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Abstract: Landform recognition is one of the most significant aspects of geomorphology research,
which is the essential tool for landform classification and understanding geomorphological processes.
Watershed object-based landform recognition is a new spot in the field of landform recognition.
However, in the relevant studies, the quantitative description of the watershed generally focused
on the overall terrain features of the watershed, which ignored the spatial structure and topological
relationship, and internal mechanism of the watershed. For the first time, we proposed an effective
landform recognition method from the perspective of the watershed spatial structure, which is
separated from the previous studies that invariably used terrain indices or texture derivatives. The
slope spectrum method was used herein to solve the uncertainty issue of the determination on
the watershed area. Complex network and P–N terrain, which are two effective methodologies to
describe the spatial structure and topological relationship of the watershed, were adopted to simulate
the spatial structure of the watershed. Then, 13 quantitative indices were, respectively, derived
from two kinds of watershed spatial structures. With an advanced machine learning algorithm
(LightGBM), experiment results showed that the proposed method showed good comprehensive
performances. The overall accuracy achieved 91.67% and the Kappa coefficient achieved 0.90. By
comparing with the landform recognition using terrain indices or texture derivatives, it showed better
performance and robustness. It was noted that, in terms of loess ridge and loess hill, the proposed
method can achieve higher accuracy, which may indicate that the proposed method is more effective
than the previous methods in alleviating the confusion of the landforms whose morphologies are
complex and similar. In addition, the LightGBM is more suitable for the proposed method, since the
comprehensive manifestation of their combination is better than other machine learning methods
by contrast. Overall, the proposed method is out of the previous landform recognition method and
provided new insights for the field of landform recognition; experiments show the new method is
an effective and valuable landform recognition method with great potential as well as being more
suitable for watershed object-based landform recognition.

Keywords: complex network; landform recognition; geomorphology; digital elevation model;
LightGBM; watershed

1. Introduction

Landform is a general term for various forms of the earth’s surface [1]. A wide va-
riety of landforms, with different forms and spatial structures, constitute the basic earth
surface [2–4]. Since the landforms contain abundant information of geomorphology, envi-
ronment, and hydrology, landform quantification and recognition are critical procedures
for geomorphological mapping and landform classification [5–7]. It has a great signifi-
cance in explaining the geomorphic formation mechanism [8] and revealing the landform
evolution process [8,9] as well as promoting the developments of different fields ranging
from geomorphology research to socio-economic problems [10]. Based on these, landform
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quantification and recognition, as a result, have captured worldwide attention for decades
and have been increasingly studied in the field of geoscience [3,10–15].

Traditional studies on landform recognition relied on the visual interpretation of
topographic maps and aerial photographs [16], which inevitably need field investigations
and manual discrimination due to the limitation of technology [1,17,18]. Moreover, it is
time-consuming and labor-intensive. Meanwhile, it relies on the artificial identification of
expert experiments [19]. With the technological development of the geographic information
system and remote sensing as well as the acquisition of high-quality geospatial data (digital
elevation model and remote sensing data), these manual methodologies are gradually and
increasingly replaced by automated approaches to landform classification, possessing high
accuracy, automation, and high speed. A series of significant achievements were achieved
by previous scholars [1,2,10,13–15,20–26].

Thus far, two main techniques for landform recognition can be concluded as pixel-
based and object-based methods [24,27]. In the pixel-based approach, the terrain derivative
is regarded as the main terrain feature used in distinguishing different landforms types.
Taken the regular grid as the basic analysis unit, several terrain derivatives are calculated
based on neighborhood analysis to quantify the terrain features and compare the local
differences. Then, the unsupervised classification or decision tree is utilized to realize
landform recognition. However, on nonuniform surfaces, it is not a good option and cannot
classify the landform types that spread over massive pixels [18]. Moreover, in the pix-based
approach, the landform, as a regional scale unit, is not considered for its topological rela-
tions, morphological information, and spatial structure [13,28]. The object-based method,
which is sensitive to different landform types according to morphological discontinuities,
is another popular approach and has been widely used in different fields [29–33]. However,
the region divisions resulted from it are uncertain and the geo-meanings are unclear.

Compared with other methods of the object-oriented unit, the watershed unit as a
basic geomorphologic unit has clear geographical significance in the surface form [34] and
is the snapshot of landform development [35]. The watershed is a novel and effective
landform identification unit. Zhao demonstrated that the accuracy of the recognition
result with a watershed-based strategy is higher than that with an object-based recognition
strategy [13]. Watershed-based landform recognition gradually becomes a new spot in the
field of landform recognition and showed sufficient potential as well as good performance
in relevant studies [11,13,27,28,36–41].

However, severe potential problems may limit the development and employment of
the watershed object-based landform recognition. On the one hand, the determination
of the area for the watershed unit is a question of uncertainty. If the selected watershed
area is too small, the divided watershed will not be representative of the landform type
that it belonged to. If the selected watershed area is too large, it will bring us a huge
amount of unnecessary work. On the other hand, to use the watershed as the basic unit,
quantification of the watersheds inevitably remains a major bottleneck in this field. The
related study of watershed object-based landform recognition commonly used terrain
derivatives and texture derivatives as basic terrain features without exception, ignoring
the spatial structure and topological relationships of the specific watershed. The concern
of the terrain derivatives and texture derivatives are the overall terrain features of the
watershed unit. However, the spatial structure and composition are the basic attributes of
the watershed. Simultaneously, the differentiable spatial structure, topological relationship,
and the watershed composition that each watershed owned are the selected reason for it as
a basic landform unit, which is also the value of the watershed as a basic landform unit.

