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Abstract: Satellite Image Time Series (SITS) have become more accessible in recent years and SITS
analysis has attracted increasing research interest. Given that labeled SITS training samples are
time and effort consuming to acquire, clustering or unsupervised analysis methods need to be
developed. Similarity measure is critical for clustering, however, currently established methods
represented by Dynamic Time Warping (DTW) still exhibit several issues when coping with SITS,
such as pathological alignment, sensitivity to spike noise, and limitation on capacity. In this paper,
we introduce a new time series similarity measure method named time adaptive optimal transport
(TAOT) to the application of SITS clustering. TAOT inherits several promising properties of optimal
transport for the comparing of time series. Statistical and visual results on two real SITS datasets with
two different settings demonstrate that TAOT can effectively alleviate the issues of DTW and further
improve the clustering accuracy. Thus, TAOT can serve as a usable tool to explore the potential of
precious SITS data.

Keywords: satellite image time series; SITS; optimal transport; clustering; Sinkhorn distance;
similarity measure

1. Introduction

Recent years have witnessed a rapid growth of satellite imagery data sources [1,2],
thanks to the launch of various new satellite sensors such as the GaoFen series [3],
ZiYuan series [4], Sentinel-2 [5], etc. Historical data, for instance, MODIS imagery [6]
and Landsat imagery [7], have also been accumulated over decades, making satellite
image time series (SITS) data more accessible nowadays. Compared with a single-scene
image, SITS records the evolution of land cover types over time and this kind of temporal
information is sometimes critical to make land cover types more distinguishable [8–10].
In addition, image preprocessing methods required by SITS analytics, such as geometric
correction [11,12] and cloud removal [13,14], become more mature than before. Due to
the above reasons, SITS analytics has attracted much attention in recent years and many
applications have been developed to explore the rich information contained in SITS, for
example, classification [15,16], clustering [1,17], class noise reduction [18], trend detection [19],
disturbance detection [20], etc.

Among different data mining tasks, clustering [21], or unsupervised classification,
seems to gain more importance because the acquisition or update of labeled SITS training
samples is difficult [1]. The difficulty comes from multiple aspects:

1. All images contained in a SITS have to be considered simultaneously and a comprehensive
judgement depending heavily on an expert’s knowledge has to be made.

2. The land cover type of a SITS may change, especially when the time series is long and,
thus, the class label itself is hard to decide in some cases.
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3. SITS data now have a higher temporal resolution so that labeled training samples can
merely keep pace with the high data acquisition frequency.

Given the lack of labeled data, research on the clustering of SITS has gradually
increased [10,17,22,23] with the focus on the similarity measure of time series [24,25].
Literature and applications show that Dynamic Time Warping (DTW) [26,27] based methods
are probably the most relevant and successful time series similarity measures for SITS
clustering tasks [1,28]. DTW was proposed in the field of speech recognition [26] and it
soon became a significant tool to compare time series due to its capability to cope with
time distortions. Time distortion is ubiquitous in time series and it is the main barrier for
measuring similarities. DTW works by warping time series to find their optimal alignment
that achieves the minimum global cost, and the cost is defined as the DTW distance. The
paper by [1] analyzes the features and some unsolved issues of SITS, including irregular
sampling, inconsistent temporal distortions, and cloud-contaminated pixels. Irregular
sampling and inconsistent temporal distortions could be caused by satellite sensors or the
irregular behaviors of observed objects, while cloud and cloud shadow cover is a common
situation for optical satellite images. The paper then demonstrates that DTW could be
a potential similarity measure to overcome these issues for the clustering of SITS. The
essential reason is that DTW can warp and re-align those irregularities and distortions
to recover a more “correct” similarity. In addition, the re-aligning mechanism enables
DTW to compare time series with different lengths and thus make it possible to remove
cloud-contaminated pixels first and then calculate similarities.

The versatility of DTW makes it a popular similarity measure framework for SITS
under which various methods and applications emerge [23,29–32]. The paper by [33] uses
DTW to define the difference measurement index for diagnosing vegetation recovery after
a major earthquake. TWDTW [34], a time-weighted version of DTW, has been proposed for
land cover mapping. The paper by [28] employs TWDTW to serve as the distance measure
for cropland mapping with Sentinel-2 time series. TWDTW is also used for forest-type
classification with both Landsat-8 and Sentinel-2 time series data by [35]. The CD-DTW [36]
utilizes Canberra distance as the base cost of DTW and achieves accurate clustering of
Landsat time series. The paper by [17] applies DTW to constrained clustering approaches
and further improves the accuracy of SITS clustering. The paper by [37] introduces a
weighted derivative modification of DTW for crops mapping with normalized difference
vegetation index (NDVI) time series. Object-based DTW classifications are used for crop
mapping by [16]. The paper by [38] proposes a phenology–time weighted version of DTW
for winter wheat mapping over a large area based on the normalized difference phenology
index (NDPI) curves derived from Sentinel-2 data.

