is not guaranteed to be square-shaped, we expect to have boundary empty cells in the
projection. For this reason, we extract the maximum size sub-image without empty pixels
from the original projection.

Figure 8. Planar surface.

Figure 9. 2.5D projection.

2.4. Wavelets Analysis

We use a combination of two wavelet analysis techniques, which are described as
follows.

2.4.1. Wavelet Denoising

Decompose the image into a global shape (low frequency) and details (high frequency).
Then cancel reconstruct again. The resulting image should look like a trend formed by
the wavelet kernel [46]. Here we used a Daubechy kernel that results in locally linear
trends (the neighboring pixels’ values are approximated by a linear function of pixels’
coordinates).

2.4.2. Signal Detrending Using Wavelets

The difference between the original image and the image of local trends will give an
image of residuals. The residuals are chunks of the original 2D signal that separates it from
a linear one. Figure 10 shows the wavelet analysis procedure.

The detrended image is then filtered by a threshold θ:

- |I(i, j)| < θ gives the static pixels;
- I(i, j) > θ gives concave wave parts;
- I(i, j) < −θ gives convex wave parts.

2.5. Clustering

We perform clustering of each fluctuation image using a custom distance that:

(1) Penalizes empty pixels (connectivity constraint) by returning and infinite as the
distance between an empty pixel and a valid pixel.

(2) Returns the Euclidean distance between the pixels’ indices otherwise. Note that we
do not use pixel values for the clustering as the shape of convex and concave waves
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are already separated by finding a suitable threshold for static points, as shown in
Figure 11.

Figure 10. Wavelet analysis procedure.

Figure 11. Clustering results.

2.6. Recover 3D Points with Clustering Labels

After the clustering with DBSCAN, each wave pixel is assigned to a label and to an
entry in the height map storing the indices of 3D points belonging to the pixel. To recover
the clusters’ point clouds, we add a label column for the 3D points, and we proceed as
follows for each image (2 fluctuation images and a static pixels’ image):

- Initialize a label counter = 0;
- For each label in the cluster, use the height map to recover all the indices of 3D points

belonging to the cluster;

· Replace the column label by the label counter value;
· Increase the label counter and continue;

- Return the point cloud with clusters’ labels.

2.7. Wave Parameters Measurement

We estimate the wave parameters such as wave height measurement through Fourier
Transform (FT) approach. Below Equations (1)–(3), show the sinusoidal wave Fourier equations:
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F(u, v) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−j2π(ux+vy)dxdy, (1)

f (x, y) =
∫ ∞

−∞

∫ ∞

−∞
F(u, v)ej2π(ux+vy)dudv, (2)

ej2π(ux+vy) = cos 2π (ux + vy) + J sin 2π (ux + vy) (3)

where u and v are spatial frequencies. In addition, one can write FT pairs as f (x, y) = F(u, v).
The magnitude of the vector (u, v) gives a frequency, and its direction gives an orientation.
The function is a sinusoid with this frequency along the direction and constant perpen-
dicular to the direction [47]. The frequency vector is starting from the center to the white
dot (max magnitude Fourier). The orientation is aligned with the wave orientation which
means that the angle of the vector equals the orientation of the wave and its norm is related
to wavelength. We calculate the angle by code and rotated the wave image to make it
horizontal. Then we got the cross-section that travels the whole wave. Figures 12 and 13
show the Fast Fourier Transfer (FFT) approach [48]. We analyzed the spectrum to extract
wave parameters measurement locally and stored them in additional values. By repeating
this to every patch of 21 pixels × 21 pixels around a central pixel, the result is a feature map
of 3 channels. 1st layer: wave angle, 2nd layer: wavelength, and 3rd layer: wave height.

Figure 12. Extraction of dominant frequency by Fast Fourier Transform (FFT) approach.

(a) (b)

Figure 13. Cont.
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(c) (d)

Figure 13. (a) Fourier transformation of the whole point cloud. It clearly shows an almost uniform distribution of low to
medium spatial frequencies. (b) An example of a local block of projected cells. (c) Fourier transform of the block. It shows
one dominant spatial frequency that frequency vector starting from the center to the white dot (max magnitude Fourier).
(d) Rotation of the block such that the dominant direction becomes aligned with the horizontal axis.

3. Results

In this section, first the water wave detection results are present. Then through the
FFT approach, we show the results of wave parameters analysis.

3.1. Water Wave Detection Result

The adjustment of the parameters for the proposed algorithm is intuitive. The ex-
periment results prove the effectiveness of the algorithm, as shown in Figures 14 and 15.
Figure 14a shows the top view of original point cloud at nearshore and shore and Figure 14b
shows related water wave cluster detection result on the near-shore and on-shore zones.
Figure 15 shows the results as 3D point cloud. We illustrate the situations in which the
nearshore waves and breaking waves are placed differently: the near-shore waves are
placed in the approaching shore-waves and breaking waves are placed in the breaking
surf zone.

