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Abstract: This paper focuses on vessel detection through the fusion of synthetic aperture radar
(SAR) images acquired from spaceborne–airborne collaborative observations. The vessel target
detection task becomes more challenging when it features inshore interferences and structured and
shaped targets. We propose a new method, based on target proposal and polarization information
exploitation (TPPIE), to fuse the spaceborne–airborne collaborative SAR images for accurate vessel
detection. First, a new triple-state proposal matrix (TSPM) is generated by combining the normed
gradient-based target proposal and the edge-based morphological candidate map. The TSPM can
be used to extract the potential target regions, as well as filtering out the sea clutter and inshore
interference regions. Second, we present a new polarization feature, named the absolute polarization
ratio (APR), to exploit the intensity information of dual-polarization SAR images. In the APR map,
the vessel target regions are further enhanced. Third, the final fused image with enhanced targets
and suppressed backgrounds (i.e., improved target-to-clutter ratio; TCR) is attained by taking the
Hadamard product of the intersected TSPM from multiple sources and the composite map exploiting
the APR feature. Experimental analyses using Gaofen-3 satellite and unmanned aerial vehicle (UAV)
SAR imagery indicate that the proposed TPPIE fusion method can yield higher TCRs for fused
images and better detection performance for vessel targets, compared to commonly used image
fusion approaches.

Keywords: image fusion; polarization fusion; spaceborne–airborne collaborative observations; syn-
thetic aperture radar (SAR) image; target proposal; vessel target detection

1. Introduction

Synthetic aperture radar (SAR) is an active imaging and detection sensor, which usu-
ally operates in the microwave/millimeter wave (MMW) bands. SAR systems have been
widely investigated and developed in both military and civilian fields, due to their ability
to provide local and global scene observations under all time and weather conditions [1–7].
In particular, vessel target detection using SAR systems has attracted widespread atten-
tion and has practical significance in important applications, including maritime security,
fishery monitoring, marine transportation, and so on.

In current vessel detection tasks, the SAR data are generally collected solely from a
spaceborne or airborne platform. Specifically, spaceborne platforms can achieve global
monitoring over a large sea area; however, spaceborne SARs usually need several days
to revisit the same local area of interest. Meanwhile, airborne SAR platforms can provide
more flexible and fast revisit periods, on the order of several seconds or minutes, and can
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acquire high-resolution SAR images of local areas of interest; however, the limitations on its
observation area size should be noted. The above issues naturally inspired us to jointly use
spaceborne and airborne SAR observations, taking advantage of their respective strengths
to improve the performance of vessel target detection, compared with the individual use of
a spaceborne or airborne SAR system.

The basic implementation of such a spaceborne–airborne collaborative SAR system
is as follows. First, the spaceborne SAR makes use of the global monitoring capability,
providing observations over a large area. Then, for some particular local area of interest,
the airborne platform, such as an unmanned aerial vehicle (UAV), flexibly moves to this
local region to achieve a more focused SAR observation. Finally, the data acquired by
the collaborative observations are processed, in order to extract more information of the
observed scene, helping to improve the vessel detection performance. In the collaborative
system, a short time interval between the global large area observation and the local focused
observation is preferred to attain an effective collaboration. This demand can be fulfilled
by properly designing the spaceborne–airborne SAR collaboration system, especially in
scenarios where vessel targets are relatively stationary, such as in inshore environments,
or move much slowly than the airborne SAR platform in offshore environments [8,9]. In
these scenarios, it is reasonable to assume that the position displacements of vessel targets
can be negligible and the conditions of sea clutter do not change obviously between the
collaborative observations of the spaceborne and airborne SARs for the local area of interest.

1.1. Related Work

In this paper, we focus on vessel target detection through the fusion of SAR images
generated by spaceborne–airborne collaborative observations. The crucial problem is to
attain a fused image with enhanced target regions and suppressed backgrounds from
the spaceborne and airborne SAR images, in order to increase the target-to-clutter ratio
(TCR) and improve the vessel target detection performance. Considering the issue of
image fusion, some works have been carried out in the existing literature [10–23]. The
most straightforward and computationally efficient fusion methods are arithmetic-based
fusion approaches, such as addition fusion and multiplication fusion, but this class of
fusion approaches might maintain a high level of background clutter, resulting in false
alarms, or excessively suppress relatively weak targets, resulting in missed detections [10].
Some radar image fusion approaches based on the discrete wavelet transform (DWT)
and principal component analysis (PCA) have been introduced, in order to highlight
spatial detail information in specific applications, such as land-cover classification, bridge
detection, and so on [11–13]. The fuzzy logic fusion approach and its variations [14–16]
have been also employed to enhance radar image contrast for target detection and sensing.
In [17], a framelet domain-based random walk approach is proposed for multi-band SAR
image fusion, by which the target contrast is enhanced and edges are well-preserved.
In [18], a non-linear PCA approach based on an auto-associative neural network (AANN)
was presented to fuse SAR images from different spaceborne platforms and improve the
target classification performance. In [19], a fusion method was proposed to combine the
strengths of hyperspectral and multispectral images, in order to achieve spatial resolution
enhancement. Although most of the above image fusion approaches have addressed the
issues of image smoothing, denoising, or enhancement, it is difficult to directly apply these
approaches in spaceborne–airborne SAR collaboration for vessel target detection, which
pursues a high TCR (i.e., simultaneously enhanced targets and suppressed backgrounds)
in fused images.

In more detail, for inshore environments, there exist inshore interferences induced
by coastal land, embankments, and shrubs, which have similar intensities as the target
vessel in SAR images. In this case, image processing lacking anticipated target-interference
discrimination inevitably results in serious false alarms [24–26], accordingly deteriorating
the quality of the fused images and the target detection performance. Moreover, it is
difficult to accurately detect structured and shaped vessel targets that only contain discrete
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strong scattering points and whose partial hulls show similar intensities as the sea clutter.
Classical constant false alarm rate (CFAR)-based detection approaches easily lead to missed
detections for such vessel targets, especially in high-resolution SAR images [26,27]. Several
learning-based approaches exploiting convolutional neural networks (CNNs) [28,29] have
also been suggested to handle the above difficulties. However, the satisfactory performance
of these learning-based approaches heavily relies on a large volume of training data, which
cannot be provided at current stage of the fusion of spaceborne–airborne collaborative SAR
images for the vessel detection task. Overall, the above related works [24–29] have mainly
focused on the processing of SAR images from a single platform, but do not consider the
fusion of SAR images from multiple platforms for vessel detection.

1.2. Main Contributions

In this paper, we propose a new method based on target proposal and polarization
information exploitation (TPPIE), in order to fuse spaceborne–airborne collaborative SAR
images for the accurate vessel detection. The main contributions of this paper can be
summarized as follows:

(1) On one hand, the target proposals (TPs), which represent the bounding boxes
covering most of the potential target areas with small biases [30–32], are employed and
combined with morphological candidate target regions. In more detail, to efficiently
quantify the objectness and generate the TPs in the image, a linear support vector machine
(SVM) is utilized, based on the dissimilarity between normed gradient (NG) features [32]
of patches occupied by vessel targets and background clutter. Further, the generated NG-
based TPs are combined with morphological candidate maps using target edge information.
This helps to better achieve target extraction and background suppression, compared to
the sole use of TPs.

