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Abstract: The rapidly increasing world population and human activities accelerate the crisis of the
limited freshwater resources. Water quality must be monitored for the sustainability of freshwater
resources. Unmanned aerial vehicle (UAV)-borne hyperspectral data can capture fine features of
water bodies, which have been widely used for monitoring water quality. In this study, nine machine
learning algorithms are systematically evaluated for the inversion of water quality parameters
including chlorophyll-a (Chl-a) and suspended solids (SS) with UAV-borne hyperspectral data. In
comparing the experimental results of the machine learning model on the water quality parameters,
we can observe that the prediction performance of the Catboost regression (CBR) model is the best.
However, the prediction performances of the Multi-layer Perceptron regression (MLPR) and Elastic
net (EN) models are very unsatisfactory, indicating that the MLPR and EN models are not suitable
for the inversion of water quality parameters. In addition, the water quality distribution map is
generated, which can be used to identify polluted areas of water bodies.

Keywords: water quality parameters inversion; machine learning; UAV-borne hyperspectral data;
water quality mapping

1. Introduction

Inland water is the most significant freshwater resource for humans. It has various
functions, including water storage, irrigation, and power generation. Inland water bodies
are usually close to human settlements. They are easily subject to the combined pressures
caused by intensive human activities and environmental changes. Pollution, such as
agricultural activities, aquaculture, and industrial discharge, will lead to the accumulation
of nutrients in the water and will cause eutrophication [1]. The eutrophication will further
lead to the occurrence of algal blooms [2]. These destroy the aquatic ecological structure and
consume a large amount of dissolved oxygen, leading to hypoxia and cause the death of
aquatic animals and plants. Therefore, for the sustainable development of water resources,
water quality must be monitored by statutes on a chemical, physical, and biological basis,
according to the Environmental Quality Standards for Surface Water (GB3838-2000) in
China [3]. Water quality parameters are the most commonly used evaluation measurements
to characterize the water quality of inland water bodies.

Chlorophyll-a (Chl-a) concentration and Suspended solids (SS) concentration are the
most common water quality parameters. Chl-a is a typical optical active parameter widely
existing in algae and cyanobacteria, as well as in other aquatic plants. The concentration of
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Chl-a is an indicator for the eutrophication of water bodies based on nutrient availability,
quantifying the nutritional status of water bodies [4]. High concentrations of SS will reduce
the light transmittance of the water and increase the water-leaving reflectance in the visible
wavelength. The concentration of SS in water is also directly related to the migration of
pollutants such as heavy metals and organics [5]. Therefore, it is essential to monitor the
concentration of SS in the aquatic system.

The conventional methods for water quality monitoring are mainly based on field
sampling and laboratory analysis, which are expensive, time-consuming, and labor-
intensive [6]. With the development of remote sensing technology, remote sensing has been
used as a supplement for traditional methods in aquatic ecosystem monitoring because
of its convenient acquisition, long-term dynamic monitoring, and inexpensive qualities.
Huang et al. evaluated the spatial variation of Chl-a using MODIS data for different river
flow conditions [7]. Doña et al. predicted and assessed the dynamics the diversification of
Chl-a and transparency using MODIS, TM, and ETM+ data [8]. Du et al. investigated the
tempo-spatial dynamics pattern of water quality in the Taihu Lake estuary using GOCI
imagery [9]. Syariz et al. used spectral and spatial information from Sentinel-3 images
to retrieval the concentration of Chl-a [10]. Rajesh et al. predicted the heavy metal con-
centration in water including Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu),
iron (Fe), lead (Pb), nickel (Ni), zinc (Zn), aluminum (Al), cobalt (Co), manganese (Mg),
beryllium (Be), boron (B), lithium (Li), molybdenum (Mo), selenium (Se), and vanadium
(V), using Cartosat-2 data and measuring data [11]. Rostom et al. predicted and assessed
the concentration of heavy metals including Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in
water using hyperspectral remote sensing data [12]. The studies mentioned above have
researched the application of satellite remote sensing data for water quality monitoring.
However, it is challenging to assess water quality in inland water bodies with the coarse
spatial resolution and spectral resolution of satellite data. UAV-borne remote sensing hy-
perspectral data with high spatial resolution, spectral resolution, and timeliness is superior
to satellite data. Therefore, the water quality parameters’ concentration can be predicted
and retrieved using UAV-borne hyperspectral data.