The wave cluster detection is based on wavelet analysis. The projection of the point
cloud using the applied grid scheme is seen as a 2D signal and decomposed into low
frequency and high frequency wavelet components. In our experiment, we used the
Daubechie kernel with 3 levels of decomposition since it matches the wave patterns we
want to capture. The high frequency components are then removed (overridden with zeros)
and the signal is reconstructed. The reconstruction shows local trends in the point cloud
projection. We then compute the residual image as the difference between the heights in the
projection of the point cloud and the heights in the reconstructed projection. This difference
indicates how far the signal variation is from the local trend. Typically, the residual image
shows locally concave and convex crests. We then apply a threshold to remove small
fluctuations and obtain a binary mask where high enough fluctuation pixels are associated
with white pixels and small fluctuations are associated with black ones. The mask is finally
applied to the original projection and produces Figure 14b. In the mentioned figure, the
rejected fluctuations are shown with a blue mask. Selected points are shown in grayscale.

3.2. Water Waves Analysis

In our study, we analyze the wave height, wavelength, and wave direction through
the ability of the Fast Fourier Transform (FFT) approach. Since FFT outputs are a spectrum,
we analyze the spectrum to extract parameter measurements locally and stored them in
additional values (Figure 12). We used Fast Fourier Transformation and expressed it as a
linear sum of sine waves for each local point cloud (Z is a function of x and y). We picked
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dominant frequency assuming that locally, we should have 1 sine wave. Although it is 2D
Fourier, however, pixel values store height. So we are decomposing height as a sine wave.
Figure 16 shows the results of wave height, wavelength, and wave angle. In the height-map,
each 3D point is associated with the wave height as a scalar field. Notice that red regions
are associated with high fluctuation, whereas green and cold regions represent small ones.
The blue points at the boundary are missing data due to convolution. The wave height does
not show clear clusters of waves since several connected wave parts might share the same
height. However, it shows regions of almost the same color. These indicate the extent of
some frequencies: i.e., the extent of wave amplitude in space, or simply, the regions where
the same height information can be used to describe the variation (Figure 16a). Similarly,
in the wavelength map each 3D point is associated with the wavelength as a scalar field.
All values seem to be relatively similar (cold range of colors), which makes sense visually
from the length of the crests in the 3D render.

The wavelength information coupled with cell positions shows well defined wave
parts (Figure 16b). In angle-map, each 3D point is associated with the wave angle as
a scalar field as well. The selection of the points corresponding to the dominant angle
shows large connected components (Figure 16c). The sea state parameters derived from
ALB data provide information over a large area, including the coastal zone with similar
products to the other altimetry products. In comparison, the low-resolution altimetry
wave analysis and open ocean SAR wave mode products are not sufficient for local and
regional applications in the complex coastal environment. Therefore, the ALB wave data
would provide added value dealing with coastal processes. However, this is just one
period scan time and we did an estimation of wave parameters by available data. Figure 16,
Table 1, Table2 and Table3 show the results of wave height, wavelength, and wave angle at
the nearshore zone.

3.3. Significant Wave Height Estimation

The natural definition of wave height (H) can be as the vertical distance between
the highest and the lowest surface elevation in a wave shape [49]. The wave condition
in a stationary record can be characterized with average wave parameters, such as the
significant wave height and the significant wave period [50].

(e) (f)

Figure 14. (a) Top view of original (unprocessed) point cloud at study area. (b) Related water wave cluster detection results
at near-shore and on-shore.
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(a) (b)

Figure 15. Water waves detection results. (a,b) are 3D point cloud at shallow-water. The different colors in (b) show the
waves in shore and near-shore zones.

(a) (b)

(c)

Figure 16. (a) Water wave height map from shore-line toward deep-water. Red regions are associated
with high fluctuation, whereas green and cold regions represent small waves. The peak of each water
wave is visible. The boundary points have no values (because of convolution). (b) Wavelength map
at coastal zone. The marker shows some of the wave length. (c) Wave-angle map.

The significant wave height (SWH) is in proper correlation with the wave height as
estimated ’visually’ by experienced observers. However, this is not true for the significant
wave period. Significant wave height (SWH) is defined as the mean of the highest one-third
of waves in the wave record:

H1/3 =
1
N
3

N/3

∑
j=1

Hj (4)

where j is not the sequence number in the record (i.e., the sequence in time) but the rank
number of the wave, based on wave height (i.e., j = 1 is the highest wave, j = 2 is the
second-highest wave, etc.). As shown in Table 1, the agreement between the estimated
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Significant wave height (SWH) and the measured buoy data is reasonable. To this end,
regarding Tables 2 and 3 and Equation (4), the SWH after geo-reference transformation is
Hs = 0.49 m, which confirms with available buoys measurement data (station 3).