(2) On the other hand, as motivated by the effectiveness of polarization information
exploitation in radar image enhancement [14,15,33], we utilize the intensity information
of dual-polarization SAR images and introduce a new polarization feature, named the
absolute polarization ratio (APR). The APR feature mainly makes use of the difference
of dual-polarization (e.g., horizontal and vertical polarization) characteristics of regions
occupied by vessel targets and background clutter. Unlike the existing works based on po-
larimetric covariance matrix [4,34,35], the APR does not need full polarimetric information,
can be constructed more simply, and can effectively enhance the target regions.

The proposed TPPIE method contains three stages: First, a new triple-state proposal
matrix (TSPM) is generated, by multiplying the TP based on NG features [32] with the
morphological candidate map using target edge information. Second, a new polarization
feature, APR, is calculated to exploit the intensity information of dual-polarization SAR im-
ages provided by the airborne sensor platform. Third, the final fused image with improved
TCR (i.e., enhanced targets and suppressed backgrounds) is attained by the Hadamard
product of the intersected TSPM from spaceborne–airborne collaborative observations and
the composite map exploiting APR features, as well as the original SAR images.

Throughout the above three stages, the proposed TPPIE fusion method achieves the
effective collaboration of multiple SAR sensor platforms, allowing for the extraction of
more useful information of the observed scene and improvement of the target detection
performance. Experimental analyses using Gaofen-3 satellite and UAV SAR imagery
demonstrate that the proposed TPPIE fusion method yields higher TCRs in the fused
images and better detection performance of vessel targets, compared with commonly used
image fusion approaches and conventional processing methods with single-SAR images.

1.3. Paper Outline

The remainder of the paper is organized as follows: Section 2 describes the process of
spaceborne–airborne collaborative SAR observation and the associated vessel target detec-
tion problem. Section 3 introduces the proposed TPPIE image fusion method. Section 4
shows the experimental results with Gaofen-3 and UAV SAR images and validates the
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effectiveness of the proposed TPPIE method for vessel target detection. Section 5 concludes
the paper.

2. Vessel Detection through Spaceborne–Airborne Collaborative SAR Observations

This section describes the process of spaceborne–airborne collaborative SAR obser-
vation and the associated vessel target detection task, as illustrated in Figure 1. More
specifically, in the spaceborne–airborne SAR collaboration system, the spaceborne platform
first conducts a global large area observation. For a particular local area of interest, the
corresponding image can be extracted, denoted as Is ∈ RMs×Ns , where Ms × Ns is the
number of pixels in the spaceborne image Is. Next, the airborne platform (e.g., UAV SAR
sensor) promptly flies to the local area of interest and achieves a more focused observation.
The acquired airborne image is denoted as Ia ∈ RMa×Na , where Ma × Na is the number of
pixels in the image Ia. Note that the time interval between the spaceborne and airborne
observations should be appropriately small, such that the vessel targets do not have large
displacements and the sea clutter conditions do not change obviously, with the aim of
attaining an effective collaboration. This demand should be reasonably considered in
designing such a spaceborne–airborne SAR collaboration system.

Spaceborne-airborne SAR collaboration & Vessel detection application

IaIs

Collaborative images for local area of interest

Spaceborne platform Airborne platform

Vessel target detection via 
fusion of collaborative 

SAR images

Image Fusion

Global large area 
observation

Local focused 
observation

Thresholding & Detection  

Detection Results

Figure 1. Process of spaceborne–airborne collaborative SAR observation and the associated vessel
target detection task. In more detail, the spaceborne platform achieves the global large area observa-
tion and the airborne platform achieves the local focused observation. For the local area of interest,
the collaborative spaceborne SAR image Is and airborne SAR image Ia are fused in a certain manner.
Then, the fused image is used for thresholding and vessel target detection.

Before the image fusion step, the intensities of the images Is and Ia are normalized
into the range of [0, 1]. The image registration between Is and Ia is also achieved by
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using the auxiliary geographic coordinate information. A dedicated discussion on the
image registration issue is out of the scope of this paper and, for more details on state-
of-the-art image registration methods, we refer the reader to [36–39]. Moreover, airborne
SAR images generally have higher resolution and show more detailed information of the
observed scene than the spaceborne SAR images [40]. The nearest-neighbor interpolation
technique, which is computationally simple and can avoid the spectral distortion induced
by interpolation [41], is employed on the low-resolution spaceborne SAR image Is, to make
it have the same size as the corresponding high-resolution airborne SAR image Ia (i.e.,
Ma = Ms = M and Na = Ns = N).

The next problem involves fusing the spaceborne and airborne SAR images (i.e.,
Is, Ia ∈ RM×N) for vessel target detection, as follows:

(Is, Ia)
Fusion−−−→Fused Image with Improved TCR

Thresh.−−−−→ Satisfactory Detection Results. (1)

The direct use of existing image fusion methods for the problem (1) will lead to limited
improvement of TCR and unsatisfactory target detection performance. Thus, we wish to
form a fused image with enhanced target regions and suppressed backgrounds (including
sea clutter and inshore interferences), in order to increase the image TCR and improve the
detection performance of vessel targets in the following thresholding and detection steps.

3. Proposed Method

The flowchart of the proposed TPPIE method is illustrated in Figure 2. The TPPIE
method mainly comprises three stages: (1) generation of the TSPMs by combining the
TP based on normed gradient (NG) [32] and the morphological candidate map using
target edge information for spaceborne and airborne SAR images; (2) exploitation of APR
feature based on the intensity information of dual-polarization SAR images provided by
the airborne platform; and (3) generation of the fused image by the Hadamard product
of the intersected TSPM from spaceborne–airborne collaborative observations and the
composite map exploiting APR feature, as well as the original SAR images. Then, the fused
image with improved TCR (i.e., enhanced targets and suppressed backgrounds) is used for
thresholding and vessel target detection.

Spaceborne 

and airborne  

SAR images

Dual-

polarization 

SAR images

Normed  gradient-

based target 

proposals

Edge-based 

morphological 

candidate maps

Triple-state proposal 

matrices (TSPMs) 

& Intersected TSPM

Absolute 

polarization ratio 

(APR) feature map

Composite map 

exploiting APR and 

original images

Fused map 

Figure 2. Flowchart of the proposed TPPIE image fusion method.