Complex network methodology is a well-established methodology to simulate natural
or social phenomena [42]. Complex network theory highlighted the relations between
structural properties and dynamics or behavior [43]. By simulating the research objects
as the network spatial structure, it can effectively analyze the topological relationship,
internal composition, and internal spatial structure [44]. Since it is very suitable for com-
plex system simulations and the analysis of different scientific disciplines, its growth of
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application increased rapidly and it has been widely employed in numerous fields such as
hydrology [45], earthquakes [46], transport [47–51], agriculture [52], economics [53], the
internet [54,55], etc. Recently, it has increasingly aroused more attention for scholars in the
field of geoscience and massive achievements were obtained by geoscientists [43,56,57].
For the watershed landform, a growing number of scholars used complex network the-
ory to analyze the spatial structure, topological relationship, and internal composition
linkage [40,58–60]. However, to our knowledge, narrowing the view to the research on
the application of complex network methodology to landform recognition, there are no
relevant studies.

The positive and negative terrain (P–N terrain for convenience) theory is another
significant methodology in dividing the terrain spatial structure [61]. The spatial structure
of the terrain can be divided into a typical dual structure, which was positive terrain
and negative terrain [62]. There is a distinct separation between the positive terrain and
negative terrain due to the overt distinctions of the morphological feature, erosion intensity,
and geomorphological mechanism [35]. The P–N terrain theory has emerged as a mature
theory to describe the structural features and spatial distribution of the landforms [63].
However, little research can be found on using the P–N terrain to perform watershed
object-based landform recognition.

The lack of a quantitative description methodology for watershed spatial structure
prevents the wider use of watersheds on landform recognition, though it has shown
sufficient potentials. Each watershed may be viewed as an independent gully spatial
structure. From the perspective of the watershed spatial structure, the watershed unit can
be viewed as a complex network and a P–N terrain. The quantitative description of the
P–N terrain and watershed complex network is promising for the watershed object-based
landform recognition.

This paper offered a new watershed object-based landform recognition method from
the perspective of the watershed spatial structure and composition and fully investigated
its potentials. A total of 300 watersheds with stable terrain features were extracted based
on the stable area determined using the slope spectrum method. Taking each watershed as
a specific landform unit, we, respectively simulated the watershed spatial structure via the
complex network theory and the P–N terrain. Then, a series of indexes that quantitatively
describe their topological relationship, spatial structure, internal composition, internal
mechanism for the P–N terrain, and the watershed weighted complex network was pro-
posed to construct the basic feature matrix. A machine learning method with high efficiency
and accuracy, which was rarely used in landform automatic recognition, called the Light
Gradient Boosting Machine (LightGBM), was adopted herein to conduct the landform
recognition on Loess Plateau. The experimental results suggested that it is an effective
method in landform recognition with high accuracy and showed a certain superiority in
the recognition of some landforms where the geomorphologic morphology is complex.
Then, a series of assessment analyses and comparisons with other landform recognition
methods and machine learning methods were conducted to prove its good performance.

2. Materials and Methods
2.1. Materials

Loess Plateau, which is the most serious water and soil erosion area in the world,
was chosen as the sample area herein (see Figure 1). With its unique geographical condi-
tions, geomorphological research value, loess landform features, and natural and cultural
landscapes, it has attracted worldwide attention [11,64]. The core landforms of the Loess
Plateau are loess tableland, loess ridge, and loess hill. Simultaneously, stony mountains,
sandhill, and valley plains are spread over the Loess Plateau. In terms of the six landforms,
we extracted 300 loess watersheds randomly located in the Loess Plateau as the test sites. In
terms of these test sites, 240 watersheds were randomly selected as the training datasets. To
verify the accuracy and performance of the model based on the complex network method-
ology, 60 loess watersheds (ten watersheds for each landform type) were selected as the
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test dataset. Moreover, to compare the differences between the stable area with the divided
area of the traditional method, nine sample areas were selected as the typical sample areas.
These sample areas included nine typical loess landforms (see Table 1).

Figure 1. Location of the Loess Plateau and the distribution of the test sites.

Table 1. The typical sample area of nine loess landforms.

Area Name Area Name Center Latitude and
Longitude Landform Type Development Stage

I Shenmu 110◦29′56.040” N
38◦50′32.424” E Loess deep incision gorge-hill submature stage

II Suide 110◦18′45.000” N
37◦35′00.000” E Loess hill-ridge late mature stage

III Dingbian 107◦35′52.548” N
37◦35′25.332” E Loess ridge-tableland submature stage

IV Ansai 109◦21′00.000” N
36◦50′30.000” E Loess hill late mature stage

V Yanchuan 109◦56′15.000” N
36◦45′00.000” E Loess hill-ridge late mature stage

VI Fuxian 109◦33′45.000” N
36◦12′30.000” E Loess hill-ridge late mature stage

VII Yijun 109◦22′30.000” N
35◦27′30.000” E Loess ridge submature stage

VIII Changwu 107◦47′42.360” N
35◦12′24.120” E Loess tableland infancy stage

IX Chunhua 108◦26′15.000” N
34◦52′30.000” E

Loess middle-low mountain,
loess platform-tableland infancy stage

The data used in this paper were from an SRTM DEM that occupied the area from
60◦ N to 56◦ S captured by the Shuttle Radar Topography Mission (SRTM). The DEMs
were resampled using the nearest neighbor method to be the DEMs with a resolution of
30 m × 30 m. To ensure the recognition landform types are unbiased, the landform types on
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the Loess Plateau referred to the Geographical zoning map provided by the Earth System
Science Data Sharing Platform from 2000 (downloaded from http://www.geodata.cn/,
accessed on 21 September 2021) and an investigation by Zhou [65].

2.2. Quantification of the Watershed Spatial Structure and Its Composition

To quantize the spatial structure and composition of the watershed, we adopted the
complex network methodology and the positive–negative terrain theory to describe the
watershed. The spatial structure for the loess watershed can be, respectively, simulated as
the positive–negative terrain structure (Figure 2a) and the watershed network structure
(Figure 2b). Figure 3 shows the technical route for constructing two kinds of watershed
spatial structures.

Figure 2. Two kinds of spatial structures for the watershed. (a) is the P–N terrain structure. The watershed spatial structure
can be divided by the watershed boundary profile line and gully shoulder line into positive terrain and negative terrain. On
the other hand, the watershed is a complete gully spatial structure, as shown in (b). From the perspective of the complex
network, the watershed can be also abstracted as a watershed network structure composed of different types of gully feature
nodes linked by gullies (c).