The spectral reflectance information extracted from remote sensing imagery can be
used to estimate the concentrations of water quality parameters. Meanwhile, artificial
intelligence technology is widely used in the water quality monitoring field in recent years.
Quan et al. used a genetic algorithm (GA) to optimize the parameters of the support vector
machine regression (SVR) model for the prediction of vertical water temperature and water
temperature structure [13]. Leong et al. used the support vector machine (SVM) and least-
squares support vector machine (LS-SVM) to predict water quality parameters including
dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD),
suspended solids (SS), pH value (PH), and ammoniacal nitrogen (AN) [14]. Lu et al. used
the extreme gradient boosting (XGBoost) model and random forest (RF) model to predict
water quality parameters including temperature, DO, specific conductance, pH value,
turbidity, and fluorescent dissolved organic matter [15]. Najah Ahmed et al. proposed a
neuro-fuzzy inference system (ANFIS)-based augmented wavelet de-noising technique
(WDT) to predict water quality parameters including AN, SS, and pH [16]. Sharafati
et al. used adaboost regression (ABR), gradient boost regression (GBR), and random forest
regression (RF) to predict water quality parameters including total dissolved solids (TDS),
five-day biochemical oxygen demand (BOD5), and COD on a daily scale [17]. Parsimehr
et al. used the multilayer perceptron artificial neural network to predict and simulate the
COD of the Gamasiab river [18]. Xiaojuan et al. used ensemble learning models based on
four models, including the k-nearest neighbors (KNN), artificial neural network (ANN),
SVR, and RF, to retrieve Chl-a and TN in water [19]. Although researchers have conducted
numerous studies, there is still a lack of analyses on different machine learning algorithms
using UAV-borne hyperspectral data.

The machine learning model can quickly acquire the required information from the
data but different models have different characteristics. Therefore, the main aims of this
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study are (1) to compare and analyze the prediction performance of different machine
learning models, including CBR, Adaboost regression (ABR), extreme boost regression
(XGBR), random forest (RF), extremely randomized trees (ERT), support vector regression
(SVR), MLPR, and EN, using the evaluation index including R2 , RMSE, and MAE; (2) to
use typical water quality parameters, including Chl-a and SS, to evaluate the machine
learning model; and (3) to verify the potential of machine learning models combined with
UAV-borne hyperspectral data in water quality mapping.

2. Materials and Methods
2.1. Study Area

The study area was Beigong Reservoir (114◦21′14.15” E, 30◦35′5.52” N) with a catch-
ment area of 6.8 km2 and a storage capacity of 12.2 × 106 m3, which is the primary supply
source for the tributary of the Liu River, namely the Pearl River basin of the Xijiang river
system. Beigong Reservoir is located in the Beigong village southwest of Liuzhou, Guangxi
Zhuang Autonomous Region, China. Additionally, Liuzhou is an essential industrial city
in Guangxi and is key to the “three wastes” emissions of exhaust gas, wastewater, and
waste residue. Moreover, the Liuzhou Municipal Government attaches great importance to
the local water pollution problem. Beigong Reservoir is a medium-sized reservoir, utilized
for irrigation, flood control, and power generation. It is a famous tourist attraction with a
beautiful scenery surrounded by mountains that integrates entertainment, tourism, and
life functions. Hence, the Beigong Reservoir is of great significance for the residents and
policymakers.

2.2. Data Collection

Liuzhou’s summers are long, hot, sultry, humid, and cloudy, and the winters are short,
cold, and mostly sunny. During the year, the temperature usually varies between 6 ◦C
and 33 ◦C, and is rarely below 2 ◦C or above 36 ◦C. Therefore, the best time to conduct
a water quality sampling survey is from the last ten-day period of September to October.
Therefore, field investigations were uniformly conducted in Beigong Reservoir from 9 to
10 September 2018. On the basis of the field data collection regulations, 33 sample points
at Beigong Reservoir were collected for Chl-a and SS inversion. The field sampling data
were analyzed in the laboratory. The statistical information of the water sampling data is
shown in Table 1. Detailed information about the Beigong Reservoir is presented in Figure
1, in which the water quality sampling points, ground water surface spectrum point, the
UAV-flight routes, and the obtained UAV-borne flight strips are shown.

Table 1. Statistical information of the water sampling data in Beigong Reservoir including Chl-a
(mg/m3) and SS (mg/L).

Water Quality
Parameters Range Average Value Standard

Deviation

Chl-a (n = 33) 3.54~14.2 (mg/m3) 8.03 2.32
SS (n = 33) 2~18 (mg/L) 5.86 4.54
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Figure 1. The study area and sampling information.

The ground water surface spectral reflectance data will be discussed next. The ground
water surface spectrum was collected by the ASD FieldSpec 3 field-portable spectrometer
with a wavelength range of 350–2500 nm. The spectrometer was provided by the China
University of Geosciences (Wuhan, China). The measurement of the ground water surface
spectrum was based on the “above-water surface method” [20]. The reference board with
a reflectivity of nearly 1 was used for radiometric calibration. In windless weather, the
water surface was flat. The water surface spectrum, sky spectrum, and synchronously
the spectral data of the reference board were collected. The reference board was utilized
to perform the calibration of the water surface spectrum and to obtain the water-leaving
reflectance data. The ground water surface spectral reflectance collection was repeated
three times in situ and the average value of the three collected data was used as the final
reflectance data. The total radiance received by the spectrometer can be expressed as:

L_sw = Lw + rLsky (1)

where L_sw is the total radiance received by the spectrometer. Lw is the water-leaving
radiance. Lsky is the diffuse radiance of the sky. r is the air–water interface reflectance rate.
When the water surface is flat, r can be set as 0.022; when the wind speed is about 5 m/s, r
can be set as 0.025; and when the wind speed is about 10 m/s, r can be set as 0.026–0.028.
Lw can be expressed as follows [21]:

Rrs =
Lw

Ed(0+)
=

(L_sw − rLsky)

πLp
ρp (2)

Ed(0
+) = Lp

π

ρp
(3)

where Ed(0+) is the incident total irradiance. Lp is the 100% converted value of the reference
board. Rrs is the water-leaving reflectance.