3.1. TSPM Generation

In the first stage, we generate a new TSPM by combining the NG-based TP and
the edge-based morphological candidate map for spaceborne and airborne SAR images,
denoted as Is, Ia ∈ RM×N . In the generated TSPM, the potential vessel target regions can be
extracted well and the background regions including sea clutter and inshore interferences
can be filtered out.
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3.1.1. NG-Based TP Extraction

The TPs represent the bounding boxes that cover potential targets in the images.
We employ a linear support vector machine (SVM) to extract the TPs from Is and Ia, by
exploiting the difference of NG features between image patches that contain vessel targets
and background clutter. The detailed procedure is as follows:

• SVM Classifier Training Step: Given training SAR images, the number of bounding
boxes of vessel targets and non-target backgrounds (e.g., sea clutter and inshore
interferences) are set as K1 and K2, respectively. These bounding boxes are resized to
a small size D× D. Then, for each resized bounding box, the NG value is calculated
as [32]

G(x, y) =
√

g2
x + g2

y, (2)

where (x, y) are the pixel coordinates in the resized bounding box for x, y = 1, . . . , D,
and gx and gy are the image gradients in the horizontal and vertical directions, re-
spectively. According to (2), we denote the obtained NG map as G ∈ RD×D. In
this training step, the NG maps of target samples (i.e., {G(k1) : k1 = 1, . . . , K1}) and
those of background samples (i.e., {G(k2) : k2 = 1, . . . , K2}) are used to train a linear
SVM classifier F (·) as follows: the bounding box is a target proposal when its cor-
responding NG map, G, satisfies F (G) = 1; otherwise, it is not a target proposal if
F (G) = −1.

• TP Extraction Step: Next, the TPs from test SAR images Is and Ia are extracted
using the SVM classifier trained in the first step. In more detail, the test spaceborne
or airborne SAR image is first resized to different pre-defined sizes and, for each
resultant image, the corresponding NG map is calculated based on (2). Then, the
resized TPs are extracted with the aid of a D× D sliding window on each NG map
and the trained SVM classifier. Finally, the normal TPs are obtained by resizing all the
NG maps to the size of the original test image. To represent the regions occupied by
the TPs for Is and Ia, we introduce the proposal matrices Ps and Pa, respectively. In
the proposal matrix Pu, u ∈ {s, a}, its entry Pu(m, n) is equal to one if (m, n) belongs
to any TP in Iu; otherwise, it is equal to zero, where m = 1, . . . , M and n = 1, . . . , N.

3.1.2. Construction of Edge-Based Morphological Candidate Map

We employ a morphological closing operation based on target edge information to
construct a candidate map for the original SAR image. In the constructed candidate map,
the potential target regions are highlighted and the vessel shapes are well delineated. More
specifically, given a spaceborne or airborne SAR image Iu, u ∈ {s, a}, the corresponding
candidate image Cu is calculated as

Cu =MC(E(Iu), SEu), (3)

where E(·) denotes calculating the binary edges of the image; any typical edge detection
algorithms (e.g., Sobel, Prewitt, Roberts, and so on) can be adopted for this purpose. Fur-
thermore,MC(·) denotes the morphological closing operation with the structure element
SEu, that should be properly chosen for the edge image E(Iu), u ∈ {s, a}. The issue
regarding the selection of the structure element is discussed in Section 3.3.

Note that, in addition to the target regions, some other regions containing interferences
from inshore environments could be also restored in the candidate map Cu, u ∈ {s, a}.
To discriminate these interference regions from the real vessel targets, we combine the
candidate map Cu with the aforementioned proposal matrix Pu, u ∈ {s, a}, in order to
generate a new TSPM in the following manner:

Tu =
Pu + Pu � Cu

2
, (4)
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where � denotes the Hadamard product.
Further, we make use of the information provided by the spaceborne and airborne

SAR platforms by taking the intersection of the TSPMs Ts and Ta with a thresholding
operation; that is,

T f (m, n)

=

{
Ts(m, n) · Ta(m, n), if Ts(m, n) · Ta(m, n) < 0.5,
1, otherwise,

(5)

where Tu(m, n) is the value of the (m, n)-th element in Tu for u ∈ { f , s, a}, m = 1, . . . , M,
and n = 1, . . . , N. Here, T f is named the intersected TSPM, whose elements have three
states, with values of 1, 0.25, or 0. In this way, we can significantly reduce the number
of false alarms induced by the inshore interferences and sea clutter, while retaining the
potential target regions in the spaceborne SAR image Is and the airborne SAR image Ia.
Therefore, the generated intersected TSPM, considering the fusion of TSPMs of Is and Ia,
can be also used for the vessel target task. This fusion method is denoted ITSPM, and its
performance is analyzed in Section 4.

3.2. APR Feature Exploitation

In the second stage, we present a new polarization feature, named APR, based on
the intensity information of dual-polarization SAR images provided by the airborne plat-
form. Compared with conventional polarization information processing methods, such as
arithmetic-based fusion, PCA, DWT, and fuzzy logic [14,15,33], the APR feature exploits
the characteristic polarization difference of background clutter and vessel targets, such that
it can better enhance the potential target regions and, thus, improve the image TCR.

The proposed APR is expressed as

APR(m, n) = min{|PR(m, n)− β|, 1}, (6)

where PR(m, n) denotes the ratio of polarimetric intensity values at the (m, n)-th pixel for
m = 1, . . . , M, and n = 1, . . . , N, which is calculated as

PR(m, n) =
∣∣∣∣ IHH

a (m, n) + α

IVV
a (m, n) + α

∣∣∣∣, (7)

with IHH
a (m, n) and IVV

a (m, n) being the intensity values at the (m, n)-th pixel of the dual-
polarization airborne SAR images, respectively; α is a small positive number; and the
parameter β is the shift factor (SF), denoting the shifting degree of the intensity histogram.
The SF value can be properly determined based on the highest bin determined through
histogram analysis of the PR map. According to (6) and (7), we denote the obtained PR
map and APR map as Q ∈ RM×N and QA ∈ RM×N , respectively.

Unlike the existing works based on polarimetric covariance matrices [4,34,35], the
APR does not need full polarimetric information, can be constructed more simply, and
is effective in enhancing the target regions. The idea behind (6) and (7) is to exploit the
difference of the dual-polarization (e.g., horizontal and vertical polarization) characteristics
of regions occupied by sea clutter and vessel targets. By calculating the ratio of dual-
polarization intensity values, as expressed by (7), we find that the PR values corresponding
to sea clutter are approximately equal to one, while those for the vessel target regions are
obviously smaller or larger than one. Therefore, the areas occupied by the sea clutter and
vessel targets appear to be different in the generated PR map, which helps to discriminate
the sea clutter and target regions. Next, the SF is introduced, in order to shift the intensity
histogram of the PR map according to (6). This histogram shifting operation can make the
clutter regions appear with relatively low intensities and, correspondingly, improves the
contrast between vessel targets and sea clutter (or, equivalently, the TCR performance).
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To make use of the presented APR feature and the information provided by the
original (spaceborne or airborne) SAR images, we combine them in an additive manner to
generate a composite map, as follows:

Q f = min{QA + Is + IHH
a + IVV

a , 1}. (8)

This composite map not only maintains high contrast between vessel targets and
sea clutter, but also better delineates the target boundaries than with the sole use of the
APR map. This advantage of the composite map obtained by (8) is confirmed through
the comparative results presented in Section 4. Note that both the vessel targets and the
inshore interference regions are enhanced in the APR map or the composite map exploiting
the APR feature. Such enhanced inshore regions can be effectively suppressed with the aid
of the proposed TSPM, as discussed in the following subsection.

