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Abstract: Given the explosive growth of information technology and the development of computer
vision with convolutional neural networks, wildfire field data information systems are adopting
automation and intelligence. However, some limitations remain in acquiring insights from data,
such as the risk of overfitting caused by insufficient datasets. Moreover, most previous studies have
only focused on detecting fires or smoke, whereas detecting persons and other objects of interest
is equally crucial for wildfire response strategies. Therefore, this study developed a multilabel
classification (MLC) model, which applies transfer learning and data augmentation and outputs
multiple pieces of information on the same object or image. VGG-16, ResNet-50, and DenseNet-121
were used as pretrained models for transfer learning. The models were trained using the dataset
constructed in this study and were compared based on various performance metrics. Moreover, the
use of control variable methods revealed that transfer learning and data augmentation can perform
better when used in the proposed MLC model. The resulting visualization is a heatmap processed
from gradient-weighted class activation mapping that shows the reliability of predictions and the
position of each class. The MLC model can address the limitations of existing forest fire identification
algorithms, which mostly focuses on binary classification. This study can guide future research on
implementing deep learning-based field image analysis and decision support systems in wildfire
response work.

Keywords: wildfire response; multilabel classification; data augmentation; decision support systems;
transfer learning

1. Introduction

Wildfires have become increasingly intense and frequent worldwide in recent years [1].
A wildfire not only destroys infrastructure in fire-hit areas and causes casualties to firefight-
ers and civilians but also causes fatal damage to the environment, releasing large amounts
of carbon dioxide [2]. To minimize such damage, decision makers from the responsible
agencies aim to detect fires as quickly as possible and to extinguish them quickly and
safely [3]. Wildfire response is a continuous decision-making process based on a variety
of information that is constantly shared in a spatiotemporal range, from the moment a
disaster occurs to when the situation is resolved [4]. Efficient and rapid decision making in
urgent disaster situations requires the analysis of decision-support information based on
data from various sources [5].

Video and image data are key factors for early detection and real-time monitoring
to prevent fires from spreading to uncontrollable levels [6]. Over the past few decades,
the use of convolutional neural networks (CNNs) in image analysis and intelligent video
surveillance has proven to be faster and more effective than other sensing technologies in
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minimizing forest fire damage [7]. Nevertheless, several problems must be addressed in
forest fire detection and response when using CNNs.

The first problem is that most of the research on wildfires using deep-learning-based
computer vision is mainly limited to binary classifications, such as the classification of
wildfire and non-wildfire images [8]. In other words, these models are focused on de-
tecting forest fires but ignore other meaningful information, such as information on the
surrounding site. Even though a wide range of regions can be filmed via unmanned aerial
vehicles (UAVs) or surveillance cameras, information provisions for decision makers are
limited in this single-label classification model environment because only one type of result
can be obtained from one instance. Unlike single-label classification or multiclass classi-
fication, where the classification scheme is mutually exclusive, multilabel classification
(MLC) does not have a specified number of labels per image (instance), and the classes are
non-exclusive. Therefore, the model can be trained by embedding more information in a
single instance [9].

In the context of wildfire response, information is shared to establish a common
understanding of wildfire responders regarding the disaster situations they encounter [10].
Information on the disaster site is a vital data source that must be shared to enable timely
and appropriate responses. Therefore, information concerning human lives and property
at the site of occurrence must be considered to ensure effective and optimized response
decisions by decision makers [11].

Another important problem is that the performance of the learning model can be
degraded by overfitting owing to insufficient data [12]. The lack of large-scale image data
benchmarks remains a common obstacle in training deep neural networks [13]. However,
transfer learning and data augmentation can significantly enhance the predictive perfor-
mance of binary classification models to overcome image data limitations. In particular,
transfer learning (with fine-tuning of pretrained models) improves accuracy compared
to scanarios when the parameters of the model are initialized from scratch (i.e., without
applying transfer learning) [14].

The main purpose of this study was to develop a decision support system for wildfire
responders through the early detection and on-site monitoring of wildfire events. A
decision support system should perform two functions: (1) process incoming data and
(2) provide relevant information [15]. The received data are limited to image data from an
optical camera, and the results of deep learning can be analyzed. Therefore, we propose a
transfer learning approach for the MLC model to address the following challenges:

1. Does the proposed CNN-based multilabel image classification model for wildfire
response decision support show a convincing performance?

2. Are transfer learning and data augmentation methods, which are used to overcome
data scarcity, effective in increasing the performance of the proposed MLC model?

3. Images taken from drones are usually collected at a high resolution. However, the
CNN-based result is output as a low-resolution image (224 × 224). How can the gap
between these two resolutions be addressed?

4. How can the models be used to support forest fire response decision making?

In this study, it is significant that MLC was used to provide multiple pieces of infor-
mation within the image frame, away from the binary or multi-class classifications mainly
covered in previous studies. The reason for using this multi-information framework is to
share various pieces of information at disaster sites with disaster responders in near-real
time. In the model configuration, we tried to lower the error rate as much as possible by
using data augmentation, transfer learning, by adding similar data, and cross validation.
In order to minimize the resolution gap between the CNN input model and the actual
captured image, a method of dividing and evaluating the image was attempted.