The hydrological analysis is the common tool used in the watershed study. A series
of common operations for watershed extraction from DEM data can be divided into
the following four steps in order: (1) fill depression; (2) compute the flow direction;
(3) compute the flow accumulation; (4) extract the catchment area by a certain threshold of
the flow accumulation; and (5) classify the catchment area using the Strahler classification
method [34,66]. The three key issues of extracting the stable watershed, respectively, are
the determination of the reasonable flow accumulation threshold, the elimination of the
error parallel stream, and the determination of the stable watershed area. The methods to
solve these problems are given as follows [67,68].

http://www.geodata.cn/
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Figure 3. Technical route for constructing the two kinds of watershed spatial structures.

To determine the reasonable flow accumulation threshold, the average variable point
method is commonly used [69,70]. Gully density is an essential parameter that can not
only reveal the evolutionary extent but also embody the solid erosion intensity [64]. With
the increase in flow accumulation thresholds, a variable point in the slope of the gully
density curve exists. The value of the variable point can be viewed as the suitable value
that the watershed network tends to be stable [70,71]. The calculation of the variable point
is as follows:

(1) Gully densities under each flow accumulation threshold (100, 200, 300, . . . , 1000)
were calculated to be a sequence [{Gi}, i = 1, · · · , N], where i is the number of G.
Then, we calculated the mean value of the sequence as G and the deviation square
sum for the sequence as T.

(2) The sequence of Gi can be divided into two sequences [{ G1, Gk}, { G2, Gk−1}, . . .
{ Gk−1, GN}]. Tk is obtained by adding the sum of deviation square between the two
preceding samples and can be calculated using the following:

Tk =
k−1

∑
i=1

(
Gi −Gk1

)2
+

N

∑
i=k

(
Gi −Gk2

)2 (1)
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As seen in Figure 2, there is a variable point between the differences of Tk and T with
the increase in the flow accumulation threshold. The variable point can be viewed as the
suitable flow accumulation threshold [69,70].

The redundant parallel river networks are inevitable in the process of extracting
watersheds. To eliminate the parallel river networks, the iterative digging algorithm,
which is an effective method to reduce the height of the main ditch, was employed [68,72].
Ultimately, visual interpretation was conducted to further eliminate the remaining par-
allel river network as was possible based on the extracted contour line of the watershed
(see Figure 4).

Figure 4. The diagram of the remaining parallel river networks. It is widely accepted that the true gully line should be in
the direction of the projecting contour lines just as the blue gully lines in the figure. Based on this, the green line A and B
can be determined as the remaining parallel river networks.

2.2.1. The Stable Watershed Area Based on the Slope Spectrum

The determination of watershed size is a factor of uncertainty in the field of watershed-
based landform recognition. In previous studies, the watershed area is invariably deter-
mined by specifying a minimum value, which is adopted for all watershed units in the
process of extracting watershed areas. We herein adopted the slope spectrum method to
determine the stable area of each watershed unit.

The slope spectrum is an effective method for determining the stable spatial structure
of landforms [28,37,73–94]. The combined features of slope (i.e., slope spectrum) is a
quantitative characterization of the terrain spatial structure for the landform [81], which
is closely related to geomorphic morphology and geomorphic development extent [83].
There exists a critical area that when the sampling area is greater than the threshold value,
the slope spectrum contains sufficient terrain feature information representing the whole
landform and, thus, presents stable combined features, and vice versa [82].

The spectra method that is widely used is mainly based on the expanding of an N* N
analysis window. However, it is not suitable for the extraction of the critical area for the
watershed since the watershed is an anisotropic terrain [64]. The calculation of spectral
critical area based on catchment area is another effective method to determine the stable
spatial structure of catchment units [64] (see Figure 5). As shown in Figure 6, initially, with
the gradual expansion of the catchment area (from yellow to blue to green to red), the slope
spectrum from the initial unstable state gradually becomes self-similar and stable. When
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the critical area (the area of the dotted box in the figure) was reached, the slope spectrum
region was stable. The detailed calculation steps can be given as follows:

(1) Calculate the slope map of the catchment area using the mesh-based clustering
algorithm proposed by Zevenbergen [95].

(2) Slope spectrums of different watershed units can be obtained by using overlap analy-
sis. Slope classification with a 3 degrees equal-interval has been proven to be suitable
for Loess Plateau [64,96], which was adopted in this paper.

(3) The stability of the slope spectrum for the extracted watershed can be measured by
the extracted slope spectrum with the referred slope spectrum. Defining the slope
spectrum of the watershed before expanding as T1 = {t1,1, t1,2, t1,3, t1,i, . . . , t1,30},
where t1,i is the percentage of the area within the i slope class in the catchment
area. Similarly, defining the slope spectrum of the watershed after expanding as
T2 = {t2,1, t2,2, t2,3, t2,i, . . . , t1,30}. Then, we defined the quantitative indices of sim-
ilarity as E1 and E2, which take the forms E1 = Abs(Max(P2)−Max(P1)) and
E2 = ∑30

i=1 sum(Abs (P2,i − P1,i)).
(4) The watershed area continuously expanded by adding the new watershed unit to

the catchment area. When there were 30 continuous cases where E1 < 0.001 and
E2 < 0.001, we viewed P1 as the stable slope spectrum and the watershed area of the
first case as the stable watershed area (see Figure 5).

Figure 5. The variation of the slope spectrum with the increase in the critical area.

2.2.2. Extracting the P–N Spatial Structure of the Watershed

To extract the positive–negative (P–N) terrain, extracting the watershed boundary pro-
file line and gully shoulder line is needed. The gully shoulder line can be extracted by com-
bining the slope variation [97–99] and verified using the window smoothing method [100].
The watershed boundary profile line can be extracted by the scope extracting function
of the ArcGIS. As the overall periphery of the catchment geomorphology, the watershed
boundary line is the highest and the boundary line in the whole watershed, which is almost
unaffected by the erosion of flowing water [101]. The Gully shoulder line is the important
feature line that divides the positive and negative terrain in the loess watershed, which is
also the boundary line of the soil erosion area and land utilization area [63]. Then, the P–N
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terrain can be further extracted by the division of the watershed boundary profile line and
gully shoulder line (see Figure 6).