However, despite many applications and modifications, DTW still exhibits several
issues, especially when coping with SITS:

1. Pathological alignment: A rational alignment between time series should be feature-to-
feature and uniformly balanced, but DTW sometimes can lead to pathological alignment
as shown by Figure 1a, where one point in a time series is mapped to nearly all
points in the other time series, and this type of extreme alignment always ends with
undesirable results.

2. Spike noise: DTW is sensitive to spike noise as shown by Figure 1b,c, where a spike
noise point easily disarranges the original alignment. Unluckily for SITS, spike
noises such as cloud or cloud shadow pixels are ubiquitous and we cannot assume
cloud-contaminated pixels will always be detected and removed completely.

3. Limited capacity: The search space of optimal alignment is limited by DTW due to its
rules of continuity, monotonicity, and boundary conditions. In theory, a fully-connected
alignment can have a larger capacity and a higher flexibility for a more precise similarity.
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(a) pathological alignment (b) alignment without noise (c) alignment with spike noise

Figure 1. Examples of pathological alignment and alignments with or without spike noise generated by DTW.
(a) pathological alignment; (b) alignment without noise; (c) alignment with spike noise.

These issues of DTW have long been noticed [39–41] but have not been effectively
solved because they are directly related to the core definition of DTW [42]. Looking
outside the context of DTW based methods, we find Optimal Transport (OT) [43–45] has
theoretically promising properties to overcome the aforementioned issues of DTW. OT is
a classic method to compare probability distributions or histograms [46–48] in that OT
measures similarities by finding the minimum cost to transform one probability distribution
to another. From the perspective of finding optimal cost OT is similar to DTW, but OT has
a fuller search space than DTW because it is not constrained by temporal orders of data
points or other rules of DTW. For a long time, the utility of OT had been limited by its high
computational overhead [49] but recently a series of modifications have been proposed to
significantly accelerate its computation. For instance, Sinkhorn distance [50] makes OT
dozens of times faster while keeping approximately the same result.

Time series is different from probability distributions so that adaptation is required
for OT to cope with time series data. In this paper, we introduce Time Adaptive Optimal
Transport (TAOT) [42] as the similarity measure for the clustering of SITS. On the basis
of Sinkhorn distance [50], TAOT enables OT to consider both observed values and their
corresponding time coordinates simultaneously. In addition, TAOT assumes each data
point in a time series to have the same probability and thus further simplifies the calculation.
To demonstrate the performance of TAOT, we conduct SITS clustering experiments on
two real SITS datasets in two different settings. The results are visually and statistically
compared with multiple well-established similarity measures including Euclidean distance
and DTW-based methods. To have an intuitive understanding of the mechanism of TAOT,
we illustrate the alignments generated by TAOT and analyze their difference from DTW in
detail. Other closely related topics such as parameter extracting and limitations of TAOT
will also be discussed.

The rest of this article is structured as follows. Section 2 systematically describes time
series similarity measures mainly from the perspective of alignment, and introduces OT
and TAOT in detail. Section 3 presents the datasets, settings, and statistical and visual
results of the SITS clustering experiments. Section 4 compares the alignments generated
by TAOT and DTW, and discusses the limitations of TAOT. Finally, Section 5 concludes
this paper.

2. Materials and Methods
2.1. Alignment-Based Similarity Measures

A time series consists of a sequence of chronologically ordered data points. When two
time series are compared, the real question can be described as how to align data points
from different time series and how to measure the cost of each pair of points. From this
perspective, many time series similarity measures can be classified as alignment-based
methods, including the widely used Euclidean distance and Dynamic Time Warping
(DTW) [26].
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Euclidean distance is the most straightforward but still effective method. It enforces a
strict one-to-one alignment in terms of time. Euclidean distance is usually viewed as the
baseline method in the context of time series similarity measures.