Table 1. The SWH values are measured by LiDAR system and buoy stations. Wind from 26◦ to 161◦

pass from coastal area.

Flight
Number Date Time

Wind Speed and Direction

WSPD (m/s) Direction (deg)

1 2015/10/15 Evening 4.4 339

Flight
Number

SWH During measurement (m)

LiDAR Station 3 Station 2 Station 1

1 0.49 0.55 N/A N/A

Table 2. Quantitative Results (part 1): Wave measurement analysis results. Labels are the wave
identification (which come from DBSCAN approach).

Wave
Numbers Label Average Wave

Height (m)
Average Wave

Length (m)
Average Wave Angle

(Orientation) (Degree)

0 −1 0.432 10.150 160.793
1 0 0.410 8.088 153.434
2 1 0.551 10.901 135
3 2 0.433 9.117 116.565
4 3 0.395 5.450 135
5 4 0.301 9.117 116.565
6 5 0.169 5.450 45
7 6 0.322 11.177 161.565
8 7 0.318 8.088 153.434
9 8 0.225 8.439 90

10 9 0.351 5.450 45
11 10 0.214 8.439 90
12 11 0.541 5.450 135
13 12 0.400 11.177 161.565
14 13 0.283 8.439 90
15 14 0.189 4.219 90
16 15 0.215 8.088 26.565
17 16 0.269 4.219 90
18 17 0.379 16.176 153.434
19 18 0.438 10.901 135
20 19 0.375 4.219 90
21 20 0.280 8.439 90
22 21 0.236 8.439 90
23 22 0.273 5.450 45
24 23 0.249 13.354 146.309
25 24 0.279 11.177 161.565
26 25 0.231 8.439 90
27 26 0.245 5.450 135
28 27 0.429 5.450 135
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Table 3. Quantitative Results (part 2): Wave measurement analysis results. Labels are the wave
identification (which come from DBSCAN approach).

Wave
Numbers Label Average Wave

Height (m)
Average Wave

Length (m)
Average Wave Angle

(Orientation) (Degree)

29 28 0.322 4.219 90
30 29 0.235 8.439 90
31 30 0.277 8.439 90
32 31 0.301 4.219 90
33 32 0.475 11.177 161.565
34 33 0.357 8.439 90
35 34 0.387 13.097 107.489
36 35 0.371 8.439 90
37 36 0.361 8.439 90
38 37 0.350 8.439 90
39 38 0.602 8.439 90
40 39 0.393 16.176 153.434
41 40 0.362 13.354 146.309
42 41 0.764 8.439 90
43 42 0.356 4.219 90
44 43 0.283 18.726 143.130
45 44 0.379 5.450 135
46 45 0.342 4.219 90
47 46 0.275 13.120 108.434
48 47 0.403 8.439 90
49 48 0.469 8.439 90
50 49 0.287 14.417 123.690
51 50 0.336 12.658 90
52 51 0.300 12.658 90
53 52 0.790 13.120 108.434
54 53 0.275 18.726 143.130
55 54 0.278 16.351 135
56 55 0.257 8.439 90
57 56 0.310 4.219 90

4. Discussion

In this section, in order to evaluate the performance of our method, ALB data was
evaluated with available buoy data. Additionally, we calculated the assessment metrics
with an annotated version of projection of the point cloud that we created.

4.1. In Situ Measurements

The sea surface is measured by directional floating buoys and the processed data is
available every 30 min. In this study, three buoy stations observe the water level around
the study area (station 1 ‘Clearwater Beach, FL’, station 2 ‘Fred Howard Park, FL’, and
station 3 ‘Egmont Channel Entrance, FL’) along with wind speed, air temperate, significant
wave height, and wind direction, Figure 4. However, station 1 and 2 did not record any
wave height data during flight missions in 2015. Therefore, there is missing wave height
data. The only available wave height data belongs to station 3, which was far (around
40 km) and the average wave height in station 3 is between 0.4 m and 0.7 m in 15 October
2015. This correctly confirms the algorithm output. Moreover, this new observation with
ALB compensates for the missed data and shows the high capabilities of Airborne LiDAR
when in situ measurement data is missed.



Remote Sens. 2021, 13, 3918 17 of 21

4.2. Satellite Observations

The launched operational altimetry satellites, e.g., Sentinel-3A and sentinel-6 were
references for sea-surface height measurements until at least 2030. Satellite altimetry is
radar technique-based for ocean surface height measurements with a precision of a few
centimeters. However, due to the lack of available altimetry data during the study project
(15 October 2015), we assess our algorithm performance with the available buoy dataset
(station 3) and annotation point cloud (Section 4.3).