Figure 6. The translation of initial spatial structure to the P–N terrain spatial structure.

In the development process of the P–N terrain structure, on the one hand, with the
continuous erosion by the severe water and gravity erosion, the positive terrain is gradually
divided and nibbled away by the negative terrain, and the gully shoulder line gradually
approached the watershed boundary profile line. On the other hand, the energy and
material are in the process of mutual migration and transformation. These lead to the result
that there are huge differences in the internal topographic features of the P–N terrain in
different landform types. The relationship of composition between the P–N terrain is one
of the five basic relationships in geomorphic classification [102]. The spatial structures of
the P–N terrain are the marks for distinguishing different landform types.

2.2.3. Extracting the WWCN Spatial Structure of the Watershed

The process to extract the gully feature nodes and connectivity relations between
different nodes can be given in the following steps: (1) extract the watershed feature
node layer via establishing stream network dataset; (2) extract watershed feature nodes
possessing confluence level information through spatial join function of ArcGIS; and
(3) obtain connectivity relation between different nodes through the spatial query.

To derive the weight further (i.e., the height differences of the interconnecting wa-
tershed feature nodes), the following procedures were adopted. Firstly, we obtained the
watershed connecting edge element by attribute query. Then, to extract height differences
between the watershed feature nodes that are connected, overlay analysis of ArcGIS was
conducted between the watershed connecting edge elements and the corresponding water-
shed unit. For each watershed edge, the height difference between the watershed feature
nodes that it linked was viewed as the weight for it.

Nodes, edges, and weight are the basic three elements for constructing the weight
complex network. From the respect of complex network theory, a watershed can be
viewed as the gully spatial structure that is made up of a series of watershed feature nodes
connected by gullies [67,103]. The types of watershed feature nodes can be divided into the
watershed outlet node, the watershed source point, and the watershed confluence node
(see Figure 7a).To construct the watershed weighted complex network (called WWCN for
short), we herein defined the watershed feature nodes as the network nodes and defined
the topological connection (gullies) between the neighboring watershed feature nodes as
the network edge, and defined the height differences between the neighboring nodes as
the weight of the edge.
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Figure 7. The form of the watershed network (a) and the WWCN spatial structure with the edge weight and node
strength (b).

The red points are the watershed outlet points, which are the outlets of the watershed
and are the points with the lowest height as well as the largest flow amount in the watershed.
The pink points are the watershed source nodes, the source of the watershed. The green
points are the watershed confluence nodes, which are the intersect nodes between different
streams. The gully nodes are not only different in form and quantity, but also have a strong
combination of spatial relations, forming an orderly whole through a mutual connection.
As seen in Figure 7b, following the topological relation of the simulated WWCN spatial
structure, each node and edge were given their unique attribute value (i.e., node strength
and edge weight).

2.2.4. The Quantitative Description of the WWCN Spatial Structure and P–N Terrain
Spatial Structure

Combining the complex network theory and the watershed geomorphology, the gully
line density, average node strength, fractal dimension, structure entropy, average path
length, network density, and modularity were proposed to quantitatively describe the
WWCN spatial structure (see Table 2). According to the P–N spatial structure, Extent for
nibbling away (EN), Cutting Depth (Cd), Shape Metrics (Sd), Homogeneous index (H),
Fragmentation (F), and Mean-Slope-Difference (MSD) were proposed to quantitatively
depict the P–N terrain spatial structure (see Table 3).

Table 2. The quantitative indexes of WWCN spatial structure and their corresponding algorithm.

Quantitative Indexes Algorithm Remark

Average node strength (NS) NSi =
∑N

i=1

(
∑j∈Ni

aijwij

)
N

wij is the edge weight (height differences) between
node i and node j; aij is the element of the network

adjacency matrix

Average path length (AL) AL = 1
1
2 n(n−1) ∑

i>j
dij

n is the total number of the nodes in the network; dij is
the distance between node i and node j (i.e., the sum
number of edges in the shortest path of two nodes);

Fractal dimension (FD) d = −lim ln t(r)
ln r

Box dimension method is a common and effective
approach [104]. For any watershed network, we used
the box whose length is r to cover it. We computed the

number of nonempty boxes (t(r)) with the case that
watershed under setting different lengths (r = 1, 2, 3, 4,

. . . , M). By defining r as the x-axis and ln t(r) as the
y-axis, least-square method was utilized to conduct
linear regression. The negative slope for the fitted

equation is the fractal dimension.
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Table 2. Cont.

Quantitative Indexes Algorithm Remark

structure entropy (SE) Hi =
d(i)

∑n
i=1 d(i) ; SE = −

n
∑

i=1
HilnHi

Hi is the importance of i-th node; n is the total number
of the network node; d(i) is the degree of the i-th node.

network density (ND) d(G) = 2m/[n(n− 1)]
m is the actual number of connected edges in the

network; n is the sum number of the nodes;

Modularity (M) M = 1
2m ∑

i,j
(Aij − kikj/(2m)δ

(
Ci, Cj

) m is the total edges of the network; ki is the sum of the
weights for node i; Aij represents the weight of the

edge between node i and node i; δ(a, b) is the function
that set δ = 1 when a = b, otherwise δ = 0; Ci is the

community to which node i belonged.

gully line density GL = L
A

GL is the gully line density, L is the total length of the
gully lines in the sample area, A is the watershed area.

Table 3. The quantitative indexes of P–N terrain spatial structure and their corresponding algorithms.