The UAV-borne hyperspectral data will be discussed next. We adopted the six-rotor
DJ M600 Pro UAV as the airborne platform and the sensor installed on it was the Headwall
NANO-Hyperspec manufactured by Headwall Photonics Lnc. The spectral resolution was
6.0 nm [22,23]. The resampling interval was set to 2.2 nm, which is the sensor parameter. At
the UAV flight process, the field of view was 16◦ and the flying height of the UAV was 400
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m with a real-time wind speed of 5.2 m/s. According to the area of the reservoir, 10 routes
of flight have been designed, where the along-track overlap was 80% and the side overlap
was 60% [24]. With 270 spectral bands in the range of 400–1000 nm, the spatial resolution of
the hyperspectral imagery was 0.173 m/pixel. Due to the low flight altitude, atmospheric
influence can be ignored [25]. The UAV-borne hyperspectral image preprocessing was
conducted, including water body extraction, sensor calibration, geometric correction, and
in situ radiation correction. Firstly, the normalized difference water index (NDWI) was
used to extract the water information in the UAV-borne image [26–28]. Secondly, we
performed geometric correction for the image. The NANO-Hyperspec hyperspectral
imaging spectrometer has a global positioning system and an inertial measurement unit
(GPS/IMU) navigation system that can contribute to geometrically correcting the image
by recording the position and attitude information of the spectrometer. Thirdly, regarding
the calibration of the sensors, the signal output by the sensor unit was converted into the
actual radiation intensity value. Finally, by constructing the linear relationship between
the pixel spectrum of the UAV hyperspectral image and the ground water spectrum, the
in situ radiation calibration was performed [29]. The water quality sampling data, the
ground water surface spectral reflectance data, and UAV-borne hyperspectral data were all
collected at the same time.

2.3. Method
2.3.1. Machine Learning Algorithms Used for the Estimation of Water Quality Parameters
Adaboost Regression (ABR)

ABR is a typical boosting algorithm introduced by Freund [30]. ABR trains the weak
learners and then integrates the trained weak learners to obtain a final model [31]. ABR
assigns different weights to each sample according to the prediction error rate of the learner,
then adjusts the weight of the sample, and finally accumulates and weights the prediction
results of all learners to generate a predicted value.

Gradient Boost Regression tree (GBRT)

GBRT is a machine learning algorithm based on ensemble decision trees [32], which is
the regression form of gradient boost decision trees (GBDT). The GBRT model first builds a
regression tree with equal weights based on the original data. It evaluates the prediction
results by minimizing the square error. The smaller the mean square error, the lower the
weight of the decision tree. The GBRT model uses the negative gradient of the loss function
in the current model to approximate the residual between the current model’s predicted
value and the observed value, so that the model optimizes the weight of the regression
tree along the direction of the negative gradient of the loss function. In each round of
the training process, the model reduces the loss function and accelerates the convergence
to reach the local optimal solution or the global optimal solution. Through continuous
iteration, the predicted values of all the regression trees are combined to obtain the final
prediction result.

Extreme Gradient Boosting Regression (XGBR)

XGBR is an improved decision tree algorithm based on the GBDT algorithm [33].
The core of the algorithm is to continuously add and train new decision trees to fit the
residuals of the previous iteration [34] and the prediction values of all the decision trees are
accumulated to obtain the final prediction result. XGBR improves prediction performance
by reducing model bias. Compared with the traditional GBDT algorithm, XGBR modifies
the objective function of the GBDT algorithm. The formula of the loss function is defined
as follows:

Loss(t) =
T

∑
i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] + Ω( ft) (4)

gi = ∂ŷ(t−1) l(yi,ŷ
(t−1)

i ), hi = ∂2
ŷ(t−1) l(yi,ŷ

(t−1)

i ) (5)
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Ω( ft) = γT +
1
2

λ
T

∑
n=1

w2
n (6)

where gi and hi are the first and second partial derivatives of the loss function. ŷi is the
predicted value of the model, while yi is the observed value. ft(xi) represents the score of
the i-th sample in the t-th decision tree, Ω( ft) is the regular term of the model, l represents
the number of trees, γ represents the complexity of the leaves, T represents the number of
the leaves,λ represents the scaler factor, and wn represents the weight of the n-th leaf node
in the tree.

After removing the constant term, the final objective function can be expressed as:

Loss = −1
2

T

∑
j=1

G2
n

Hn + λ
+ γT (7)

where G2
n

Hn+λ represents the contribution of each leaf node to the current model loss function.
XGBR uses a greedy algorithm to traverse all split leaf nodes in the model. When the gain
of the target after the split is less than the set threshold, we can ignore the split.

Gain = 1
2 [

G2
L

HL+λ +
G2

R
HR+λ −

(GL+GR)
2

HL+HR+λ ]− γ > 0 (8)

where G2
L

HL+λ represents the left subtree score, G2
R

HR+λ represents the right subtree score, and
(GL+GR)

2

HL+HR+λ represents the score when it is not divided.