4.3. Quantitative Assessment Measures

We calculate the assessment metrics based on each wave of nearshore point clouds,
where the precision and recall are respectively defined as Equations (5) and (6) the F1-
measure is adopted to comprehensively evaluate the performance as Equation (7).

PRE =
NTP

NTP + NFP
(5)

REC =
NTP

NTP + NFN
(6)

F1−Measure =
2× PRE

PRE + REC
(7)

NTP is the number for the correct waves points extracted; NFP is the number for the
wrong points extracted; NFN is the number for the waves points that failed to extract. The
quantitative results are shown in Table 4.

Table 4. Quantitative results.

Waves Type Precision (%) Recall (%) F1-Measure (%)

Negative wave (−1) 0.22 0.52 0.31
Positive wave (+1) 0.87 0.64 0.74

To evaluate the performance of our method, we created an annotated version of
the projection of the point cloud as an orthoimage (Figure 17). A human labeler defines
manually the most prominent waves, in other terms, the waves with the largest support.
Note that in the original point cloud, waves are invisible without any processing. The
water surface appears to be flat. This is one of the reasons why we chose to label the 2.5D
projection. Moreover, small fluctuations are nearly invisible to the human eye. Each wave
segment is associated with an index. The predictions are also associated with indices that
do not necessarily match true segments. The number of segments and the ordering of
predicted labels are completely independent from the annotation. As a future work, we
can investigate the creation of a complete labeling framework.

Visually, we notice that the predicted wave presents small clusters that collectively
overlap with most of the true clusters. We conclude that our approach provides an over-
segmentation of the water surface. As a perspective, we can continue the processing
by grouping segments into consistent wave parts. This requires the definition of wave
consistency and the implementation of an appropriate merging policy that achieves a
trade-off between over-segmentation and under-segmentation.

We quantify the performance of the algorithm by measuring the precision and recall
for the wave’s identification without evaluating the degree of over-segmentation. We
label all wave parts with +1 and the remaining pixels with −1. The predictions labels are
changed accordingly. Note that rejected pixels (−1 as prediction) result from the small
fluctuations filtering followed by DBSCAN outlier detections. The small fluctuations on
the bottom right of the image are hard to identify by a human labeler. These are, however,
detected by our system.
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The percentage of these pixels is, hence, expected to be small relative to true −1 pixels.
In our evaluation, the recall of class−1 is 52% which suggests that almost 48% of ‘not wave’
pixels were predicted as wave, such that the percentage of precision class −1, relative to all
rejected pixels is 22%. Visually, an important part of these pixels is located at the “invisible”
fluctuations. For the wave class, the precision is relatively important and associated with
64% recall. Similarly, the predicted wave class matches the shape of true waves except for
small fluctuations. However, the support thickness of the wave segment was not predicted
accurately. The missed pixels on the borders contribute to the decrease of the recall.

(a) (b) (c)

(d) (e)

Figure 17. (a) Orthoimage. (b,c) are annotated versions of the projection of the point cloud as an orthoimage. (d,e) shows
the positive and negative wave detection.

4.4. Complexity Analysis

The algorithm takes 2 min: 4 s± 10 s on Ubuntu 20.04 operating system. The time was
measured while having all applications and internet connections shut down. The desktop
GUI and visualizations saving were deactivated. The algorithm was executed on an i7
9th generation laptop on a single processor and without use of the Graphics Processing
Unit (GPU).

5. Conclusions

In this paper, we proposed an algorithm for ocean wave detection and wave analysis
parameters measurement through the Airborne LiDAR Bathymetry (ALB) point cloud.
Our experiments show that different types of wave shape anatomies of the ocean surface
can be detected and quantified by using ALB system. By leveraging an addressing strategy,
the proposed method rapidly handled large volumes of ALB point cloud toward 3D
water wave detection. Our algorithm was successfully applied to the 3D ALB dataset and
achieves precision of 87% for wave identification and associated with 64% recall at the
shallow water of coastal zones. Visually, the predicted wave class matches with the shape
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of true wave except for small fluctuations. Moreover, the only available buoy station data
confirms the algorithm output. The ALB wave analysis through the FFT approach provides
more detailed information about spatial parameters of the wave field in the coastal zone
compared with a model forecast, especially when in situ measurement data are missed.
Indeed, the integration of time-varying surface data and field study data with 3D LiDAR
point clouds data will improve the wave analysis accuracy measurement for real-time
processing. Further research is required for additional information, such as video imagery
and adding a more accurate field study detailed dataset.
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