Quantitative Indexes Algorithm Remark

Extent for nibbling away (EN) EN = Sn
Sp

Sa is the horizontal projection area of the negative
terrain; Sb is the horizontal projection area of the

positive terrain

Cutting Depth (Cd) Cd = Mean
(

Hp
)
−Mean(Hn)

Hp is the height of the positive terrain; Hn is the
height of the negative terrain;

Shape Metrics (Sd) Sd =
N
∑

i=1
Wi

Li
2
√

πSi

Sd is the shape metric; Wi is area weight of the i-th
patch; Si is area of the i-th patch; Li is the perimeter of

the i-th patch

Homogeneous index (H) H =

√
∑N

i=1 [Ai−(∑n
i=1 Ai/n)]2

N ∗ 106
n is the number of positive patch; Ai is the area of each

positive patch;

Fragmentation (F) F = n
∑N

i=1 Ai

n is the number of positive patch; Ai is the area of each
positive patch;

Mean-Slope-Difference (MSD) MSD = Mean
(
Sp
)
−Mean(Sn)

Sp is the slope of the positive terrain; Sn is the slope of
the negative terrain;

2.3. Light Gradient Boosting Machine

LightGBM (Light Gradient Boosting Machine) is a new gradient Boosting Decision
tree frame with high efficiency, fast training speed, and distributed support [105]. Since
its good performance in different machine learning tasks such as sorting, classification,
and regression, it has been widely employed in different academic fields [105–108]. How-
ever, its application on landform auto-classification is rare, though it has shown enough
potential in landform application. Thus, this paper adopted it to conduct the loess
landform auto-classification.

Two key differences between it and other gradient boosting tree algorithms were the
histogram-based algorithms in the search of split points (see Figure 8) and the leaf-wise tree
growth strategy with depth limit (see Figure 9). The basic idea of the histogram algorithm
is to discretize the continuous feature values into K integers and a histogram of K bins can
be constructed by that. By traversing the data, the discretized values are used as indexes to
accumulate statistics in the histogram. After traversing the data once, the required statistics
were accumulated in the histogram. According to the discrete value of the histogram,
the optimal split points can be found. Since the number of the bins were less than the
data amount, compared to the presorting algorithm used by another gradient boosting
tree algorithm, the time complexity, and memory footprint of the histogram algorithm
dramatically decreased. That is, the root node is determined first, and then the branches
are determined according to the information gain and other indicators. The structure of the
tree is formed by analogy.
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Figure 8. The diagram of the histogram-based algorithms in the search of split points.

Figure 9. The diagram of the leaf-wise (a,b) tree growth strategy with a depth limit.

Alternatively, in the direction of tree growth, the general decision tree algorithm
adopts the level-wise method (see Figure 9a). That is, the root node is determined first
and the branches are divided indiscriminately. However, many branches of low gains are
unnecessary. Differently, the leaf-wise tree growth strategy was adopted in the LightGBM.
In each branch, the leaf with the largest gain was found from all the current branches, then
split (see Figure 9b). The strategy will circulate constantly. Therefore, when the trees are
increased to the same branch, the algorithm based on leaf-wise strategy may decrease more
errors and obtain more accuracy. However, when sample data are little, leaf-wise may
lead to overfitting. Based on this, the depth-limit parameter can limit the depth of trees to
avoid overfitting.

2.4. Evaluation Criterion and Experimental Design

The recall rate, precision, F1 values, and confusion matrix are the basic evaluation
metrics in classification based on machine learning, which is extensively used. For one
landform type, precision measures the ratio of correct classification results to the classi-
fication results. For one landform type, recall rate refers to the ratio of correct classified
landform numbers to the actual landform numbers. To comprehensively estimate the
classification performance for one landform type, the F1 value is the mean of the recall rate
and the precision. The confusion matrix is a statistic table produced by the actual landform
types and the landform classification result, which is generally used to analyze the errors
and confusion of the landform classification results.
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Moreover, overall accuracy and Kappa coefficient are adopted to comprehensively
evaluate the overall performance of the landform classification result. The overall accuracy
is the proportion of correctly classified samples to total samples. Kappa coefficient denotes
the ratio of error reduction in classification to a completely random classification. It can be
given by the following:

Kappa =
P ∑n

i=1 Tii −∑n
i=1 Ti+T+i

P2 −∑m
i=1 Ti+xT+i

(2)

where P is the sample number, m is the total number of the classes, Tii is the number of the
correctly classified samples, Ti+ is the classified sample number of the i-th class, and T+i is
the total sample number of the i-th class.

The dataset was divided into the training dataset and test dataset by the ratio of 8:2. To
prevent the problem of overfitting, five folds cross validation was conducted in the training
datasets. Moreover, based on the five folds cross validation, grid search was employed
to find the optimal model. Grid search is a method to find the optimal parameters of the
machine learning methods [109,110]. It is an algorithm that calculates the parameters of
the function by cross validation, in the form of the permutations and combinations for the
possible values of each parameter. Although the grid search is time-consuming, it has a
wide search range and is likely to find the optimal parameter combination.

3. Results and Discussions
3.1. The Stable Area of the Watershed

The stable area of the watershed unit for different landforms is different. Previous
scholars generally control the size of each watershed unit at a uniform value, such as
10 [27,28], 30 [88], and 100 km2 [61]. A segmentation area of a watershed that is too small
may mean that the watershed cannot fully contain the terrain features of the sample area
and, thus, affect the recognition accuracy. Values that are too large may contain the “noise
signals” of the terrain and bring heavy work for the studiers. Thus, slope spectrum, which
is an effective method to determine the landform spatial structure, was adopted in this
paper to control the size of the watershed unit.

To investigate the stable area of the extracted watershed, we used the slope spectrum
method to extract the stable area of the nine typical loess landforms (see Figure 10). We
ranged the size of the watershed stable areas to find the laws. Combining Table 1 and
Figure 10, the watershed showed a regular descending trend with the landform evolution.
The more evolution the loess terrain is, the lower the size of the stable area is. The reasons
for that can be explained as follows. For the landforms in high evolution, the landform
features are complex and, thus, obvious. Only a small watershed area is needed to present
the whole terrain’s features. It was consistent with the regularity of “the more complex
the loess terrain is, the lower stable area will be” [64]. On the other hand, the different
landform types generally showed different watershed stable areas. Most of the stable
watershed area was around 10 km2, which corresponded to the stable area determination
of previous scholars [27,28]. However, for the 300 watersheds, the size of the stable area
that was between 10–15 km2 accounted for only 63.33%. It suggested that the uniform
stable area for all the watersheds is unsuitable; the stable watershed areas for some regional
landform sites are not around 10 km2.
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Figure 10. The size for the watershed stable areas of the nine typical loess landforms.