The backbone network of the MLC was constructed using VGG16 [16], ResNet50 [17],
and DenseNet121 [18], which are mainly used in CNN-based binary classification. These
models were retrained on a dataset built by researchers and were validated using 10-fold
cross-validation. The size of the dataset used in the training model was increased by data
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augmentation to overcome the limitations caused by a lack of data. Finally, the model with
the best performance among the three models was selected using the evaluation metric,
and the result was visualized as a class activation map (CAM).

The remainder of this paper is organized as follows: Section 2 briefly summarizes
previous studies on wildfire detection and response using image data and decision support
systems. Section 3 presents the multilabel image classification, transfer learning model,
and evaluation methods. The results of relevant experiments are analyzed and discussed
in Section 4. Finally, the conclusions are presented in Section 5.

2. Related Work

Effective disaster management relies on the participation and communication of
people from geographically dispersed organizations; therefore, information management
is critical to disaster response tasks [19]. Because forest fires can cause widespread damage
depending on the direction and speed of the fire, strategic plans are required to ensure
prioritization and resource allocation to protect nearby homes and to evacuate people.
In the past, limitations in data collection techniques constrained these decision-making
processes, making them dependent on the subjective experience of the decision-maker [20].
Recent advances in information technology have led to a sharp increase in the amount of
information available for decision making. Nevertheless, human capability in information
processing is limited, and it is problematic to process information acquired at the scene of a
forest fire timely and reliably. To solve this problem, a forest fire decision-support checklist
for the information system was developed [21], and machine-learning-based research has
steadily increased in the field of forest fire response and management since the 2000s [11].
Analyzing wildfire sites with artificial intelligence can substantially reduce the response
time, decrease firefighting costs, and help minimize potential damage and loss of life [5].

Traditionally, wildfires have mainly been detected by human observations from fire
towers or detection cameras, which are difficult to use owing to observer errors and time–
space limitations [21]. Research on image-based automated detection that can monitor
wildfires in real-time or near-real-time according to the data acquisition environment
using satellites and ground detection cameras has been steadily increasing over the past
decade [22]. Satellites have different characteristics depending on their orbit, which can
be either a solar synchronous orbit or a geostationary orbit. Data from solar synchronous
orbit satellites have a high spatial resolution but a low time resolution, which limits
their applicability in cases of forest fires. Conversely, geostationary orbit satellites have
a high temporal resolution but a low spatial resolution. According to previous studies,
geostationary orbit satellites can continuously provide a wide and constant field-of-view
over the same surface area; however, many countries do not have satellites owing to
budget constraints, atmospheric interference, and low spatial resolution [23]. Therefore,
satellites are not suitable for the early detection of small-scale wildfires [24]. On the other
hand, small UAVs or surveillance cameras incur much lower operating costs than other
technologies [25], offer high maneuverability, flexible perspectives, and resolution and
have been recognized for their high potential in detecting wildfires early and for providing
field information [26].

Previous studies combined image data and artificial intelligence methods to improve
the accuracy of forest fire detection or to minimize the factors that cause errors. Damage
detection studies often face the problem of data imbalances [27], which previously relied
only on images downloaded from the Web and social media platforms [28,29]. Online image
databases, such as the Corsican Fire Database, have been used for binary classification as
a useful test set for comparing computer vision algorithms [30] but are still not available
in MLC. Recent studies have demonstrated its effectiveness using data augmentation or
transfer learning for the generalization of the performance of CNN models [31] and have
shown its potential in object detection or MLC fields.

Because neural networks cannot be generalized to untrained situations, the importance
of the dataset has been steadily emphasized to improve the performance of the model.
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During model verification, the smoke color and texture are too similar to other natural
phenomena such as fog, clouds, and water vapor, and because it is difficult to detect smoke
during the night, algorithms relying on smoke detection generally cause problems such as
high false alarm rates [31,32]. The current study was conducted by including the objects
that could not be differentiated in the dataset.

3. Materials and Methods
3.1. Data Augmentation

Data augmentation is the task of artificially enlarging the training dataset using
modified data or synthesizing the training dataset from a few datasets before training the
CNN model, which lowers the test error rate and significantly improves the robustness of
the model to avoid overfitting. The most popular and proven effective current practices for
data augmentation are affine transformation, including the rotation and reflection of the
original image and color modification, including brightness transformation [33]. In this
study, the image dataset was pre-processed in terms of reflection, rotation, and brightness,
which are commonly used data augmentation techniques in previous studies to increase
the richness of the training datasets.