Catboost Regression (CBR)

CBR is a new decision tree based on a gradient boosting frame [35] and uses oblivious
decision trees as a based learner. Oblivious trees use the same criteria for splitting at each
level of the tree. Each leaf index can be encoded as a binary vector whose length is equal
to the depth of the tree, which helps to avoid overfitting and speed up the prediction of
the model. CBR differs from the traditional GBDT algorithm in three aspects: (1) CBR can
efficiently process categorical features. The categorical feature refers to a category or label.
Unlike other numerical characteristics, the numerical variables of categorical characteristics
cannot be compared with other numerical variables. Therefore, they are also called non-
ordered features. Discrete numbers are also categorical features. In the traditional GBDT
algorithm, when the structure and distribution of the training data set and the test data
set are different, the conditional offset problem will appear. Furthermore, CBR uses the
improved greedy target statistics method to add prior distribution items to reduce the
influence of noise and low-frequency data on the data distribution. For regression, prior
items can take the mean of the data set label. (2) When CBR constructs a new split node
for the current tree, it uses a greedy method to consider all combinations which combine
different types of features into new features and dynamically transform the new composite
categorical features into numeric features. (3) CBR replaces the gradient estimation method
in the traditional algorithm by ordered boosting, which helps to overcome the prediction
shift caused by gradient bias.

Random Forest (RF)

RF uses the bootstrap method to randomly select n samples from the original data to
construct a decision tree. Each sample has M attributes. In the node split of the decision
tree, m attributes are randomly selected from the M attributes using the information gain
method, where in the attribute with the largest gain is selected as the best split attribute of
the node. Then, the prediction results of multiple decision trees are averaged to obtain the
final prediction result [36].
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Extremely Randomized Trees (ERT)

The structure of the ERT [37] is similar to the RF. The difference between the ERT and
RF is that the ERT uses all the samples to construct a decision tree in the training process.
For node splitting, the RF algorithm selects the best attribute split, while the ERT randomly
selects the attribute split [38], which results in the size of the generated decision tree being
larger than that generated by the RF model. Therefore, the variance of the ERT model is
reduced compared to the RF model.

Support Vector Machine (SVM)

SVR is a kernel-based algorithm that improves the model’s generalization ability by
seeking the minimum structured risk and realizing the experience risk minimization. SVR
can obtain good prediction results with a small sample size [39].

Multi-Layer Perceptron Regression (MLPR)

MLPR is the most commonly used artificial neural network model, which is composed
of three types of layers: an input layer, an output layer, and one or more hidden layers
with activation functions [40]. It uses a subset of the training set to adjust the weight
and biases on each node of layers. MLPR takes input data, multiplies them with weights,
and then inputs them into the activation function to produce final results. MLPR can
obtain non-linear relationships and real-time learning. However, MLPR requires many
hyperparameters to be adjusted, which is time-consuming.

Elastic Net (EN)

EN is a mixture of the Lasso regression (LR) and the Ridge regression (RR) [41], and
the optimization objective function of elastic net regression is defined as follows:

argmin
β∈Rp

{‖ y− Xβ ‖2 + λ[(1− α) ‖ β ‖2 + α ‖ β ‖1]} (9)

where ‖ · ‖2 represents the L2 norm and ‖ · ‖1 represents the L1 norm. The EN regression
penalty function uses the convex combination of the L1 norm and L2 norm, which is equally
the convex combination of the RR penalty function and LR penalty function. Therefore, the
EN has the advantages of both RR and LR, which not only achieves the purpose of variable
selection but also improves the stability of the model. It automatically selects variables and
retains important features, as well as eliminates irrelevant features.

2.3.2. Model Evaluation

In this study, we evaluate the models’ performance via three indicators, including the
coefficient of determination (R2), root mean square errors (RMSE) and mean absolute error
(MAE). These indicator metrics can be calculated as follows:

R2(y, ŷ) = 1− ∑N
i=1 (yi − ŷi)

2

∑N
i=1 (yi − yi)

2 (10)

RMSE(y, ŷ) =

√
∑N

i=1 (yi − ŷi)
2

N
(11)

MAE(y, ŷ) =
1
N

N

∑
i=1
|ŷi − yi| (12)

where yi is the observed value, yi is the average of the observed value, and N is the number
of valid samples used for the evaluation. ŷi is the predicted value. The value of R2 ranges
from 0 to 1. An R2 score of 1 indicates perfect precision, while a score of 0 indicates that the
model has the worst prediction performance. The value range of RMSE is (0,+∞). If the
dispersion of the predicted value of the model is high, the RMSE will be enlarged. MAE is
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the mean of the absolute value of the error between the predicted value and the observed
value. The value range of MAE is (0,+∞). Model with high R2, low RMSE, and low MAE
is deemed as a suitable model for quantitative inversion.

The data set was divided into training and validation sets using random split sam-
pling. In total, 80% of the inputting data was used for training the model and 20% of the
inputting data was used to assess the prediction accuracy of the model. In this study, all
the above model operations were based on the anaconda platform and the modeling of
water quality parameters with the ABR, GBRT, RF, ERT, SVM, MLPR, and EN algorithms
was implemented with the scikit-learn 0.23.2 machine learning library on the anaconda
platform. The XGBR and CBR algorithms were implemented by the xgboost and catboost
libraries, respectively.