3.3. Generation of Fused Image

In the third stage, the final fused image with improved TCR is generated by the
Hadamard product of the intersected TSPM from spaceborne–airborne collaborative obser-
vations and the composite map exploiting APR feature, as well as the original SAR images.

On one hand, the intersected TSPM expressed by (5) covers the potential target
regions by using the TPs from the spaceborne and airborne SAR imagery, as well as
filtering out the inshore interferences, to some extent, due to combination with the edge-
based morphological candidate map. However, this intersected TSPM might still contain
some clutter pixels or inshore interference pixels (which inevitably deteriorate the image
contrast), as the TPs are extracted using bounding boxes and the closing operation adopted
to construct the morphological candidate map will retain some relatively large connected
regions. On the other hand, in the presented composite map exploiting the APR feature
expressed by (8) (see, e.g., Figure 5e), although the contrast between vessel targets and
sea clutter is significantly improved, the inshore interference regions are also highlighted.
The direct utilization of (8) can lead to false alarms in the detection results. Therefore, the
combination of the intersected TSPM expressed by (5) and the composite map exploiting
APR feature expressed by (8) can take advantage of their respective strengths. The final
fused image, I f , is generated as follows:

I f = T f �Q f . (9)

In the fused map I f , the target regions are effectively enhanced and the background re-
gions, including sea clutter and inshore interferences, are well-suppressed, thus improving
the vessel target detection performance.

The implementation of the proposed new TPPIE image fusion method is summarized
in Algorithm 1. Some important implementation details are given in the following.

• First, we used 22 vessel target samples and 47 non-target samples to train the SVM
classifier (i.e., K1 = 22 and K2 = 47). These training samples were selected from the
spaceborne SAR image corresponding to a global large area observation, as shown in
the left subgraph of Figure 1. The scattering characteristic differences between target
samples and non-target samples can help to extract satisfactory TPs that cover most of
the potential target regions and discriminate them from non-target regions, including
inshore interferences and sea clutter. Moreover, the size of resized bounding boxes in
the training step and the size of sliding window in the TP extraction step were both
set to D = 8, as adopted in [31,32], as this can help the algorithm to work well while
maintaining low computational complexity;

• Then, we considered the shape and size of structure elements in (3). For our ex-
periments, disk-shaped structure elements were used in the morphological closing
operation, as they better coincided with the target boundaries than other shapes.
Moreover, the size of structure elements was set to be relatively large, comparable to
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the width of vessel targets (i.e., about 12 m in our datasets). This setting can ensure
the extraction of as many of the candidate target regions as possible;

• Another consideration is the selection of the parameter α in (7) and the SF β in (6). In
general, the parameter α is set as a small positive number, helping to discriminate
the regions occupied by sea clutter and vessel targets. For our experiments, a proper
value of α would be taken within the empirical range of [0.01, 0.05]. The SF β can be
determined by histogram analysis of the PR map. In more detail, the parameter β was
set as the mean of edge values of the highest bin (in the histogram analysis). For our
experiments, the values of β were generally within a small neighborhood around one.

Algorithm 1 The proposed TPPIE method.

Input: Original spaceborne SAR image Is and airborne SAR image Ia (including horizontal
polarization image IHH

a and vertical polarization image IVV
a ), structure elements, small

positive number α, and shift factor (SF) β.
Output: Fused image I f .
• Stage 1—TSPM Generation

1: Train the SVM classifier based on (2) and extract the TP matrices Ps and Pa from Is and
Ia (with the same polarization), respectively.

2: Construct the edge-based morphological candidate maps Cs and Ca based on (3).
3: Generate TSPMs Ts and Ta based on (4), and obtain the intersected TSPM T f in (5).
• Stage 2—APR Feature Exploitation

4: Calculate the APR map QA using intensity information provided by IHH
a and IVV

a ,
according to (6) and (7).

5: Generate the composite map Q f exploiting the APR feature, as well as the original SAR
images based on (8).
• Stage 3—Fused Image Generation

6: Generate the final fused map I f by combining T f and Q f based on (9).

4. Experimental Results

In this section, we evaluate the proposed TPPIE image fusion method using real
spaceborne–airborne collaborative SAR images. The parameters of the proposed TPPIE
method were properly selected, as per the discussions in Section 3.3. Experimental analyses
were conducted by comparing the proposed method with several commonly used image
fusion approaches and conventional processing methods using single-SAR images. These
comparative image fusion approaches included existing additive and multiplicative fusion
approaches [10], PCA [12], DWT [13], fuzzy logic [16], and AANN-based fusion [18]. For
more implementation details, we refer the reader to [10–13,16,18]. For the single-SAR
image processing cases, the spaceborne SAR images were used directly; while, for the
airborne SAR images, the horizontal and vertical polarization versions were averaged
simply and then used in the following comparison.

4.1. Dataset Description

The used spaceborne and airborne SAR images were collected from Gaofen-3 satellite
and UAV platforms, respectively, which are shown in Figure 3a–i and whose specifications
are summarized in Table 1. The spaceborne SAR images with HH polarization and the
airborne SAR images with HH/VV polarization were utilized in the experiments. These
images were acquired at the Shanghai port and were registered before the fusion. As
expected, the spaceborne SAR image had lower resolution than the airborne SAR image;
thus, a nearest-neighbor interpolation technique (which is computationally simple and
can avoid the spectrum distortion induced by interpolation [41]) was adopted to resize the
spaceborne SAR image, such that it had the same size as the corresponding airborne SAR
image. Three observed scenes were considered, which contained inshore interferences,
as well as structured and shaped vessel targets. These vessel targets were assumed to be
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motionless (or to have negligible movements). The target ground truths were labeled by
the annotations from technical experts, as illustrated in Figure 3j–l.

Spaceborne image

(a)

Spaceborne image

(b)

Spaceborne image

(c)
Airborne image (HH)

(d)

Airborne image (HH)

(e)

Airborne image (HH)

(f)
Airborne image (VV)

(g)

Airborne image (VV)

(h)

Airborne image (VV)

(i)
Ground truth

(j)

Ground truth

(k)

Ground truth

(l)
Figure 3. Experimental data acquired from the spaceborne–airborne SAR collaboration system. Subgraphs (a–c) are the
spaceborne SAR images, subgraphs (d–i) are the dual-polarization airborne SAR images, and subgraphs (j–l) are the
corresponding ground truths. Three scenes are considered in our experiments, which correspond to the three rows; that is,
(a,d,g,j), (b,e,h,k), and (c,f,i,l), respectively.
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Table 1. Specifications of spaceborne and airborne SAR images.