3.2. Transfer Learning

Transfer learning is another approach to prevent overfitting [34]. It is a machine
learning method that uses the weights of the pretrained models as weights for the initial
or intermediate layers of the new objective model. In computer vision, transfer learning
refers mainly to the use of pretrained models. This method is widely used to handle
tasks that lack data availability [35]. There are two representative approaches for applying
a pretrained model, called a fixed feature extractor and fine-tuning. The fixed feature
extractor is a method of learning only the fully connected layer in a pretrained model and
fixing the weights of the remaining layers. It is mainly applied when the amount of data
is small, but the training data used for pretraining are similar to the training data of the
target model. This approach is uncommon for the deep learning of damage detection areas,
such as wildfire monitoring images, because of the dissimilarity between ImageNet and
the given wildfire images.

On the other hand, fine-tuning not only replaces the fully connected layers of the
pretrained model with a new one that outputs the desired number of classes to re-train
from the given dataset but also fine-tunes all or part of the parameters in the pretrained
convolutional layers and pooling layers by backpropagation. It is used when the amount
of data is sufficient, even if the training data are not similar. This is shown in Figure 1.

The pretrained CNN model from ImageNet [36], which contains 1.4 million images
with 1000 classes, is used for transfer learning. However, as there are no labels similar to
flame or smoke or other on-site images to assist disaster response in the ImageNet label,
fine-tuning is introduced.

3.3. Multilabel Classification Loss

Cross-entropy is defined as the calculation of the difference between the two probabil-
ity distributions p and q, i.e., error calculations. Cross entropy is used as a loss function in
machine learning. However, our framework uses binary cross entropy (BCE), which has
commonly been used in the loss function for multilabel classification. The CNN model
performs training by adjusting the model parameters such that probabilistic prediction is
as similar to ground-truth probabilities as possible through the BCE. In other words, the
probability of the output and the target similarly adjusts the model parameters. The BCE
loss is defined by the following equation:

LBCE = − 1
N

N

∑
i=1

[p(yi)logq(yi) + {1− p(yi)}log{1− q(yi)}], (1)
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where N denotes the total count of images, p(yi) denotes the probability of class yi in the
target, and q(yi) denotes the predicted probability of class yi.

Figure 1. Transfer learning architecture with fine-tuning using the pretrained CNN model initialized with the weights
trained from ImageNet.

3.4. Proposed Network

The MLC model used in this study consists of a backbone network pretrained on
ImageNet and fully connected layers. In multilabel classification, the training set consists of
instances associated with the label set, and the model analyzes the training instances with
a known label set to predict the label set of unknown instances. Figure 2 shows an example
of a framework for an MLC-based proposed model with DenseNet121 as the backbone.
The fully connected layer included dropout [37] and batch normalization [34]. The order of
dropout, batch normalization, and rectified linear units (ReLU) were constructed based on
the methodology of Ioffe [34] and Li [38].

Six classes were printed out, and the model was configured to achieve the following
goals required for disaster response during the event of a forest fire: (a) check whether
a forest fire has occurred, (b) detect smoke for the early detection of fires, (c) detect the
burning area for extinguishing, and (d) detect the areas where human or property damage
may occur.

In this study, we selected each of the three pretrained models mentioned above as a
backbone network. An MLC model was constructed to provide information that can be
supported for wildfire response from CCTV or UAV images. Finally, we compared the
performance of each model.
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Figure 2. Proposed approach pipeline: framework of multilabel classification with transfer learning from DenseNet-121 as a
backbone network. The probabilities generated by the sigmoid function were independently output at the end of the neural
network classifier.

3.5. Performance Metrics

Instances in single-label classification can only be classified correctly or incorrectly,
and these results are mutually exclusive. However, the classification schemes in multilabel
classification are mutually non-exclusive: in some cases, the predicted results from the
classification model may only partially match the elements of the real label assigned to
the instance. Thus, methods for evaluating multilabel models require evaluation metrics
specific to multilabel learning [39]. Generally, there are two main groups of evaluation
metrics in the recent literature: example-based metrics and label-based metrics [40]. Label-
based measurements return macro/micro averages across all labels after the performance
of the training system, for each label is calculated individually, whereas example-based
measurements return mean values throughout the test set based on differences in the
actual and predicted label sets for all instances. To evaluate the performance of each model
and to verify the effectiveness of transfer learning and data augmentation, this study
used macro/micro average precision (PC/PO), macro/micro average recall (RC/RO), and
macro/micro average F1-score (F1C/F1O). The abbreviations for evaluation metrics are
based on the notations of Zhu [41] and Yan [9]. The metrics are defined as follows:

PC =
1
q

q

∑
λ=1

TPq
λ

TPq
λ + FPq

λ

(2)

RC =
1
q

q

∑
i

TPq
λ

TPq
λ + FNq

λ

(3)

PO =
∑

q
λ=1 TPλ

∑
q
λ=1(TPλ + FPλ)

(4)

RO =
∑

q
λ=1 TPλ

∑
q
λ=1(TPλ + FNλ)

(5)

F1C =
2 ∗ PC ∗ RC

PC + RC
(6)

F1O =
2 ∗ PO ∗ RO

PO + RO
(7)

In the above equations, TP, FP, and FN denote true positives, false positives, and false
negatives, respectively, as evaluated by the classifier.
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Macro averages are used to evaluate the classification model on the average of all of
the labels. In contrast, the micro average is weighted by the number of instances of each
label, which makes it a more effective evaluation metric on datasets with class imbalance
problems. The F1 score is a harmonic average that considers both precision and recall.
Therefore, the F1 score is generally considered a more important metric for comparing the
models. In addition, the datasets for MLC generally suffer from data imbalance, and thus,
micro-average-based metrics are considered important.