3. Results
3.1. Spectral Analysis

The spectral signature of Chl-a is characterized by strong absorption in the blue (443
nm) and red wavelengths (near 675 nm), and by high reflectance in the green (550–555 nm)
and red-edge spectrum regions (685–710 nm) [42–45]. Existing studies have shown that the
most suitable spectral range for monitoring suspended solids in water is 700–800nm [46].
Therefore, the 181 bands with 400 to 800 nm were used for the determination of water
constituents in this study. The band ratio method can eliminate background noise and
rough water surface interference, and can enhance the fine spectrum characteristics that
are beneficial for water quality parameter estimation [47]. This study used the band ratio
method to preprocess the original spectrum. The exhaustive method was used to calculate
the ratio of the bands. To identify and select the major wavelengths for the estimation of
water quality parameters’ concentration, we conducted the Pearson correlation analysis.

The spectral curves of the 33 samples in the preprocessed UAV-borne hyperspectral
remote sensing imagery are shown in Figure 2. The correlation coefficient between the raw
spectral data and the Chl-a concentration value was negative, ranging from 0 to −0.7952.
The 84 spectral absolute correlation coefficients were greater than 0.7, which were mainly
concentrated in the 400–590 nm wavelength range. The correlation coefficient between the
raw spectral data and the SS concentration values ranged from 0.1755 to 0.7685. The 46
spectral correlation coefficients were greater than 0.7, which were mainly concentrated in
the 700~800 nm wavelength range.

Figure 2. The spectral curves of the 33 samples in the preprocessed UAV-borne hyperspectral remote sensing imagery.

This study calculated the ratio of 181 bands of the original spectra by using the
exhaustive method and obtained 32580 characteristic variables. The correlation coeffi-



Remote Sens. 2021, 13, 3928 9 of 19

cients between the characteristic variables and the Chl-a concentration values ranged from
−0.8196 to 0.8243. There were 12 ratio variable correlation coefficients greater than 0.81.
These variables’ spectra were mainly concentrated in the 400~480 nm wavelength range.
The band ratio preprocessing method improves the absorption valley characteristics of
the original Chl-a spectral. The correlation of processed spectra is significantly improved
compared to that of the original spectra. The correlation coefficients between the charac-
teristic variables and the SS concentration values ranged from −0.7653 to 0.7823. There
were 43 ratio variable correlation coefficients greater than 0.76. These variables’ spectra
were mainly concentrated in the 592~606 nm wavelength range. When compared to the
raw spectra, the correlation of the processed spectra is considerably enhanced.

3.2. Hyperparameters for the Machine Learning Algorithms

The model performance is influenced by its hyperparameters when estimating the
concentration of water quality parameters. Tuning the hyperparameters is a critical step
before the quantitative inversion. The key adjusting hyperparameters and their optimal
parameter values for each model are shown in Tables 2 and 3.

Table 2. Tuned hyperparameters and their settings for each model in the prediction of Chl-a.

Models Hyperparameters Meanings Search Ranges Optimal
Values

CBR

Learning rate Shrinkage coefficient of
each tree (0.01,1) 0.26

Max depth Maximum depth of a tree (1,10) 4
Estimators Number of trees (100,1000) 140
L2_leaf_reg L2 regularization (1,10) 7

ABR
Learning rate Shrinkage coefficient of

each tree (0.01,0.1) 0.1

Estimators Number of trees (0,200) 90

XGBR
Learning rate Shrinkage coefficient of

each tree (0.01,1) 0.1

Max depth Maximum depth of a tree (1,10) 5
Estimators Number of trees (10,100) 40

Subsample Subsample ratio of
training samples (0.1,0.9) 0.8

GBRT
Learning rate Shrinkage coefficient of

each tree (0.010.1) 0.05

Estimators Number of trees (10,200) 150

Subsample Subsample ratio of
training samples (0.5,0.8) 0.5

RF
Estimators Number of trees (1,100) 70

Min samples split Minimum number of
samples for nodes’ split (1,10) 2

ERT
Max depth Maximum depth of a tree (1,10) 6
Estimators Number of trees (0,300) 200

SVR
C Regularization parameter (10,200) 10

Gamma Kernel coefficient (0.001,0.1) 1

MLPR Hidden layer size

The number of neurons in
the ith hidden layer and
the number of hidden

layers

(21), (210) (22)

EN Alpha The constant of the mixed
penalty term (0.0001,0.001,0.01,0.1,1,10) 0.1
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Table 3. Tuned hyperparameters and their settings for each model in the prediction of SS.