Obviously, with a uniform value of 30 or 10 km2, it may be suitable for most of the
areas. However, there will always be some watershed units whose stable area is greater
than the fixed value. It can be noted that the stable watershed areas of the 300 watersheds
were all less than 100 km2. The uniform value of 100 km2 is superfluous, which brings
too much work for researchers. Thus, the method of determining the stable area via
slope spectrum may be better than the traditional method of determining by unifying the
watershed area.

3.2. Recognition Result Based on Different Watershed Spatial Structures

Based on the watershed stable area of different sites, we extracted the corresponding
watersheds. Then, we first constructed the P–N terrain spatial structure and the WWCN
spatial structure to extract the 13 comprehensive quantitative indexes as the feature matrix.
A total of 240 watersheds were taken as the training datasets to construct the classified
model via the LightGBM and the remaining 60 watersheds were adopted as the test datasets
to verify the recognition effect. A grid search with cross validation was conducted to
construct the basic LightGBM model. Via the LightGBM model, we, respectively, conducted
the landform recognition based on the single spatial structure and the combination of the
two spatial structures.

To comprehensively compare the performances between these three classification
methods, Figure 11 shows the recall rate and precision of these three classification results.
As can be seen in Figure 11, most of the recall rates and precision are beyond 80%, which
suggests the good performance of these two landform recognition methods. These indi-
cated that by depicting the terrain spatial structure of the landform from different angles,
the WWCN spatial structure and the P–N terrain spatial structure are feasible for the
classification of landforms. The accuracy and recall rate of the P–N terrain spatial structure
is generally lower than that based on the WWCN spatial structure. Moreover, for the
WWCN spatial structure, the overall accuracy is 85% and the kappa coefficient is 0.82; for
the P–N terrain spatial structure, the overall accuracy is 83.333% and the kappa coefficient
is 0.80066. Thus, for the single quantitative description of the watershed spatial structure,
the WWCN spatial structure exhibited a better identification effect than the P–N terrain
spatial structure.
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Figure 11. The comparison between the P–N terrain spatial structure, WWCN spatial structure, and the combination of the
two structures.
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It was noted that although for most landform types, the performances of the WWCN-
based recognition are better than the P–N terrain-based classification, the recognition result
of the recall rate and precision for valley plain are reverse to the other results. This result
indicated that the valley plain is not easy to distinguish based on the angle of the WWCN
terrain spatial structure due to its flat and wide terrain. In this case, the P–N terrain theory
provided another better angle for the quantitative description of the landform spatial
structure. Moreover, for the landform of obvious spatial structure, the P–N terrain-based
methods and the WWCN-based methods all showed good performance. In terms of the
recall rate, the loess tableland, loess ridge, and loess hill all reached 90%, whereas the
sandhill and valley plain are lower. The same phenomenon can be observed in the F1
values, the loess tableland, loess ridge, and loess hill, which also reached higher values than
the other three landform types. The much-developed ravines and the broken landform
surface of typical loess landforms led to the obvious spatial structure. Adversely, with
slight terrain relief, sand hill and valley plain were full of sand or plain and the terrains
were flat. It may suggest that the quantitative description method via considering the
spatial structure has a positive response to the landform types with an obvious spatial
structure such as loess hill and loess ridge. Another evidence is that when we combine
the two spatial structures to conduct the landform recognition, the F1 values of the loess
typical landforms (loess tableland, loess ridge, loess hill) all increased and were greater
than the sand hill and valley plain.

Table 4 shows the confusion matrix of the recognition result based on the combination
of these two structures. The recall rate and precision generally increased. The F1 values
all have a certain increase. The overall accuracy reached 91.67% and the Kappa coefficient
reached 0.9004. By contrast, the classified result (Figure 12a) fitted well with the actual
results (Figure 12b). It suggested that the recognition performance of the data fusion
schemes of two watershed spatial structures is greater than the other two methods. This
also indicated that the quantitative description of the WWCN spatial structure and that of
the P–N terrain spatial structure are complementary. Combining the data of quantitative
description for the WWCN spatial structure and that for the P–N terrain spatial structure
can significantly improve the geomorphic recognition ability.

Table 4. The confusion matrix produced by combining the WWCN spatial structure and the P–N terrain spatial structure.

Loess
Tableland

Loess
Ridge

Loess
Hill

Stony
Mountain

Sand
Hill

Valley
Plain

Precision
(%)

Recall Rate
(%) F1 (%)

Loess tableland 10 0 0 0 0 0 90.9 100 95.45
Loess ridge 0 10 0 0 0 0 90.9 100 95.45
Loess hill 0 0 10 0 0 0 100 100 100

Stony mountain 0 1 0 9 0 0 90 90 90
sand hill 1 0 0 0 8 1 80 80 80

valley plain 0 0 0 0 2 8 88.9 80 84.45
Overall accuracy, 91.67%
Kappa coefficient, 0.9004

One finding to be noted is that the distinction between loess ridge and loess mound is
successful. However, differing loess ridge from loess hill was generally difficult [24]. The
morphology of the two landform types are similar, and their definitions are ambiguous,
making the classification difficult. The proposed method may provide a good approach for
distinguishing the two kinds of landform types.

We can observe that the greatest confusion was in the sand hill, valley plain, and
the loess tableland, which may be attributed to the presence of similar patterns between
the relatively flat landforms. In these landforms, the terrains suffering from weaker
erosion were, thus, in low evolution. For the relatively smooth and unbroken terrain,
compared to loess hill or loess ridge with the rough topography and great relief intensity,
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the spatial structure or morphology may be similar or inconspicuous, thereby being difficult
to distinguish.