Let A = {a1, a2, . . . , ai, . . . , aI} and B = {b1, b2, . . . , bj, . . . , bJ} be two time series of
length I and J, respectively. The lowercase ai and bj with subscript i and j denotes the i-th
and j-th data points of A and B. Let d(i, j) denote the cost between a pair of data points ai
and bj. Then the Euclidean distance (ED) between A and B can be defined as:

ED(A, B) =
I

∑
k=1

d(k, k)

I = J

(1)

where d(i, j) = (ai − bj)
2. Note that the difference between ai and bj is squared because, in

practice, squared Euclidean distance is more frequently used to save the square-root operation.
In contrast with Euclidean distance, DTW employs a more flexible one-to-many

alignment that enables DTW to cope with time distortions effectively. There is only one
case of one-to-one alignment, but many cases of one-to-many alignments. DTW attempts
to find the optimal alignment with minimum accumulation cost. We use a warping path
W = w1, w2, . . . , wk, . . . , wK to represent the alignment between two time series A and
B, where a time warp wk = (i, j) denotes a link between point ai and point bj, and the
total number of links or point pairs that compose the entire alignment is K. Pairwise cost
between each pair of linked data points is added up to the final distance score. In this
setting, DTW can be defined as:

DTW(A, B) = min
W

K

∑
k=1

d(wk)

w1 = (1, 1)

wK = (I, J)

0 ≤ i′ − i ≤ 1

0 ≤ j′ − j ≤ 1

(2)

where wk = (i, j), wk+1 = (i′, j′), and d(wk) = d(i, j) = (ai − bj)
2.

The DTW problem defined by Equation (2) is essentially a dynamic programming
problem and it can be solved by the following recursive formula:

DTW(Ai, Bj) = d(i, j) + min


DTW(Ai , Bj−1)
DTW(Ai−1, Bj )
DTW(Ai−1, Bj−1)

(3)

where DTW(Ai, Bj) is the DTW distance between sub-sequences made up of the first i data
points of A and the first j data points of B. DTW(AI , BJ) = DTW(A, B) is the final DTW
distance between two entire time series.

Figure 2 illustrates the alignments generated by different methods. For each alignment,
the x-axis and y-axis indicate the time coordinates of the two time series. An intersection
point colored in green, for instance, (i, j), indicates the i-th point in the first time series
(colored in red) is aligned to the j-th point in the second time series (colored in blue), and
all these green points together forms the warping path W. Figure 2a shows the alignment
generated by Euclidean distance and we can observe that links happen only between points
with the same time coordinate. Figure 2b shows the alignment generated by DTW where
one point can link to multiple temporally adjacent points as long as the rules of DTW
defined by Equation (2) are kept.
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(a) Euclidean distance (b) DTW

(c) OT (d) TAOT

Figure 2. Examples of alignments generated by different similarity measures. (a) Euclidean distance; (b) DTW; (c) OT;
(d) TAOT.

DTW is a well-established time series similarity measure framework under which many
variants have been proposed. Variants of DTW can be classified into two major categories.
The first category imposes constraints on DTW, for example, window constraint [51,52], weight
constraint [34,53], slope constraint [54], warping path length constraint [41], etc. The second
category replaces the feature DTW considers, for example, derivative DTW [39], piecewise
DTW [55,56], shape context-based DTW [40], etc. In this paper, we employ the Sakoe–Chiba
band [57,58] constrained DTW, piecewise DTW, and time-weighted DTW [34] to represent
variants of DTW, and their performance will be compared with our proposed method.
The Sakoe–Chiba band narrows the warping window of DTW using a constant radius r,
which means for any wk = (i, j) in the warping path, |i− j| ≤ r. Piecewise DTW employs
piecewise averages to replace the raw time series when calculating DTW. Time-weighted
DTW adds a temporal cost to the cost between data points based on the date of each
point when calculating DTW. Equation (4) formulates the cost between data points in
time-weighted DTW.
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d(i, j) = (ai − bj)
2 + θ ∗ φ(i, j)

φ(i, j) =
1

1 + e−α(g(i,j)−β)

g(i, j) = |doy(i)− doy(j)|

(4)

where d(i, j) denotes the cost between data points ai and bj. θ is a weight coefficient for
the temporal cost. φ(i, j) is a logistic model with steepness α and midpoint β. g(i, j) is the
absolute difference between the day of year or Julian day of ai and bj.