Models Hyperparameters Meanings Search Ranges Optimal
Values

CBR

Learning rate Shrinkage coefficient of
each tree (0.01,1) 0.1

Max depth Maximum depth of a
tree (1,10) 7

Estimators Number of trees (100,1000) 190
L2_leaf_reg L2 regularization (1,30) 26

ABR
Learning rate Shrinkage coefficient of

each tree (0.01,0.1) 0.02

Estimators Number of trees (0,200) 120

XGBR
Learning rate Shrinkage coefficient of

each tree (0.01,1) 0.05

Max depth Maximum depth of a
tree (1,10) 2

Estimators Number of trees (100,1000) 200

GBRT
Learning rate Shrinkage coefficient of

each tree (0.01,0.1) 0.04

Estimators Number of trees (10,200) 100

Subsample Subsample ratio of
training samples (0.5,0.9) 0.8

RF
Estimators Number of trees (1,100) 7

Min samples split Minimum number of
samples for nodes’ split (1,10) 3

ERT
Max depth Maximum depth of a

tree (1,10) 4

Estimators Number of trees (10,100) 20

SVR
C Regularization

parameter (10,200) 100

Gamma Kernel coefficient (0.001,10) 1

MLPR Hidden layer size

The number of neurons
in the ith hidden layer

and the number of
hidden layers

(21,21), (28,28) (23,23)

EN Alpha The constant of the
mixed penalty term (0.0001,0.001,0.01,0.1,1,10) 0.1

The number and types of hyperparameters in each model are different. Selecting
key parameters of the model can reduce the training time of the model and improve the
prediction efficiency of the model. Since CBR, ABR, GBRT, XGBR, RF, and ERT are all
tree-based models, the number of trees seriously affects the performance of the model. Too
many trees will cause over-fitting of the model and an insufficient number of trees will
cause underfitting. The L2 regularization can control the complexity of the model and
reduce the generalization error. The GBRT model optimizes the subsample, which controls
the random sampling ratio of each tree. If the subsample value is set too small, the result
will be underfitting, thus the subsample value range was between 0.5 and 1. For the ERT
model, the tree’s depth is tuned. The tree’s depth determines how the model learns the
characteristics of individual samples. The more individual sample features are learned,
the worse the generalization ability of the model. In the SVR model, the default radial
basis function was selected as the kernel function, tuning the parameters of C and gamma,
which control the trade-off between the slack variable penalty and the marginal width. For
the MLPR model, we tuned the parameters of the hidden layer size, which include the
number of hidden layers and the number of perceptrons contained in each hidden layer.
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3.3. Retrieval Results for Different Water Quality
3.3.1. Retrieval Results for Chl-a

The retrieval results of each model for Chl-a are shown in Table 4. We can observe
that the CBR model had the best prediction performance (R2 = 0.96, MAE = 0.53 mg/m3,
RMSE = 0.96 mg/m3). The prediction accuracy for the CBR validation data set (R2 =
0.96, MAE = 0.53 mg/m3, RMSE = 0.96 mg/ m3) was lower than the prediction accuracy
for its training data set (R2 = 1.00, MAE = 0.09 mg/ m3, RMSE = 0.12 mg/m3). For the
XGBR validation data set, the prediction accuracy for the XGBR model (R2 = 0.92, MAE
= 0.63 mg/m3, RMSE = 0.71 mg/m3) was lower than the CBR model. The prediction
accuracy for the GBRT validation data set (R2 = 0.90, MAE = 0.67 mg/m3, RMSE = 0.80
mg/m3) was significantly lower than the prediction accuracy for its training data set (R2

= 0.99, MAE = 0.13 mg/m3, RMSE = 0.16 mg/m3). The prediction accuracy for the ABR
on the training data set (R2 = 0.94, MAE = 0.37 mg/m3, RMSE = 0.54 mg/m3) was also
significantly higher than the prediction accuracy for its validation data set (R2 = 0.89, MAE
= 0.65 mg/m3, RMSE = 0.82 mg/m3). The prediction accuracy for the ERT training data
set (R2 = 0.96, MAE = 0.17 mg/m3, RMSE = 0.30 mg/m3) was higher than the prediction
accuracy for its validation data set (R2 = 0.87, MAE = 0.84 mg/m3, RMSE = 0.95 mg/m3).
The prediction accuracy for the RF training data set (R2 = 0.93, MAE = 0.48 mg/m3, RMSE
= 0.58 mg/m3) was higher than the prediction accuracy for its validation data set (R2 =
0.87, MAE = 0.75 mg/m3, RMSE = 0.91 mg/m3). The ERT model was higher than the RF
model in terms of RMSE and MAE, while the ERT model and the RF model gave similar R2.
The prediction performance for the SVR validation data set (R2 = 0.68, MAE = 1.32 mg/m3,
RMSE = 1.52 mg/m3) was comparable to the prediction performance for its training data
set (R2 = 0.67, MAE = 0.93 mg/m3, RMSE = 1.27 mg/m3). The prediction accuracy for the
MLPR training data set (R2 = 0.63, MAE = 1.08 mg/m3, RMSE = 1.29 mg/m3) was similar
to the prediction accuracy for its validation data set (R2 = 0.62, MAE = 1.60 mg/m3, RMSE
= 1.75 mg/m3). The prediction accuracy for the EN training data (R2 = 0.63, MAE = 1.18
mg/m3, RMSE = 1.43 mg/m3) was significantly decreased than the prediction accuracy for
its validation data set (R2 = 0.58, MAE = 1.17 mg/m3, RMSE = 1.36 mg/m3). The prediction
performance of SVR, MLPR, and EN was too poor for the inversion of the concentration of
Chl-a. Since these models, namely SVR, MLPR, and EN, have low R2 with high MAE and
RMSE, it is determined that they are not suitable for Chl-a inversion.