Figure 12. The comparison of the actual landform types (a) and the recognition results via the combination of P–N terrain
spatial structure and the WWCN spatial structure (b).

3.3. Importances of Different Comprehensive Quantitative Indexes

The LightGBM based on the machine learning database of python offers a series of
simple internal measures to estimate the importance of employed feature variables. In this
paper, the importance of the feature variables can reflect the quantitative description extent
of the feature variable to the watershed spatial structure. Figure 13 shows the importance
of the different feature variables.

Figure 13. The variable importance for different quantitative indices based on the combination of
watershed structures.

The importance of most WWCN indices was greater than the importance of the P–N
terrain indices. It may suggest that the contribution of the WWCN indices was greater
than the P–N terrain indices in the landform recognition process. The finding may explain
the result that the recognition performance based on the quantitative description of the
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WWCN spatial structure is worse than that based on the quantitative description of the
P–N terrain spatial structure.

Furthermore, we observed that the parameters that were closely related to the com-
bined watershed structure (such as the average node strength, gully line density, frag-
mentation, network density, etc.) were, generally, at the relative front of the order of
importance. These indices were closely related to the basic combination of the watershed
structure, which is the gullies, gully nodes, P–N patches, etc. The finding proved that
the basic combination of the watershed spatial structure has good explanatory power for
the landform recognition, which is, to some extent, strong support for the study base in
this paper.

3.4. Comparison with the Fusion of Terrain Derivatives and Texture Derivatives

Previous scholars invariably recognized landforms by extracting terrain derivatives
and texture derivatives. To compare the landform recognition by the combination of the two
spatial structures with the landform recognition based on the terrain derivatives and texture
derivatives, thirteen quantitative indices were extracted from the 300 watersheds as the
terrain feature datasets. These quantitative indices were the terrain derivatives or texture
derivatives, which have been found to be of high importance in landform recognition by
previous investigations [13]. A grid search with cross validation was also conducted to
construct the optimum LightGBM model. Table 5 shows the confusion matrix based on the
fusion datasets of the terrain derivatives and texture derivatives. The kappa coefficient is
0.8404 and the overall accuracy is 86.67%, which showed that the recognition effect is worse
than the recognition effect based on the combination of the two watershed structures.

Table 5. The confusion matrix produced by the fusion datasets of the terrain derivatives and texture derivatives. Noted
that the fusion datasets included average slope, variance of slope, variance of curvature, entropy of slope, average slope of
slope, elevation range, hillshading entropy, slope entropy, elevation variance, standard deviation of slope of slope, standard
deviation of curvature, hillshading contrast, and the maximum slope.

Loess
Tableland

Loess
Ridge

Loess
Hill

Stony
Mountain

Sand
Hill

Valley
Plain

Precision
(%)

Recall Rate
(%) F1 (%)

Loess tableland 9 1 0 0 1 0 90 90 90
Loess ridge 1 8 1 0 0 0 66.67 80 73.34
Loess hill 0 2 8 0 0 0 88.89 80 84.45

Stony
mountain 0 1 0 9 0 0 90 90 90

sand hill 1 0 0 0 8 1 88.89 80 84.4
valley plain 0 0 0 1 0 9 90 90 90

Overall accuracy, 86.67%
Kappa coefficient, 0.8404

In terms of the landform types, the F1 values of loess hill and loess ridge were relatively
lower, which corresponds to the findings of Zhao [13]. On the contrary, the F1 values of
valley plain and stony mountain were greater than that based on the combination of the two
watershed structures. This may indicate valley plain and stony mountain have relatively
obvious terrain features and texture features. On the other hand, the proposed method can
be complementary to the previous methods.

Several experiments were conducted to further evaluate the differences in the landform
recognition methods. Specifically, we took 50, 55, 60, 65, 70, 75, and 80% of the sample
datasets as the training datasets and the remaining datasets as the test datasets. Based on
these dataset’s division, the landform recognitions were, respectively, conducted to study
how the number of training samples affects the recognition accuracy [10,111]. Figure 14
shows the results using two kinds of methods in terms of different training–test ratios.
Furthermore, in different dataset divisions, the accuracies of the proposed method were
generally greater than the accuracies based on the fusion datasets of the terrain derivatives
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and texture derivatives. The recognition accuracies based on different methods were
regularly enhanced with the increase in training datasets. Moreover, the mean increase
in the accuracy of the proposed method is about 2.5%, whilst the accuracy increase in the
previous method is about 2%. It suggested that the proposed method is more robust.

Figure 14. The overall accuracies of the two kinds of methods with the variation of the train–test
dataset ratio.

3.5. Comparison with Other Popular Machine Learning Methods

To quantitatively evaluate the performance of the LightGBM, the proposed method
was compared with the other three popular machine learning methods (Random forest (RF),
Extreme Gradient Boosting algorithm (XGBoost), Gradient-boosted decision trees (GBDT),
support vector machine (SVM)). To fairly compare the recognition performance, the ratio
of training datasets to the test datasets was in line with that based on the LightGBM. A
grid search with five folds cross validation was performed to find the optimum model of
the different machine learning methods.

Under different machine learning methods, Table 6 shows the F1 values of different
landforms and the total accuracy. It is not difficult to find that for different machine learning
algorithms, the landform recognition based on the combination of the two watershed
structures generally showed good performances. All of the total accuracies were greater
than 80%. It can be noted that the recognition effect of XGBoost, whose total accuracy
reaches 90%, nearly weighs against XGBoost. However, the time consumption of XGBoost
is often several times greater than that of the LightGBM [106,112,113]. The LightGBM is a
better choice when the recognition accuracy of both is similar. Meanwhile, we observed
that the F1 values of the proposed method outperform all the other algorithms for all the
six landform types. Thus, we can conclude that the LightGBM based on the combination
of the two watershed structures is an effective method with high accuracy in conducting
landform recognition.