Experimental Scene Figure 3a–c Figure 3d–i

Platform Gaofen-3 (Spaceborne platform) UAV (Airborne platform)
Frequency band C Ku

Center frequency 5.4 GHz 14.5 GHz
Polarization HH HH, VV

Incidence angle 30.32◦–31.23◦ 25◦

Center look angle 27.17◦ ∼25◦

Imaging mode Spotlight Strip map
Resolution 1× 1 m2 0.3× 0.15 m2

Center imaging time 27 September 2019 06:01:03 27 September 2019 06:02:56
Observed area Shanghai port Shanghai port

Image size
Scene 1, Figure 3a: 282× 365 Scene 1, Figure 3d,g: 1105× 2243
Scene 2, Figure 3b: 245× 325 Scene 2, Figure 3e,h: 965× 2200
Scene 3, Figure 3c: 288× 404 Scene 3, Figure 3f,i: 1132× 2580

4.2. Performance Measures

To evaluate the performances of the above image fusion approaches, some quantitative
measures were used. First, the fused images were compared in terms of the TCR and the
target improvement factor (TIF). The TCR is defined by [15]

TCR = 10log10
(1/Wtar.)∑Rtar. I f (m, n)

(1/Wnontar.)∑Rnontar. I f (m, n)
, (10)

where (m, n) denote the coordinates of pixels in the fused map I f ,Rtar. denotes the target
regions, Rnontar. denotes the non-target regions (including inshore interferences and sea
clutter), and Wtar. and Wnontar. are the numbers of pixels inRtar. andRnontar., respectively.
In general, a large value of TCR implies that the targets are exactly enhanced and the
backgrounds (including inshore interferences and sea clutter) are effectively suppressed,
thus improving the target detection performance. The another image quality measure, TIF,
denotes the enhancement degree of the target regions [15]:

TIF = 10log10
2 ∑Rtar. I f (m, n)

∑Rtar. Is(m, n) + ∑Rtar. Ia(m, n)
, (11)

where Is and Ia denote the original spaceborne and airborne SAR images, respectively. Next,
we compare the detection performances of the aforementioned image fusion approaches.
The probability of detection (PD) and the probability of false alarm (PFA) were evaluated
as follows [15]

PD =
WDtar.

Wtar.
,

PFA =
WDnontar.

Wnontar.
, (12)

where WDtar. and WDnontar. denote the numbers of correctly detected pixels and false alarm
pixels in the fused image I f , respectively. Another important measure, the accuracy, was
also considered, which can be calculated as

accuracy =
WDtar. + (Wnontar. −WDnontar.)

Wtar. + Wnontar.
. (13)

Moreover, the receiver operator characteristic (ROC) curve, showing the PD as a
function of PFA, can be obtained based on (12), in order to indicate the global target
detection performances of these approaches in the vessel detection task.
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4.3. Illustrative Examples for Intersected TSPM T f in (5) and Composite Map Q f Exploiting APR
in (8)

Figure 4a,b show the proposal matrices Ps and Pa, which contain the TPs from the
input SAR images Is and Ia for scene 1, respectively. We can see that these TPs captured
the potential vessel target regions and can help to reduce the false alarms induced by the
sea clutter and inshore interferences. Figure 4c,d illustrate the TSPMs Ts and Ta, with
respect to Is and Ia, respectively. Based on (4), considering that the proposal matrix Pu
and the candidate map Cu are both binary-valued, the elements of the generated TSPM
have three states (with values of 1, 0.5, and 0), corresponding to three possible regions.
More specifically, the elements with state 0 denote the backgrounds (including inshore
interferences and sea clutter), those with state 1 denote the potential target regions, and
those with state 0.5 denote the regions that are probably the non-target regions, although
they have been labeled as TPs. Compared with the sole use of TPs, the advantage of this
new generated TSPM combining TPs and the morphological candidate map is to better
achieve target extraction and background suppression. Figure 4e shows the intersected
TSPM T f based on (5), whose elements have three states, with values of 1, 0.25, and 0. It
can be observed that the false alarms induced by the inshore interferences and sea clutter
were significantly reduced, while the potential target regions were well-retained.

(a) (b) (c)

(d) (e)

Figure 4. Illustrative example of TSPM generation: (a) Proposal matrix Ps extracted from the spaceborne SAR image Is;
(b) Proposal matrix Pa extracted from the airborne SAR image Ia; (c) TSPM Ts with respect to Is; (d) TSPM Ta with respect
to Ia; and (e) Intersected TSPM T f . The ground truth boundaries of vessel targets are also plotted as red lines. By using
the intersected TSPM T f , we can significantly reduce the false alarms induced by the inshore interferences and sea clutter,
while retaining the potential target regions in Is and Ia.

Next, we take the airborne SAR image with horizontal polarization, denoted as IHH
a ,

and its corresponding vertical polarization image, denoted as IVV
a , of scene 1 as an example,

as shown in Figure 5a and Figure 5b, respectively. Figure 5c depicts the PR map expressed
by (7). It can be seen that the intensity values of most of the pixels (up to about 98%)
were within the range of [0, 2]. The regions occupied by sea clutter and vessel targets,
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indeed, appear to be different in this PR map, helping to discriminate the sea clutter and
target regions. In Figure 5d, we show the APR map expressed by (6), which introduces
the SF to shift the intensity histogram of the PR map. The histogram shifting operation
helps to improve the contrast between vessel targets and sea clutter (or, equivalently, the
TCR performance). Figure 5e illustrates the composite map exploiting the APR feature,
as well as the original SAR images, according to (8). We can see that the composite map
not only can maintain high contrast between vessel targets and sea clutter, but also better
delineates the target boundaries than with the sole use of the APR map. This advantage of
the composite map obtained by (8) can be confirmed by comparing the results shown in
Figure 5d,e.

HH
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(c)

APR map
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0.1

0.2

0.3
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(d)

Composite map exploiting APR
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0.1

0.2

0.3
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0.8

0.9
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(e)

Figure 5. Illustrative example of APR feature exploitation: (a) Airborne SAR image with horizontal polarization, denoted as
IHH

a ; (b) Airborne SAR image with vertical polarization, denoted as IVV
a ; (c) PR map with respect to IHH

a and IVV
a ; (d) APR

map with respect to IHH
a and IVV

a ; and (e) Composite map exploiting the APR feature, as well as the original SAR images.
This composite map achieves high contrast between vessel targets and sea clutter, thus improving the TCR performance.