2.2. Time Adaptive Optimal Transport

Optimal Transport (OT) [43,59], also known as Earth Mover’s Distance [46,47] or
Wasserstein Distance [60,61], has long been a theoretically ideal tool to compare probability
distributions or histograms [48,62]. OT is modeled as the optimal solution to the supply–
demand balanced transportation problem. Informally, suppose a series of mines providing
iron ores and a series of factories consuming iron ores. The supply of each single mine or
the demand of each single factory can be different but the total supply and the total demand
are the same. Given the transport cost between each mine to each factory, OT can find the
optimal transport allocation plan that leads to the minimum total cost while satisfying
global supply-demand balance.

Given two probability distributions denoted as:

(A|PA) = {(a1|pa1), (a2|pa2), . . . , (ai|pai ), . . . , (ad|pad)}
(B|PB) = {(b1|pb1), (b2|pb2), . . . , (bj|pbj

), . . . , (bd|pbd
)} (5)

where ai or bj is the i-th or j-th observed value in its respective distribution, and pai or
pbj

is the corresponding probability of ai or bj. Let M = {mij} be the cost matrix between
observed values of A and B, and typically mij = (ai − bj)

2, then the OT distance can be
defined as:

dM(A, B) := min
P∈U(A,B)

d

∑
i,j=1

pijmij (6)

U(A, B) := {P ∈ Rd×d
+ | P1d = PA, PT1d = PB} (7)

where 1d is a d-dimensional vector whose elements are all equal to 1, and U(A, B) is the set
containing all possible joint probabilities between A and B, whose row and column sums
to PA and PB, respectively.

The corresponding optimal transport plan P?, is thus defined as:

P? := arg min
P∈U(A,B)

d

∑
i,j=1

pijmij (8)

From the definition of OT we can observe that OT has appealing mathematical
properties to find the global optimal solution. However, the power comes with a large
computational burden. OT has a worst case time complexity of O(d3logd) [49] that scales
too fast even for a moderate-sized problem. After many attempts, a variant of OT named
Sinkhorn distance [50] successfully makes OT dozens of times faster and reactivates the
utility of OT. Sinkhorn distance adds an entropic regularization term to the classic OT
equation to enforce a simple structure that has a fast solution. Sinkhorn distance is defined
by the following equation:

dλ
M(A, B) := min

P∈U(A,B)

[
d

∑
i,j=1

pijmij +
1
λ

d

∑
i,j=1

pij log pij

]
(9)
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where λ is the regularization coefficient. A larger λ leads to a weaker regularization and as
λ increases Sinkhorn distance converges to the raw OT distance. As the name implies, the
regularized Equation (9) can be solved efficiently by Sinkhorn’s fixed point iteration.

From the perspective of finding minimum cost, OT is similar to DTW but OT considers
a more general problem and, thus, OT has a larger capacity to find a more correct result.
However, the downside is that OT is not originally designed for time series data and to
some extent it neglects the nature of time series, namely the temporal order or the time
coordinates of data points in a time series. To make OT capable of handling time series data,
Time Adaptive Optimal Transport (TAOT) [42] has been proposed. TAOT simultaneously
considers the observed values and their corresponding time coordinates when calculating
the cost between each pair of data points. Concretely, the cost matrix in Equation (9) is
now redefined as M(i, j) = (ai − bj)

2 + w ∗ (ti − tj)
2, where ti and tj are z-scores of the

time coordinates of ai and bj, respectively, and w is a weight parameter for the tradeoff
between the two parts. In addition, given the observation that data points in a time series
are acquired at different times, TAOT assumes each data point is independent and thus
has the same probability of 1/d, where d is the total number of points in a time series as
defined in Equation (5). In this setting, the Sinkhorn iteration can be further simplified and
the detailed TAOT algorithm can be referred to in [42].

To have an intuitive impression of how OT and TAOT measure the similarity between
time series, Figure 2c,d illustrates the alignments generated by OT and TAOT, respectively,
where the radius of intersection points indicate the weights of connections. We can observe
that both OT and TAOT lead to full connections among all points, although only some
connections are strong while others are too weak to notice. Strong connections happen
between corresponding peaks in the two time series and this characterizes an accurate
alignment. Specifically, OT imposes no penalty on temporal distances and thus in Figure 2c
connections (green circles) scatter around the whole area. In contrast, in Figure 2d most
connections happen near the diagonal, the place where the temporal distance (difference
between x and y coordinates) is small. This observation demonstrates that TAOT considers
the temporal gap between points and penalizes connections with long temporal distances.
In this setting, we can still find several strong connections (bigger green circles) a bit far
from the diagonal, and this is because their numerical similarity dominates the temporal
dissimilarity. In Figure 2c we can observe several strong connections (bigger green circles)
in the upper left corner, however, due to their long temporal distances they are dismissed
in Figure 2d.