3.6. Innovations of This Study

Watershed-based landform recognition has been a new spot in the field of landform
classification. However, there are still some unexplored but significant bottlenecks in
this field.

Firstly, the divided small watershed area must ensure the property stability of the
small watershed [37]. The extracted area size of the watershed must ensure the property
stability of the watershed. Previous scholars generally employed a uniform sized area
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of the watershed to extract each watershed. However, for different landforms, the stable
spatial structure area of the watershed is different [114]. When the area size of the extracted
watershed is small, the watershed is unstable; therefore the terrain indices derived from the
watershed cannot represent the overall landform type [27,29,115–117]. In this paper, the
slope spectrum method is used to extract the stable area of the watershed, which provides
a new insight for solving this issue.

Table 6. Comparisons between the five kinds of machine learning methods. The bold number represents the greatest values
in each column.

Loess
Tableland Loess Ridge Loess Hill Stony

Mountain Sand Hill Valley Plain Total
Accuracy

LightGBM 95.45 95.45 100 90 80 84.45 91.67
RF 95 90 90 90 80 84.44 88.34

XGBoost 95.45 90.91 95 90 90 84.45 90
GBDT 90 90 90 84.44 85.91 80 86.67
SVM 90 85.91 90 90 85.91 80.00 86.67

Secondly, traditional landform recognition methods mainly rely on basic terrain
derivatives and texture derivatives such as slope, elevation, hillshading, and other terrain
factors [29,36,38,118,119]. The watershed object-based landform recognition method also
relies on the original method’s system used in previous studies. Thus far, there is no basic
theory that is separated from the original method of the landform recognition system.

Based on this, we, for the first time, proposed an effective methodology to conduct
landform recognition from the perspective of the watershed spatial structure. In terms
of the watershed, the spatial structure is diverse, complex, and dynamic. As an effective
method for a quantitative description of a spatial structure [44,59,119], the complex network
method has not been used in landform recognition based on watershed units. The P–N
terrain theory is also a common and effective method in landform demarcation for the
landform spatial structure. Thus, a series of carefully designed experiments were conducted
on the 300 watersheds of the Loess Plateau to extract the P–N terrain and the WWCN for
simulating the watershed spatial structure. Then, a series of quantitative indices were
proposed to quantify the spatial structure and composition of the watershed from multiple
angles. Via the LightGBM, we found that the simulation and quantification of the watershed
spatial structure can effectively recognize the geomorphology with high accuracy. Thus,
the proposed method provides new methodology and insights for landform recognition in
the field of using watersheds as a basic unit.

By contrast, for the combination of two kinds of watershed spatial structures, the
comprehensive performance was better than that based on the basic terrain derivatives
and texture derivatives in the landform recognition on Loess Plateau. Furthermore, the
proposed method possesses better robustness. It is noted that in the previous loess landform
studies, the recognition of the loess hill and loess ridge is generally difficult due to its
complex but similar morphology. Indeed, even for some terrain experts, it is not easy
to identify. However, by combining the WWCN spatial structure and the P–N terrain
structure to conduct the landform recognition, the performance is good and outperformed
that based on basic terrain indices. It may suggest that, except for not being inferior to the
inherent landform recognition methods based on the terrain factor, the proposed method is
more effective than the previous methods in some landforms where the spatial structure or
morphology is complex.

Moreover, in comparison with other popular machine learning methods, we inves-
tigated the adaptation of the watershed structure-based approach to the LightGBM. The
experiments’ result showed that the combination of the LightGBM and the watershed
structure-based approach achieved the greatest comprehensive performance, which pro-
vided references for upcoming research.
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3.7. Possible Limitations

The quantification of the watershed is inevitably affected by DEM resolution. It may
lead to local feature error, which will affect the classification accuracy. However, this is an
unavoidable problem for digital terrain analysis based on DEM.

We compared the proposed method with the method based on the basic terrain indices
and proved its good performance. However, further improvements are possible, e.g., can
the proposed method be further combined with a method based on the basic terrain indices?
This is a valuable but difficult theme that can be further explored. Due to the limitation of
the paper content, this paper focus on exploring the potential of the proposed method in
the field of landform classification using watershed as a basic unit.

4. Conclusions

This paper firstly proposed a landform recognition method from the view of the
watershed spatial structure and composition. The methodology combines the WWCN and
P–N terrain to simulate and quantify the watershed spatial structure, which breaks out the
fixed theory of landform recognition based on the terrain indices. The proposed method
showed convincing performance on the landform recognition to the six landform types.
The observation and conclusion can be given as follows:

(1) The watershed structure-based method is an effective landform recognition theory
with rich potential in the landform recognition field of using the watershed as a
basic unit. The fusion of the WWCN spatial structure and the P–N terrain structure
can significantly improve the landform recognition performance. It is noted that
the WWCN is the first attempt of the complex network theory in the landform
recognition field.

(2) Without using a uniform area as a criterion for watershed area division, the slope
spectrum method is used to determine the stable area of the watershed. It provides
additional insights for the area determination of the watershed.

(3) The landform recognition performance and robustness based on the combination of
the WWCN and P–N terrain outperformed that based on the terrain derivatives and
texture derivatives, thereby suggesting the great significance of our study.

(4) The methods from the angle of the watershed spatial structure and composition
seemed to be well adapted to some similar or complex landforms. The loess ridge and
loess hill are generally difficult to distinguish via landform recognition or artificial
discrimination. The proposed method is effective in alleviating the confusion of
the two kinds of similar landforms. By adopting the combination of the WWCN
and P–N terrain to simulate the watershed spatial structure, the F1 values reached
95.4% and 100%, respectively, which was better than the method based on the basic
terrain indices.

(5) The LightGBM algorithm is suitable to be employed for the landform recognition of
the watershed structure-based method since it showed better performance than the
other machine learning methods.

In brief, the proposed method, from the view of the watershed spatial structure and
composition, is a new methodology differing from the previous method that fairly relies
on the terrain indices. It further provides additional insights and enriches the theory for
the landform recognition field of using the watershed as a basic unit.
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