Table 4. Experimental results of Chl-a (mg/m3) using different models.

Models
Running
Time (s)

Training Data Set Test Data Set

MAE
(mg/m3)

RMSE
(mg/m3) R2 MAE

(mg/m3)
RMSE

(mg/m3) R2

CBR 0.46 0.09 0.12 1.00 0.47 0.53 0.96
ABR 0.15 0.37 0.54 0.94 0.65 0.82 0.89

XGBR 0.47 0.31 0.49 0.95 0.63 0.71 0.92
GBRT 0.06 0.13 0.16 0.99 0.67 0.80 0.90

RF 0.11 0.48 0.58 0.93 0.75 0.91 0.87
ERT 0.17 0.30 0.41 0.96 0.84 0.95 0.87
SVR 0.01 0.92 1.17 0.69 1.38 1.65 0.69

MLPR 0.66 1.08 1.29 0.63 1.60 1.75 0.62
EN 0.01 1.18 1.43 0.63 1.17 1.36 0.58

Scatter plots of the observed and predicted values of the nine machine learning
algorithms are presented in Figure 3. The predicted and observed values of the models
were evenly distributed on both sides of the regression line, indicating that the models’
prediction accuracies are excellent. The difference between the predicted values and the
observed values represents the level of the model’s prediction deviation, indicating that the
model may be overfitting or underfitting. From Figure 3, we can observe that the predicted
values of the tree-based ensemble models, including CBR, ABR, XGBR, GBRT, RF, and ERT,
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were close to the regression line. Among them, the CBR, XGBR, and GBRT models have
the highest prediction accuracy. The difference between the observed and the predicted
values of the SVR, MLPR, and EN models is large, indicating that these models’ prediction
accuracies are extremely poor.

Figure 3. Scatter plot of the observed values and predicted values of Chl-a concentration (mg/m3)
using nine machine learning models including CBR, ABR, XGBR, GBRT, RF, ERT, SVR, MLPR, and EN.

3.3.2. Retrieval Results for SS

The retrieval results of each model for SS are shown in Table 5. We can find that the
CBR model had the best prediction performance (R2 = 0.94, MAE = 1.11 mg/L, RMSE
= 1.2 mg/L) in estimating the concentration of SS. The prediction accuracy for the CBR
validation data set (R2 = 0.94, MAE = 1.11 mg/L, RMSE = 1.2 mg/L) was lower than the
prediction accuracy for its training data set (R2 = 0.95, MAE = 0.81 mg/L, RMSE = 1 mg/L).
The prediction performance for the RF validation data set (R2 = 0.93, MAE = 1.23 mg/L,
RMSE = 1.39 mg/L) was comparable to its training data set (R2 = 0.93, MAE = 0.86 mg/L,
RMSE = 1.11 mg/L). The prediction accuracy for the XGBR validation data set (R2 = 0.93,
MAE = 1.50 mg/L, RMSE = 1.64 mg/L) was lower than the training data set (R2 = 0.99,
MAE = 0.22 mg/L, RMSE = 0.29 mg/L). The prediction accuracy for the GBRT validation
data set (R2 = 0.91, MAE = 1.22 mg/L, RMSE = 1.48 mg/L) was significantly lower than
the prediction accuracy for its training data set (R2 = 0.99, MAE = 0.39 mg/L, RMSE = 0.44
mg/L). The prediction accuracy for the ABR training data set (R2 = 0.91, MAE = 1.37 mg/L,
RMSE = 1.85 mg/L) was similar to its validation data set (R2 = 0.92, MAE = 0.81 mg/L,
RMSE = 1.10 mg/L). The prediction accuracy for the ERT validation data set (R2 = 0.90,
MAE = 1.41 mg/L, RMSE = 1.54 mg/L) was lower than its training data set (R2 = 0.93,
MAE = 0.85 mg/L, RMSE = 1.17 mg/L). The prediction accuracy for the SVR validation
data set (R2 = 0.89, MAE = 1.42 mg/L, RMSE = 1.57 mg/L) was also lower than its training
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data set (R2 = 0.90, MAE = 0.84 mg/L, RMSE = 1.44 mg/L). The prediction accuracy for the
MLPR validation data set (R2 = 0.59, MAE = 2.31 mg/L, RMSE = 2.95 mg/L) was lower
than its training data set (R2 = 0.63, MAE = 2.09 mg/L, RMSE = 2.78 mg/L). The prediction
accuracy for the EN validation data set (R2 = 0.55, MAE = 2.46 mg/L, RMSE = 2.97 mg/L)
was worse than its training data set (R2 = 0.60, MAE = 2.12 mg/L, RMSE = 2.91 mg/L).

Table 5. Experimental results of SS (mg/L) using different models.