In addition, this study used Hamming loss (HL) and mean average precision (mAP),
which are represented by example-based matrices. These metrics are defined as follows:

Hamming Loss =
1
|D|

|D|

∑
i=1

|Yi∆Zi|
|L| (8)

mAP =
1
|L|

|L|

∑
i=1

APi (9)

In the above equations, |D| is the number of samples, |L| is the number of labels, and
APi is the average map of label i. Hamming loss is the ratio of a single misclassified label to
the total number of labels (considering both the cases when incorrect labels are predicted
and when associated labels are not predicted) and is one of the best-known multilabel
evaluation methods [42]. The mean average precision was the mean value of the average
precision for each class.

3.6. Class Activation Mapping

In the CNN model, the convolutional units of various layers act as object detectors.
However, the use of fully connected layers causes a loss in the localizing features of these
objects. Class activation mapping (CAM) [43] is used as a CNN model translation method
and is a popular tool for researchers to generate attention heatmaps. A feature of CAM
is that the network can include the approximate location information of the object even
though the network has been trained to solve a classification task [8]. To calculate the CAM
value, the fully connected layer is modified with the global average pooling layer (GAP).
Subsequently, a fully connected layer connected to each class is attached and fine-tuned.
However, it has a limitation in that it must use a GAP layer. When replacing the fully
connected layer with GAP, the fine-tuning of the rear part is required again. However,
CAM can only be extracted for the last convolutional layer.

Gradient-weighted class activation mapping (Grad-CAM) [44] solves this problem
using a gradient. Specifically, it uses the gradient information coming into the last con-
volutional layer to take into account the importance of each neuron to the target label. In
this study, Grad-CAM was used to emphasize the prediction values determined by the
classification model and to visualize the location of the prediction target.

4. Results

This section presents the learning process and test results of the MLC model to support
wildfire responses. Experiments were conducted in a CentOS (Community Enterprise
Operating System) Linux release 8.2.2004 environment with Nvidia Tesla V100 GPU, 32 GB
memory, and models were built and trained using PyTorch [45], a deep learning open-
source framework.

4.1. Dataset

The dataset used to train and test the deep learning model contained daytime and
nighttime wildfire images captured by surveillance cameras or drone cameras downloaded
from the Web and cropped images of a controlled fire in the forest captured by a drone by
the researchers. This study also included a day–night image matching (DNIM) dataset [46],
which was used to reduce the effects of day and night lighting changes, and Korean tourist
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spot (KTS) [47] datasets generated for deep learning research, which comprise images
linked by forest labels containing important wooden cultural properties in the forest.
Additionally, wildfire-like images and 154 cloud and 100 sun images were also included
as datasets because they have similar properties with early wildfire smoke and flames
as the color or shape and are often detected erroneously. As such, they were included in
the training dataset to prevent predictable errors in the verification stage and to train the
robust model against wildfire-like images.

The collected images were resized or cropped to 224 × 224 pixels to consider whether
the model is applicable to high-definition images. The datasets included 3,800 images.
Figure 3 shows samples of the images.

Figure 3. Resized sample of annotated images for MLC: (a) downloaded from the Web; (b) KTS dataset; (c) DNIM dataset;
(d) dataset for error protection purposes; (e) dataset of a controlled fire captured by researchers.

All instances were annotated according to the following classes: “Wildfire”, “Non-
Fire”, “Flame”, “Smoke”, “Building”, and “Pedestrian” (each class was abbreviated as
“W”, “N”, “F”, “S”, “B”, and “P”, respectively). Table 1 lists the number of images for
each designated label set before data augmentation. It consists of 2165 images downloaded
from the Web, 1000 images from the KTS dataset, 101 images from the DNIM dataset, 254
images for error protection purposes, and 280 cropped images captured by the researchers.
To ensure the annotation quality and accuracy, all of the annotated images were checked
twice by different authors.

Table 1. Number of image datasets for each annotated multilabel instance.