4.4. Image Quality Evaluation

This subsection aims to evaluate the quality of the fused images, in terms of two
quantitative measures (i.e., TCR and TIF). Figures 6–8 illustrate the fused images obtained
by additive fusion, multiplicative fusion, PCA fusion, DWT fusion, fuzzy logic, AANN
fusion, and the proposed TPPIE method, as well as the proposed ITSPM fusion method
(which combines the NG-based TP and edge-based morphological candidate map).
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Spaceborne image

(a)

Airborne image

(b)

Additive fusion

(c)

Multiplicative fusion

(d)

PCA fusion

(e)

DWT fusion

(f)

Fuzzy fusion

(g)

AANN fusion

(h)

Proposed ITSPM

(i)

Proposed TPPIE

(j)

Figure 6. Experimental results for scene 1: (a) Spaceborne image; (b) airborne image; (c) additive fusion [10]; (d) multiplica-
tive fusion [10]; (e) PCA fusion [12]; (f) DWT fusion [13]; (g) fuzzy fusion [16]; (h) AANN fusion [18]; (i) proposed ITSPM
fusion; and (j) proposed TPPIE fusion. The proposed methods can achieve better fused images with enhanced target regions
and suppressed background regions, compared to the other image fusion approaches.
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Spaceborne image

(a)

Airborne image

(b)

Additive fusion

(c)

Multiplicative fusion

(d)

PCA fusion

(e)

DWT fusion

(f)

Fuzzy fusion

(g)

AANN fusion

(h)

Proposed ITSPM

(i)

Proposed TPPIE

(j)

Figure 7. Experimental results for scene 2: (a) Spaceborne image; (b) airborne image; (c) additive fusion [10]; (d) multiplica-
tive fusion [10]; (e) PCA fusion [12]; (f) DWT fusion [13]; (g) fuzzy fusion [16]; (h) AANN fusion [18]; (i) proposed ITSPM
fusion; and (j) proposed TPPIE fusion. The proposed methods can achieve better fused images with enhanced target regions
and suppressed background regions, compared to the other image fusion approaches.
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Spaceborne image

(a)

Airborne image

(b)

Additive fusion

(c)

Multiplicative fusion

(d)

PCA fusion

(e)

DWT fusion

(f)

Fuzzy fusion

(g)

AANN fusion

(h)

Proposed ITSPM

(i)

Proposed TPPIE

(j)

Figure 8. Experimental results for scene 3: (a) Spaceborne image; (b) airborne image; (c) additive fusion [10]; (d) multiplica-
tive fusion [10]; (e) PCA fusion [12]; (f) DWT fusion [13]; (g) fuzzy fusion [16]; (h) AANN fusion [18]; (i) proposed ITSPM
fusion; and (j) proposed TPPIE fusion. The proposed methods can achieve better fused images with enhanced target regions
and suppressed background regions, compared to the other image fusion approaches.
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For scene 1, the fused images in Figure 3a,d,g are shown in Figure 6. Figure 6a depicts
the original spaceborne SAR image, and Figure 6b depicts the averaged result of the original
airborne SAR images with horizontal and vertical polarizations. As can be seen from
Figure 6c, additive fusion did not have an obvious enhancement effect on the target regions,
retaining some inshore interferences that can easily result in the false alarms. In contrast, as
shown in Figure 6d, multiplicative fusion filtered out the effects of sea clutter and inshore
interferences, but the regions occupied by vessel targets were also partially deteriorated.
The PCA fusion and AANN fusion approaches combined the principal components of
source images in linear and non-linear manners, respectively. The resultant fused images,
illustrated in Figure 6e,h, performed to similarly to additive fusion, in terms of maintaining
the target and background regions. The DWT fusion approach fuses the high- and low-
frequency components of source images. As seen in Figure 6f, the DWT-based fused image
did not provide satisfactory performance, concerning target enhancement and background
suppression. Figure 6g shows the fused image obtained by fuzzy logic, where both the
target regions and the inshore interferences were enhanced, to some extent. The main
reason is that the pixel-level fuzzy logic approach has difficulty in discriminating the real
targets from background clutter with relatively strong scattering intensity. The above
fusion methods lacked the anticipated ability of target–clutter discrimination, and did not
fully exploit the polarization characteristics of vessel targets and background clutter. Thus,
they had difficult in simultaneously removing the inshore interferences while retaining the
structured targets that only contain discrete strong scattering points. These difficulties were
effectively handled by the proposed image fusion methods, however. Figure 6i depicts
the result obtained by the proposed ITSPM (combining the NG-based TP and edge-based
morphological map). Although the target pixels were enhanced, some clutter pixels still
remained in the non-zero-state regions, which might deteriorate the detection performance,
to some extent. From Figure 6j, it can be seen that the proposed TPPIE method achieved
a better fused image with enhanced target regions and suppressed background regions
(compared to the existing image fusion approaches), due to the combination of TPs, the
edge-based morphological candidate map (as captured by the TSPM), and the exploitation
of intensity information of dual-polarization SAR images (as captured by the APR feature).

Figures 7 and 8 show the fused images for Scene 2 [see Figure 3b,e,h] and Scene 3
[see Figure 3c,f,i], respectively. Similar to the results illustrated in Figure 6 for Scene 1, the
additive fusion, PCA fusion, DWT fusion, and AANN fusion approaches could only extract
a portion of the vessel target regions, and the inshore interference regions were maintained
in the fused images. The multiplicative fusion approach obviously suppressed vessel target
regions, which can easily lead to missed detections, regardless of removing the effects of
sea clutter and inshore interferences. The fuzzy logic-based fusion approach achieved
enhancements both in the target regions and the inshore interferences, but the latter will
result in false alarms. The proposed ITSPM enhanced the target pixels while still retaining
some clutter pixels in the non-zero-state regions. In contrast, the proposed TPPIE fusion
method enhanced the vessel targets while, at the same time, suppressing the background
regions including sea clutter and inshore interferences, as shown in Figures 7j and 8j,
through the TSPM extracting potential target regions and the APR feature exploiting
dual-polarization information.

Based on the results in Figures 6–8, Tables 2–4 list the TCRs and TIFs of the fused
images obtained using the different fusion methods. For Scenes 1 and 2, the airborne
SAR images had higher TCR than the spaceborne SAR images. Most of the comparative
fusion approaches, such as additive fusion, PCA fusion, DWT fusion, and AANN fusion
showed higher TCRs than the spaceborne image processing case, but lower TCRs than
the airborne image processing case. The multiplicative fusion approach yielded high TCR
but had the lowest TIF, as it suppressed not only the background regions but also target
vessels. The fuzzy logic fusion approach provided TCR similar to the case of processing
the airborne SAR image, but had poor TIF. We also considered Scene 3, which contained
more structured and shaped targets. The airborne SAR image had lower TCR than the
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spaceborne SAR image, as some portions of the vessel hulls and edges appeared to have
relatively low scattering intensities, deteriorating the image contrast performance to some
extent. All the comparative fusion approaches showed an improvement, in terms of the
TCR, compared with the processing cases with single-SAR images. When evaluating
the TIF performance, only the fuzzy logic and AANN fusion approaches had a positive
enhancement of the target regions. The other fusion approaches (i.e., additive fusion,
multiplicative fusion, PCA fusion, and DWT fusion) did not enhance the target regions (i.e.,
having negative TIF values), where multiplicative fusion provided the lowest TIF, despite
its high TCR. With regard to the proposed TPPIE fusion method, it attained the highest
TCRs and satisfactory TIFs for these three experimental scenes, due to the extraction and
enhancement of target regions and the simultaneous suppression of background regions
(including sea clutter and inshore interferences). Compared with the TPPIE method, the
proposed ITSPM fusion method performed slightly better, in terms of TIF, as pixels with
intensity value of 1 constitute the enhanced target regions in the ITSPM, naturally leading
to larger values of TIF, which only concern the target enhancement performance. These
advantages for TCR and TIF demonstrate the effectiveness of the proposed ITSPM and
TPPIE methods, compared with the existing image fusion approaches, as well as the
conventional processing cases with single-SAR images.