Models
Running
Time (s)

Training Data Set Test Data Set

MAE
(mg/L)

RMSE
(mg/L) R2 MAE

(mg/L)
RMSE
(mg/L) R2

CBR 0.31 0.81 1.00 0.95 1.11 1.20 0.94
ABR 0.15 0.81 1.10 0.92 1.37 1.85 0.91

XGBR 0.51 0.22 0.29 0.99 1.50 1.64 0.93
GBRT 0.06 0.39 0.44 0.99 1.22 1.48 0.91

RF 0.02 0.86 1.11 0.93 1.23 1.39 0.93
ERT 0.03 0.85 1.17 0.93 1.41 1.54 0.90
SVR 0.12 0.84 1.44 0.90 1.42 1.57 0.89

MLPR 1.80 2.09 2.78 0.63 2.31 2.95 0.59
EN 0.01 2.12 2.91 0.60 2.46 2.97 0.55

Scatter plots of the observed and predicted values of CBR, ABR, XGBR, GBRT, RF,
ERT, SVR, MLPR, and EN are presented in Figure 4. The scatter plots show the relationship
between the predicted value of each model and the observed value. A good prediction
result will be evenly distributed on both sides of the regression line. We can observe that
the tree-based models’ (CBR, ABR, XGBR, GBRT, RF, ERT) predicted values and observed
values were evenly distributed on both sides of the regression line, indicating that the
predicted value of the model is very close to the observed value. The predicted value
of the SVR model and the observed value were also evenly distributed on both sides of
the regression line, and the accuracy of the SVR model was lower than that of the tree-
based model. Similarly, we can observe that there was a significant difference between the
predicted value and the observed value of the MLPR and EN models, indicating that the
prediction errors of the MLPR and EN models are relatively large.
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Figure 4. Scatter plot of the observed values and the predicted values of the SS (mg/L) concentration
using nine machine learning models including CBR, ABR, XGBR, GBRT, RF, ERT, SVR, MLPR, and EN.

4. Discussion

For a further discussion, the distribution map of Chl-a obtained by CBR model for the
Beigong Reservoir hyperspectral imagery is shown in Figure 5. According to the statistics
of the inversion results, the maximum value of the inversion result was 14.17 mg/m3

the minimum value was 3.54 mg/m3. The observed value ranged from 2.62 mg/m3 to
14.2 mg/m3. The inversion map reveals the spatial distribution of Chl-a in the Beigong
Reservoir. The concentration of Chl-a was relatively high in the west part of Beigong
Reservoir and mainly concentrated along the shore.

The distribution map of SS obtained by CBR model for the Beigong Reservoir hyper-
spectral imagery is shown in Figure 6. According to the statistics of the inversion results,
the minimum value was 2.71 mg/L and the maximum value of the inversion result was
15.04 mg/L. The observed value ranged from 2 mg/L to 18 mg/L. The inversion map
shows that the SS concentration in the southwest part of the Beigong Reservoir was signifi-
cantly high compared to the whole of the reservoir and there was fragmented erythema
near the reservoir’s border, which may have been produced by transitory human activity.
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Figure 5. Distribution map of Chl-a (mg/m3) obtained using the CBR model with Beigong UAV-borne
hyperspectral imagery.

Figure 6. Distribution map of SS (mg/L) obtained using the CBR model with Beigong UAV-borne
hyperspectral imagery.

5. Conclusions

The main purpose of this study is to compare the performance of various machine
learning algorithms in predicting water quality parameters using UAV-borne hyperspectral
data. Through this study, the main conclusions are as follows:

1. The prediction performance of different machine learning algorithms, including CBR,
XGBR, GBRT, ABR, ERT, RF, SVR, MLPR, and EN, in predicting water quality were
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compared. The overall prediction accuracy of the tree-based models were higher than
that of the other three traditional machine learning models.

2. Two water quality parameters, including Chl-a and SS, were analyzed with different
machine learning models. For the prediction of Chl-a, the R2 values of several models
ranged from 0.58 to 0.96; the RMSE ranged from 0.53 to 1.75 mg/m3; and the MAE
value ranged from 0.47 to 1.6 mg/m3. Among them, the CBR model had the highest
prediction accuracy and the XGBR model had the second-highest prediction accuracy.
For the prediction of SS, the R2 values of the nine models ranged from 0.59 to 0.94;
the RMSE ranged from 1.2 to 2.97 mg/L; and the MAE value ranged from 1.11 to 2.46
mg/L. The prediction accuracy of the CBR model was the highest and the prediction
accuracies of the XGBR and RF models were lower than that of the CBR. Notably, the
CBR model showed stable and satisfactory performance for predicting water quality
parameters, including Chl-a and SS.

3. The water quality distribution map was generated based on the UAV-borne hyper-
spectral data and machine learning algorithms, which can be used for large-scale
and continuous inland water quality monitoring. From the water quality parameter
inversion map, we observed that the pollution degree of SS in the west part of Beigong
Reservoir was much higher than that in the east part. The areas with the highest Chl-a
concentration mainly existed in the southern part of Beigong Reservoir and near the
shore area. The management can monitor the water quality from the inversion map,
improving the efficiency of water quality maintenance and saving management costs.

To conclude, this study compared and analyzed the predictive performance of nine
machine learning models on different water quality parameters. In future research, we will
combine multi-temporal UAV-borne hyperspectral images to analyze the dynamic change
of inland water quality.
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