Label WS WSF WSP WSBP WSB WSFB WSFP WSFBP N NB NP NBP

Original 585 419 176 103 82 84 87 67 1567 331 210 89

After data pre-processing (augmentation and partition)

Train 1464 996 432 240 234 150 216 138 3726 786 462 276
Test 341 253 104 63 43 59 51 44 946 200 133 43

4.2. Data Partition

The dataset used for the experiment was divided into train, validation, and test sets.
The test dataset included 2280 images from the entire dataset. The remaining 1520 images
were pre-processed by data augmentation techniques, such as rotation, horizontal flip,
and brightness, which are typically used in CNN image classification studies to secure
sufficient data for learning, as shown in Table 2. Table 1 also lists the number of images
for each designated label set after augmentation. Overall, the non-fire label group was the
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most common, and as the number of multi-labels increased, the number of the label group
decreased. In particular, the number of label groups in which pedestrians and houses exist
in the wildfire site, which is difficult to obtain, has the lowest number.

Table 2. Number of images generated by each data augmentation method.

Augmentation Method Original Data Brightness Flip Rotation Total

Images 1520 3040 1520 3040 9120

Since drones are generally not perpendicular to the horizon or are inverted when
photographing wildfires, the rotation was not set up as extreme, such as at 90◦ or 180◦,
but was instead set up between 10◦ and 350◦, considering the lateral tilt of the drone.
In addition, if the brightness of the image is too high or too low, the boundary line
of the objective target becomes unclear, and the object becomes ambiguous. Therefore,
data enhancement was performed between the maximum brightness l = 1.2 and the
minimum brightness l = 0.8. After data augmentation, the training and test datasets were
divided in a ratio of 4:1. In the model learning phase, 912 randomly sampled instances
from the training dataset were evenly divided into 10 groups for evaluation using the
cross-validation strategy.

The total number of classes of the prepared data was checked, and the distribution
is shown in Figure 4. Due to the nature of wildfire response, most of the early detection
was performed by smoke, so the number of smoke classes was higher than the number of
flame classes. In addition, the wildfire classes and non-fire classes also had an imbalance,
and the building and pedestrian classes also had relatively few classes. Since there was
an imbalance between the labeling classification table in Table 1 and the overall class
distribution in Figure 4, the micro average-based metric evaluation index should be checked.

Figure 4. Histogram of class distribution on multi-label classification datasets after data pre-processing.

4.3. Performance Analysis

This study compared the models with different backbones and verified the efficiency
of transfer learning and data augmentation. The model was constructed using training
and validation sets that had been partitioned by a 10-fold cross-validation strategy, and
the final performance was measured according to each performance metric from the test
dataset. The initialized learnable parameters (i.e., hyperparameters) for the CNN-based
MLC architectures are listed in Table 3.
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Table 3. Parameters for each CNN architecture.

VGG-16 ResNet-50 DenseNet-121

Mini batch size 48 57 48
Iteration 171 144 171

Number of training epoch 100 100 100
Learning rate 0.001 0.001 0.001

Optimizer Adam Adam Adam

The models were trained using binary cross-entropy as a loss function with the selected
parameters. Each model was trained using a 10-fold cross-validation strategy, and the
results were calculated 10 times. The training process using the validation scheme of each
model with the selected hyperparameter combination is illustrated in Figure 5. In the case
of VGG-16, the training loss fell gently and started at a very high validation loss value,
while the training loss of ResNet-50 and DenseNet-121 fell sharply to about epoch 10 at
the initial stage and then remained close to zero. However, it was found that DensNet-121
remained lower in terms of the validation learning curve. In the final epoch, epoch 100,
it was shown that both the training loss and validation loss recorded the lowest values
in DensNet-121.

Figure 5. Learning curve over epochs (until 100). (a) Training learning curve. Final loss: VGG-16 (0.00789); ResNet-
50 (0.00137); DenseNet-121 (0.00048). (b) Validation learning curve. Final loss VGG-16 (0.06790); ResNet-50 (0.03352);
DenseNet-121 (0.00318).

The models were evaluated using the label-based performance metrics, which are
shown in Figure 6 as a box plot. All of the proposed models showed good multilabel
classification ability using images of forest and wildfire sites for disaster response, with
high scores (above 0.9) for most of the evaluation metrics. Among the proposed mod-
els, DenseNet-121 not only showed a significantly higher score for all of the evaluation
metrics (distribution of the highest box and median value) but the interquartile ranges of
each metric result were also typically smaller (i.e., with fewer distributed results) than in
other models. Thus, the model maintained consistently high performance over several
tests. Table 4 presents the results of the evaluation measurements with the mean and
standard deviation.

However, an evaluation that only uses label-based measurements cannot highlight
the dependencies between classes. Therefore, Table 4 presents example-based scores
that consider all of the classes simultaneously and thus are considered more suitable for
multilabel problems. The mAP score for the best-performing model (DenseNet-121) was
0.9629, whereas the mAP score for HL was 0.009.
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Figure 6. Boxplot of the 10-fold cross-validation results from performance metrics for MLC model with each backbone network.

Table 4. Compared performance scores of each backbone network (mean ± standard deviation).