Table 2. TCR and TIF (in dBs) Comparisons for Experimental Scene 1. The proposed TPPIE method
attained the highest TCR, and the proposed ITSPM method attained the highest TIF.

Experimental Scene 1 TCR [dBs] TIF [dBs]

Spaceborne image only 3.99 −
Airborne image only 7.96 −
Additive fusion [10] 6.75 0.21

Multiplicative fusion [10] 11.23 −5.86
PCA fusion [12] 7.19 −0.08
DWT fusion [13] 5.96 −1.17
Fuzzy fusion [16] 8.42 1.42

AANN fusion [18] 7.20 0.19
Proposed ITSPM 12.11 7.51
Proposed TPPIE 13.73 5.99

Table 3. TCR and TIF (in dBs) comparisons for Experimental Scene 2. The proposed TPPIE method
attained the highest TCR and the proposed ITSPM method attained the highest TIF

Experimental Scene 2 TCR [dBs] TIF [dBs]

Spaceborne image only 3.32 −
Airborne image only 6.86 −
Additive fusion [10] 5.22 −0.03

Multiplicative fusion [10] 8.42 −6.93
PCA fusion [12] 5.77 −0.13
DWT fusion [13] 4.68 −1.40
Fuzzy fusion [16] 6.60 0.68

AANN fusion [18] 5.30 1.05
Proposed ITSPM 11.29 7.95
Proposed TPPIE 12.02 6.22



Remote Sens. 2021, 13, 3957 19 of 27

Table 4. TCR and TIF (in dBs) comparisons for Experimental Scene 3. The proposed TPPIE method
attained the highest TCR and the proposed ITSPM method attained the highest TIF.

Experimental Scene 3 TCR [dBs] TIF [dBs]

Spaceborne image only 6.01 −
Airborne image only 4.54 −
Additive fusion [10] 6.35 −0.67

Multiplicative fusion [10] 9.05 −6.89
PCA fusion [12] 6.23 −0.20
DWT fusion [13] 6.24 −1.71
Fuzzy fusion [16] 8.17 1.72

AANN fusion [18] 6.26 0.15
Proposed ITSPM 8.84 6.25
Proposed TPPIE 9.45 4.86

4.5. Detection Performance Evaluation

This subsection aims to evaluate the target detection performances of the aforemen-
tioned approaches. The original SAR images and the fused images were used in the vessel
detection task by a superpixel-based CFAR (SP-CFAR) algorithm. Compared with the
conventional pixel-level methods, superpixels can help to better retain the potential target
regions and reduce the processing complexity in the detection task [42,43]. More details
on the implementation of the SP-CFAR algorithm can be found in [43]. Figures 9–11 show
the superpixel-based detection results of the aforementioned approaches for three experi-
mental scenes, where the PFA was fixed to 0.03, 0.05, and 0.1, respectively. For the pixels
belonging to some superpixel, they are represented by the average intensity of all pixels
in the superpixel. The pixel intensities higher than the decision threshold are set to one,
while the others are set to zero. The number of superpixels is an important parameter for
superpixel-based detection, which determines the size of superpixel. It is expected that
the superpixel can only contain either vessel targets or background regions. Herein, the
number of superpixels was selected such that the size of the superpixel was comparable
to the vessel width [25]; that is, approximately 250. Furthermore, the boundaries of the
ground truths of vessel targets are plotted as red lines in Figures 9–11.

Spaceborne image

(a)

Airborne image

(b)

Additive fusion

(c)
Figure 9. Cont.
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Multiplicative fusion

(d)

PCA fusion

(e)

DWT fusion

(f)
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(g)
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Proposed ITSPM

(i)

Proposed TPPIE
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Figure 9. Superpixel-based detection results of different methods for Experimental Scene 1 with respect to PFA = 0.03:
(a) Spaceborne image processing (PD = 0.0804); (b) airborne image processing (PD = 0.4549); (c) additive fusion [10]
(PD = 0.4191); (d) multiplicative fusion [10] (PD = 0.5464); (e) PCA fusion [12] (PD = 0.5356); (f) DWT fusion [13]
(PD = 0.3249); (g) fuzzy fusion [16] (PD = 0.4314); (h) AANN fusion [18] (PD = 0.4704); (i) proposed ITSPM fusion
(PD = 0.8956); and (j) proposed TPPIE fusion (PD = 0.9853). The red lines denote the boundaries of target vessels. The
proposed TPPIE fusion method had the best detection performance.
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Spaceborne image
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Figure 10. Superpixel-based detection results of different methods for Experimental Scene 2 with respect to PFA = 0.05:
(a) Spaceborne image processing (PD = 0.2009); (b) airborne image processing (PD = 0.3922); (c) additive fusion [10]
(PD = 0.3181); (d) multiplicative fusion [10] (PD = 0.6167); (e) PCA fusion [12] (PD = 0.3478); (f) DWT fusion [13]
(PD = 0.2762); (g) fuzzy fusion [16] (PD = 0.3261); (h) AANN fusion [18] (PD = 0.4741); (i) proposed ITSPM fusion
(PD = 0.9492); and (j) proposed TPPIE fusion (PD = 0.9909). The red lines denote the boundaries of target vessels. The
proposed TPPIE fusion method had the best detection performance.
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Spaceborne image
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Figure 11. Superpixel-based detection results of different methods for Experimental Scene 3 with respect to PFA = 0.1:
(a) Spaceborne image processing (PD = 0.6133); (b) airborne image processing (PD = 0.3960); (c) additive fusion [10]
(PD = 0.7253); (d) multiplicative fusion [10] (PD = 0.6850); (e) PCA fusion [12] (PD = 0.7420); (f) DWT fusion [13]
(PD = 0.7243); (g) fuzzy fusion [16] (PD = 0.7528); (h) AANN fusion [18] (PD = 0.7305); (i) proposed ITSPM fusion
(PD = 0.8998); and (j) proposed TPPIE fusion (PD = 0.9796). The red lines denote the boundaries of target vessels. The
proposed TPPIE fusion method had the best detection performance.