A good alignment is expected to be feature-to-feature, where a local peak should be
aligned to another temporally adjacent local peak in the other time series, and vice versa
for local valleys. If a point is allowed to link with multiple points with different weights,
then the weights of connections should consider the trade-off between numerical distance
and temporal distance. In this standard, TAOT is better than DTW because TAOT generates
more feature-to-feature connections and achieves the balance between numerical distance
and temporal distance.

2.3. SITS Clustering with TAOT

A SITS clustering method usually requires two components: a similarity measure and a
clustering algorithm. We introduce TAOT in this paper to serve as the similarity measure for
SITS. As for the clustering algorithm, we choose mini-batch K-Means [63–65] for two main
reasons. Firstly, mini-batch K-Means is a memory-saving algorithm. Compared with other
categories of clustering algorithms such as density-based clustering, spectral clustering,
or affinity propagation, mini-batch K-Means does not have to maintain a large distance
matrix that scales quadratically with the number of samples. In contrast, mini-batch
K-Means only has to maintain the distances to a limited number of cluster centers and the
amount of memory scales linearly. Since satellite images always have millions of pixels, the
memory-saving property becomes critical for the utility of a clustering algorithm. Secondly,
given the same initial condition, the performance of mini-batch K-Means depends solely
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on the similarity measure and thus it ensures a fair comparison among different similarity
measures.

The mini-batch K-Means [65] is a variant of K-Means that employs randomly sampled
subsets instead of the entire sample set to update cluster centers during iterations. It drastically
reduces the memory cost and the computation required to converge to the final solution,
while still attempting to optimize the same global objective function as the raw K-Means.
Generally, mini-batch K-Means produces results that are only slightly different than the raw
K-Means. In this paper, we use the scikit-learn Python library to implement the mini-batch
K-Means algorithm.

3. Results

To demonstrate the utility of TAOT for the clustering of SITS, in this section we
evaluate the clustering accuracy of TAOT on two different datasets: the Reunion Island
dataset and the Poyang Lake dataset. TAOT is compared with five well-established methods:
Euclidean distance, DTW, Sakoe–Chiba band constrained DTW (SC-DTW), piecewise DTW
(PDTW), and time-weighted DTW (TWDTW). To ensure a fair competition, we use the
same initial cluster centers and the same random number generator such that the results
depend only on the similarity measure.

Since the K-Means clustering algorithm is sensitive to initial cluster centers, and in
order to demonstrate the utility of TAOT with different initial conditions, we conduct two
groups of experiments for each dataset. The first experiment aims to estimate the best
case capacity of these methods by using good initial cluster centers. Concretely, the first
experiment employs the average time series of each class to be the initial cluster centers.
The first experiment is technically semi-supervised because labeled samples are used for
initialization. This scenario happens in real clustering tasks when we still have a few
labeled samples. The second experiment uses 100 sets of random initial cluster centers
and repeats the clustering procedure 100 times. The second experiment aims to evaluate
the robustness under different conditions and is a traditional setting for clustering studies.
Detailed results are shown, respectively, by the following Sections 3.2 and 3.3.

3.1. Performance Metrics

The performance of each method is evaluated with four most widely used criteria:
Adjusted Rand score, Cohen Kappa score, Overall Accuracy, and Weighted F1 score.

The Rand score [66,67] measures the similarity between two data clusterings from
the perspective of sample pairs. For a total of n samples, the number of sample pairs is
n ∗ (n− 1)/2. For two clusterings C1 and C2, let a be the number of pairs that are in the
same clustering in C1 and in the same clustering in C2, and let b be the number of pairs
that are in different clusterings in C1 and in different clusterings in C2. In this setting, a + b
expresses the number of agreements between C1 and C2. Then the Rand score is defined
as the following Equation (10):

RS =
a + b

n ∗ (n− 1)/2
(10)

The adjusted Rand score [68] is an adjusted-for-chance version of the Rand score that
ensures a value close to 0 for two random clusterings and exactly 1.0 for two identical
clusterings. It is defined as the following Equation (11):

ARS = (RS− Expected(RS))/(Max(RS)− Expected(RS)) (11)

The Cohen Kappa score [69–71] is a statistic that measures the agreement between
two classification results. It is defined as the following Equation (12):