VGG-16 ResNet-50 DenseNet-121

PC 0.9435 ± 0.0308 0.9640 ± 0.0399 0.9899 ± 0.0138
RC 0.9177 ± 0.0338 0.9221 ± 0.0304 0.9661 ± 0.0293
F1C 0.9265 ± 0.0212 0.9368 ± 0.0371 0.9769 ± 0.0215
PO 0.9635 ± 0.0225 0.9655 ± 0.0462 0.9914 ± 0.0110
RO 0.9560 ± 0.0178 0.9485 ± 0.0329 0.9783 ± 0.0214
F1O 0.9595 ± 0.0123 0.9555 ± 0.0390 0.9847 ± 0.0159
mAP 0.8811 ± 0.0312 0.9056 ± 0.0529 0.9629 ± 0.0327
HL 0.0025 ± 0.0008 0.0017 ± 0.0009 0.0009 ± 0.0009

In addition, the per-class score of the area under the receiver operating characteris-
tic curve (ROC-AUC) values of our proposed models were calculated to determine the
performance for each class in the image dataset. The ROC curve is a graph showing the
performance of the classification model at all possible classification thresholds, unlike the
recall and precision values that change as the threshold is adjusted. AUC is a numerical
value calculated from the area under the ROC curve and represents the measure of sepa-
rability. Therefore, the ROC-AUC is a performance metric that is more robust than other
performance indicators. AUC values range from 0 to 1, where AUC = 0.5 indicates that the
model performed a random guess, and thus, the prediction was the entirely unacceptable.
The best performance is when AUC = 1, indicating that all of the instances are properly
classified. Table 5 presents the results with mean and standard deviation values.

Table 5. ROC-AUC scores per class for each model (mean ± standard deviation).

Wildfire Smoke Flame Non-Fire Building Pedestrian

VGG-16 98.70 ± 00.48 98.72 ± 00.47 98.71 ± 00.46 95.68 ± 02.65 91.66 ± 00.53 87.54 ± 02.61
ResNet-50 98.37 ± 01.25 98.36 ± 01.25 98.35 ± 01.25 97.60 ± 01.70 92.55 ± 03.64 92.92 ± 03.67

DenseNet-121 99.01 ± 01.38 99.00 ± 01.40 99.01 ± 01.40 98.29 ± 01.95 96.65 ± 02.75 96.44 ± 03.65

The dataset for the MLC model includes pictures of fires or non-fires (because the
results are mutually exclusive). Therefore, the results of two classes—“Wildfire” and “Non-
fire”—are calculated in almost the same way. The results of the classes “Wildfire” and
“Smoke” were also calculated similarly, as flames are inevitably accompanied by smoke,
although this smoke may be invisible because some fires are small or obscured by forests.
The accuracy of the pedestrian and building labels was low in all of the models, which
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can be attributed to the relatively small number of labels assigned to the instances. It was
confirmed that the ROC-AUC scores in all of the classes were generally high in the transfer
learning algorithm using DenseNet-121 as a network.

Finally, to confirm the effect of transfer learning and data augmentation on the training
model, we removed one data limit overcoming strategies each time using the control vari-
able method and obtained the F1-score and the HL value. This method was implemented
for DenseNet-121, which showed the highest performance. The training learning curve
over epochs is illustrated in Figure 7. In the training stage, there was a significant difference
in the slope of the learning cover curve when no data limit overcoming strategies were used
and when one or more strategy was used; a steep learning curve was demonstrated with
the strategies; a shallow learning curve was demonstrated without the strategies. When all
of the strategies were used, the curve was formed the most rapidly, and the lowest final
loss was calculated. This means other models require more practice or attempts before a
performance begins to improve until the same level is reached. The curve produced in the
case of using all of the strategies was formed the most rapidly, and the lowest final loss
score was also calculated. There was no significant difference in the data augmentation
and transfer learning effects when looking at the gradient slope or the final loss, but it was
shown that the roughness of the curve was further reduced when data augmentation was
used. In other words, learning was more stable.

Figure 7. Learning curve over epochs (until 100) trained by the control variable method. Final loss.
Transfer learning and data augmentation (0.00048); data augmentation (0.01807); transfer learning
(0.01909); none (0.05216).

Additionally, the test results determined by the evaluation metrics are listed in Table 6.
The results of this experiment show that transfer learning can significantly improve multil-
abel classification performance. With the exception of the transfer learning strategy, the
macro average F1-score decreased by 0.0745, the micro average F1-score decreased by
0.0466, and the HL increased by 0.0286. In the case where only augmentation was used,
the macro average F1-score decreased by 0.1159, the micro average F1-score decreased by
0.0701, and the HL increased by 0.0412.

The performance of transfer learning was further reduced when trained only with
the datasets with no data augmentation. Hence, the quantitative number of the datasets
required for learning in MLC has a significant impact on the performance of the model.
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Table 6. F1 scores and Hamming loss values for the models trained by the control variable method.

Strategies to Overcome Data Limitations F1C F1O HL

Transfer Learning and Data Augmentation 0.9769 0.9847 0.0093
Transfer Learning 0.8610 0.9146 0.0505

Data Augmentation 0.9024 0.9381 0.0379
None 0.7951 0.8634 0.0845

4.4. Visualization

To perform localization, a bounding box is drawn by the thresholding method, which
retains over 20% of the grad-CAM result. It also provides a confidence score indicating
the extent to which the model’s predictions are true, considering a threshold value of 0.5.
Figures 8 and 9 show an example of the results obtained with DenseNet-121 as a backbone.