Remote Sens. 2021, 13, 3957 23 of 27

From Figures 9–11, it can be seen that the single spaceborne or airborne SAR image
processing could identify the target regions in part, but suffered from missed detections
and false alarms to different extents. Given an acceptable PFA, it is difficult to achieve
satisfactory detection performance by single-SAR image processing; for example, the PD of
airborne image processing was as low as 0.0804 for the Scene 1. Similar predicaments also
occurred for the existing image fusion approaches, including additive fusion, multiplicative
fusion, PCA fusion, DWT fusion, fuzzy logic, and AANN fusion. Some of these fusion
approaches (i.e., additive fusion, PCA fusion, and DWT fusion) even exhibited worse PDs
than the single-SAR image processing for Scenes 1 and 2. This is mainly related to the poor
TCR and TIF performances of their fused images. Compared with the aforementioned
image fusion approaches, the proposed TPPIE and ITSPM fusion methods better retained
and enhanced the target regions while, at the same time, suppressing sea clutter and inshore
interference regions. More specifically, the TPPIE method had higher PD values than the
ITSPM method, as the ITSPM method only exploits the TSPM (extracting potential target
regions), whereas the TPPIE method considers both the TSPM and the APR feature (thus
exploiting dual-polarization information). Therefore, the TPPIE fusion method showed
the best target detection performance, with respect to the given FPAs. As can be seen
in Figures 9j–11j, the PDs of TPPIE fusion were 0.9853, 0.9909, and 0.9796, respectively,
significantly outperforming the existing image fusion approaches and the single-SAR
image processing cases. It can also be observed that the extracted vessel regions were
connected. The main reason might lie in the small spacings between observed vessels,
which could be comparable with the inherent spatial resolution determined by SAR sensor
performance. This was a common problem for all the aforementioned fusion methods. A
dedicated investigation to further separation and extraction of each target vessel could be
addressed in future research.

Table 5 summarizes the accuracy performance of the different methods, based on (13),
for the three experimental scenes with respect to detection results shown in Figuires 9–11.
It can be seen that the proposed TPPIE fusion method also attained the best accuracy
performance. Concerning the proposed ITSPM method, which combines NG-based TP and
edge-based morphological candidate map, it also outperformed the other existing methods
and performed only slightly worse than the TPPIE method.

Table 5. Accuracy comparison for three experimental scenes, with respect to the detection results
shown in Figures 9–11. The proposed TPPIE method attained the best accuracy performance.

Scene 1 Scene 2 Scene 3

Spaceborne image only 0.9127 0.8811 0.8617
Airborne image only 0.9396 0.9025 0.8301
Additive fusion [10] 0.9346 0.8934 0.8787

Multiplicative fusion [10] 0.9403 0.9191 0.8726
PCA fusion [12] 0.9418 0.8940 0.8792
DWT fusion [13] 0.9283 0.8889 0.8777
Fuzzy fusion [16] 0.9375 0.8940 0.8826

AANN fusion [18] 0.9423 0.9065 0.8768
Proposed ITSPM 0.9659 0.9503 0.8989
Proposed TPPIE 0.9719 0.9533 0.9089

Figures 12–14 depict the ROC curves based on the original and fused images shown
in Figures 6–8, in order to investigate the global detection performance. We can see that
some image fusion approaches did not always attain improved detection performance,
compared with the single-SAR image processing cases, such as additive fusion, PCA fusion,
and DWT fusion, for Scene 1 (see Figure 12). This was because these existing approaches
had difficulty in simultaneously attaining the enhancement of target regions (especially
for structured and shaped vessels containing only discrete strong scattering points) and
the suppression of background regions (including sea clutter and inshore interferences).
Considering the proposed TPPIE fusion method, it provided significantly better global
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detection performance than the single-SAR image processing cases and the other existing
image fusion approaches. In comparison with the proposed ITSPM method, this TPPIE
method also performed better, due to considering both the TSPM, extracting potential
target regions, and the APR feature, exploiting dual-polarization information. In particular,
when we pursued a satisfactory PD (e.g., larger than 0.96), the PFAs of the proposed TPPIE
and ITSPM fusion methods were far less than those of the other comparative approaches.
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Figure 12. ROC curves of different methods for Experimental Scene 1. When pursuing a relatively
high PD (e.g., larger than 0.98), the PFAs of the proposed ITSPM and TPPIE fusion methods were
far less than those of the other methods, including spaceborne image processing, airborne image
processing, additive fusion [10], multiplicative fusion [10], PCA fusion [12], DWT fusion [13], fuzzy
fusion, and AANN fusion [18].
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Figure 13. ROC curves of different methods for Experimental Scene 2. When pursuing a relatively
high PD (e.g., larger than 0.98), the PFAs of the proposed ITSPM and TPPIE fusion methods were
far less than those of the other methods, including spaceborne image processing, airborne image
processing, additive fusion [10], multiplicative fusion [10], PCA fusion [12], DWT fusion [13], fuzzy
fusion, and AANN fusion [18].
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Figure 14. ROC curves of different methods for Experimental Scene 3. When pursuing a relatively
high PD (e.g., larger than 0.96), the PFAs of the proposed ITSPM and TPPIE fusion methods were
far less than those of the other methods, including spaceborne image processing, airborne image
processing, additive fusion [10], multiplicative fusion [10], PCA fusion [12], DWT fusion [13], fuzzy
fusion, and AANN fusion [18].

5. Conclusions

In this paper, we introduced a new perspective for vessel target detection, through
the collaboration of observations from spaceborne and airborne SAR platforms. To make
use of their respective strengths, we also proposed a new TPPIE method for fusing the
spaceborne–airborne collaborative SAR images. The TPPIE image fusion method mainly
exploits target–clutter discrimination and dual-polarization information to improve the
TCR of the fused image. In more detail, we first generate a new TSPM by combing the NG-
based TP and the edge-based morphological candidate map. This generated TSPM can help
to better extract the potential target regions and filter out the background regions, including
sea clutter and inshore interferences, compared to the sole use of TP. Next, we exploit the
intensity information of dual-polarization SAR images and present a new polarization
feature, called the APR. By making use of the polarization characteristic differences of
background clutter and vessel targets, this APR feature can further enhance the target
regions. Finally, we take the Hadamard product of the intersected TSPM from spaceborne–
airborne collaborative observations and the composite map exploiting the APR feature (as
well as the original SAR images) to generate the final fused image, having enhanced targets
and suppressed backgrounds (or, equivalently, improved TCR performance).

Experimental results using Gaofen-3 satellite and UAV SAR images demonstrated
that the proposed TPPIE method has better image fusion qualities, in terms of TCR and
TIF, than existing fusion approaches, including arithmetic, PCA, DWT, fuzzy logic, and
AANN fusion. Moreover, the proposed TPPIE method presented improved target detection
performance (e.g., higher PDs, with respect to fixed acceptable PFAs) and better accuracy
performance for three experimental scenes containing inshore interferences and structured
targets. ROC analyses also demonstrated the superiority of the proposed TIPPIE method
on the global detection performance of vessel targets, compared with existing, commonly
used image fusion approaches.
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