Figure 8. Original image (first column) and the heatmap and bounding box (columns 2–5) for a well-classified example
(Case 1); an example to review errors for objects with similar colors or shapes (Case 2); and an example of an error for
a particular class (Case 3). Case 3 has an error for the building class. The number above each picture is the predictive
confidence score.
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Figure 9. Example of a heatmap and bounding box result for the class that has the possibility of an error. Confidence score
(a): Wildfire (0.8117); Smoke (0.8158); Flame (0.0096); Non-Fire (0.1860); Building (0.0006); Pedestrian (0.9952). Confidence
score (b): Wildfire (0.8117); Smoke (0.8158); Flame (0.0096); Non-Fire (0.1860); Building (0.0006); Pedestrian (0.9952).

As shown in Figure 8, the sum of the confidence scores between the two classes is
almost 100% because the wildfire and non-fire classes are mutually exclusive. Among the
test datasets, a Case 1 image was selected as a sample of labeled wildfire with pedestrians,
a Case 2 image was selected as a sample with a confusing object, such as sun or fog, that
can be treated as a wildfire object for verification. Finally, a sample image with a night fire
was selected to evaluate the model in nighttime conditions in Case 3.

In Case 1, the model predicted smoke, flames, non-fire, and a pedestrian with confi-
dence scores of 0.9464, 0.7642, 0.0539, and 0.8623, respectively. The heatmap and bounding
box were separated from each other to express the location. Conversely, for non-fire that is
not assigned to an instance, a heatmap map without fire or smoke was displayed in the
bush area.

Case 2 used an image taken at sunrise in a foggy mountainous area. All of the classes
except for the non-fire class showed a score of 0.000, and it was possible to examine
whether the model worked correctly to classify the sun and fog, which are frequently used
for evaluating errors in wildfire detection.

Case 3 was an image of a wildfire that occurred near a downtown area at nighttime,
and fireworks were displayed nearby, which may have some effect on detection. For the
wildfire class, a heatmap was formed even in an area unrelated to the wildfire (lower left),
which was judged to have detected the smoke generated by the firecrackers on the image.
However, although the lighting in the dark at night was considered in the model training
process, the heatmap represented the residential area, but the reliability of the building
class was still very low (0.0030).

These results were similarly expressed in other test datasets, indicating that the
accuracy of the classification was only improved if the CNN model was observable with the
naked eye because only clear targets were labeled during the dataset preparation process.
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Using an example, Figure 9 shows that the classification model is robust to a small
object or noise in a photograph. As shown in Figure 9a, firefighters were dispatched to
extinguish the fire in the forest, and nearby hikers were caught on camera. Although the
human shape in Figure 9a looks very small, it is detectable with a 0.9952 confidence score,
and an approximate location of the object was determined. Figure 9b shows a house with
lights on and a nearby forest fire. Despite the similarity of the lamp to the fire image,
the heatmap result did not recognize this part as a fire. Thus, the model looked at the
appropriate part when identifying each class.

Finally, Figure 10 shows the influence of transfer learning and data augmentation. As
discussed in the previous subsection, four cases were classified using the control variable
method. For each case, the heatmap and bounding box of a specific class (smoke and person
in Figure 10) were visualized, and the probability values were calculated. In the case of not
using the data-shortage overcoming strategy, it was found that the heatmap represented
the wrong place, and the class that was difficult to distinguish could not be detected
at all. (If the value is less than 0.5, it is not treated as a detected value.) Therefore, the
accuracy difference is significant if data supplementation strategies are not used for wildfire
images, where data are inevitably lacking, as shown in Figures 9 and 10. When a data
supplementation method was used, the heatmap distribution was somewhat reasonable,
and the confidence value for the class that was to be detected was significantly increased.
When both strategies were used, the heatmap distribution was the cleanest, and the positive
predictive probability was the highest.

Figure 10. Sample of the Grad-CAM results depending on the model trained by the control variable method.

4.5. Application

The proposed model was applied to an image captured by the researchers using a DJI
Phantom 4 Pro RTK drone, which had an image size of 1280 × 720 high-definition (HD)
units. The filming site was composed of a virtual wildfire environment similar to that of a
fire created by lighting a drum around the forest.

Although the captured HD image can be resized to the input size of the proposed
model, downscaling a high-resolution image may result in the loss of information that is
useful for classification, and the model may not operate smoothly [48]. Thus, the images
were divided into 28 equal parts of 224 × 224, and the model was evaluated for the divided
pictures. When the pictures are divided without overlapping parts, there is a possibility
of a blind spot where the object to be found is cut off. Thus, the images are divided such
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that there are overlapping parts. The predicted classification values of each part of the
picture were merged into the entire image and were visualized. The results of applying
the proposed model to the drone shooting screen are shown in Figure 11. The confidence
value was over 50%, and the label corresponding to the photograph part was predicted. In
Figure 11, a forest fire was detected based on smoke in the central part of the whole picture.
However, there was also an error (9.02%) in the building area, which was important for
preserving residential and cultural assets. This error can be explained as follows: the large
object was still cut off in the cropped image despite the application of the overlapping
method. The white dotted circle was drawn to highlight the area with people, and the
model correctly predicted that there were people in the area at 99.34% and 77.03%.

Figure 11. Sample of model application with the confidence score for each class. The blue and red boxes represent
224 × 224 images.

5. Discussion

In this study, transfer learning and data augmentation were combined to improve
the capabilities of the model. Three different pretrained models were used to handle data
limitations, data augmentation was performed, and each model was evaluated using label-
based evaluative metrics and example-based evaluative metrics. In conclusion, DenseNet-
121 surpassed VGG-16 and ResNet-50 in the proposed MLC model. This is confirmed
by the results of the evaluation metrics. With the advancement in camera technology,
the image resolution increases, but training a CNN to handle large images is particularly
difficult. The problems are the cost and learning time caused by excessive computational
load in the initial layer. Because of the discrepancy between the image size in these models
and the image size taken from the imaging device, we split the high-resolution image into
smaller parts and processed them separately. The method proposed in this study loses less
data and is expected to better classify small objects compared to scenarios when the original
image is reduced in size and only a single image is processed. The proposed framework can
be converted into other applications of image-based decision-making systems for disaster
response fields to extract redundant information from one object.

Some previous studies used public data for binary classification problems (fire and
non-fire). However, a dataset with multiple labels or classes changes according to the
requirements of the system, and it is difficult to use the datasets from previous studies.
The classified labels were defined to solve the need for a response from the image sources
collected at the site. Fire is often accompanied by smoke, which is released faster than
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flames. The flame of a forest fire is barely visible from a distance. However, the smoke
columns caused by fires are usually visible on camera. Therefore, early smoke detection is
an effective way to prevent potential fire disasters [49]. Based on the detection of flames,
field responders can be informed as to where the flames need to be extinguished. Decision
makers for wildfire response, who receive information on the life and property at the fire
site, use this basic information to decide on the evacuation route by considering the spot
of fire occurrence to preferentially protect the area where there is a possibility of severe
damage and to establish a line of defense. Instructions for prioritizing such tasks and
for efficiently allocating limited support resources must be provided. Therefore, label
categories can be defined for wildfire response and building large image benchmarks for
disaster response.

This is a basic study that provides multilabel information of target areas from cameras
by applying CNN to wildfire response. Considering that multilabeling was performed
manually by the researchers, the distinction between instances was vague in some of the
images collected from external data sources. Instances that were too small to distinguish
were not labeled to avoid overfitting. In addition, in the case of an instance that cannot
be easily distinguished with the naked eye, it was not possible to easily add a class to be
classified because of a label classification error.

Therefore, future research should aim to construct a formal annotated data benchmark
for wildfire response in deep learning systems to enable the use of field information for
supporting disaster decision-makers from the perspective of the wildfire detection algo-
rithm. For example, the state of the wildfire may be understood from the fire shape. Crown
fires are the most intense and dangerous wildfires, and surface fires cause relatively little
damage. It is also important to identify forest species in disaster areas using videos. If the
forests of the target area are coniferous, fires may spread to a large area. To provide this
additional information, it is important to ensure communication between photographers,
labeling workers, and deep learning model developers. From the perspective of wild-
fire response, future studies should also aim to develop an integrated wildfire-response
decision-support system that can provide decision makers with various insights. Location
can be retrieved from the global positioning system (GPS) of drones filming in disaster
areas, and this can be combined with data on weather conditions that greatly affect wildfire
disasters, such as wind direction, wind speed, and drying rate at the target site. In addition,
when combined with a geographic information system (GIS), it is possible to determine the
slope of the target area because a steep slope is difficult to control during a wildfire.

6. Conclusions

To the best of our knowledge, previous computer vision-based frameworks for man-
aging fires have only used binary classification. However, in disaster response scenarios,
decision makers must prioritize extinguishing operations by considering the range of
flames, major surrounding structures such as residential facilities or cultural assets, and
residents at the site. Various types of information on the scene of a wildfire can be obtained
and analyzed using the photographs from an imaging device. However, annotation work
is limited because of a lack of training datasets and the fact that previous wildfire detection
research has only focused on binary classification. To solve these problems, we proposed a
basic MLC-based framework to support wildfire responses.

The proposed model was verified through well-known evaluation indicators from
the dataset selected by the researchers, and DenseNet-121, the most effective of the three
representative models, was selected as the final model. Then, we visualized the result
through grad-cam, and proposed a method to divide and evaluate each image to prevent
data omission when applied to FHD or higher photos according to recently developed
camera technology.
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