κ = (po − pe)/(1− pe) (12)

where po is the observed agreement ratio and pe is the expected agreement ratio.
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The overall accuracy is a straightforward performance metric, which is defined as the
fraction of correct predictions. For a total of n samples, if yi is the real class label of the i-th
sample and ŷi is the predicted class label, then the overall accuracy can be formulated as
the following Equation (13):

accuracy =
1
n

n

∑
i=1

1 ∗ (ŷi == yi) (13)

The F1 score [72,73] is the harmonic mean of precision and recall of a classifier. It is
defined as the following Equation (14):

F1 =
2

precision−1 + recall−1 = 2 ∗ precision ∗ recall
precision + recall

(14)

where the precision is the number of true positive predictions divided by the number
of all positive predictions, including those false positive predictions. In the context of
classification, a true positive prediction means we predict a sample should belong to a
certain class and it is true. A false positive prediction means we predict a sample should
belong to a certain class but it is false. Precision reflects the ability of a classifier not to label
as positive a sample that is negative. The recall is the number of true positive predictions
divided by the number of all samples that should have been identified as positive. Recall
reflects the ability of a classifier to find all the positive samples. In multi-class cases, the
F1 score of each class is averaged and the weighted F1 score finds their average weighted
by the number of samples of each class.

All of the four criteria described above range in [0, 1] and a higher value indicates a
better result.

3.2. Reunion Island Dataset

The Reunion Island dataset was released by the Time Series Land Cover Classification
Challenge (TiSeLaC) in the 2017 European Conference on Machine Learning & Principles
and Practice of Knowledge Discovery in Databases (ECML/PKDD 2017). The study area
covers the entire Reunion Island, a France overseas territory in the southwest Indian
Ocean. Figure 3 illustrates the location and overview of the study area. The dataset is
generated from an annual time series of 23 Landsat 8 images (30 m spatial resolution
and 16 day temporal resolution) acquired in 2014. Figure 4 shows the temporal coverage
of these images. Cloudy observations have been filled via pixel-wise multi-temporal
linear interpolation on each multi-spectral band (OLI) independently. Each data point in
a time series contains a total of 10 features, seven surface reflectance bands (Ultra Blue,
Blue, Green, Red, NIR, SWIR1, and SWIR2) plus three complementary radiometric indices
(NDVI, NDWI, and BI).

Figure 3. Study area location and overview of the Reunion Island dataset. The Landsat image uses a
false color combination of near-infrared, red, and green bands.
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Figure 4. Temporal distribution of satellite images in the Reunion Island dataset.

In the experiment we operate in an unsupervised manner and we conduct time series
clustering on the testing set, which consists of 17,973 samples with ground truth class
labels. To avoid the impact of imbalanced class distribution on the K-Means clustering
algorithm and to focus on the comparison of similarity measures, two tiny classes whose
sizes are not proportional to the other classes are respectively merged into their most
similar classes. Concretely, the built-up class (647 samples) is merged into the urban class
(4000 samples), and the other crops class (154 samples) is merged into the grassland class
(1136 samples). The dataset is thus distributed over seven classes and Table 1 reports the
detailed class distribution.

Table 1. Class distribution of the Reunion Island dataset.

Class ID Class Name Number of Samples Percentage

1 Urban and built-up 4647 25.86%
2 Forests 4000 22.26%
3 Sparse vegetation 3398 18.91%
4 Rocks and bare soil 2588 14.40%
5 Grassland 1290 7.18%
6 Sugarcane crops 1531 8.52%
7 Water 519 2.89%

Total 17,973 100.00%

Recall that two groups of experiments with different initial cluster centers are conducted.
Table 2 shows the clustering performance where the average time series of each class in the
training set is used for initialization. The training set was released along with the testing
set by TiSeLaC and it is used only in the first experiment for setting initial cluster centers.
The performance is evaluated with four criteria described in the above Section 3.1. We
can observe from Table 2 that TAOT consistently achieves the best results in terms of the
four criteria, and TAOT wins by a relatively large margin of 3.7%, 9.6%, 8.7%, and 9.0%
compared to the second best result for each respective criterion.

Table 2. Comparison of clustering performance on Reunion Island dataset with averaged initial
cluster centers. The best results are shown in bold.

Similarity Measure ED DTW SC-DTW PDTW TWDTW TAOT

Adjusted Rand Score 0.339 0.340 0.382 0.363 0.385 0.422
Cohen Kappa Score 0.433 0.409 0.458 0.458 0.453 0.554
Overall Accuracy 0.520 0.494 0.540 0.537 0.535 0.627
Weighted F1 score 0.544 0.512 0.555 0.562 0.551 0.652

Visually, Figure 5 shows the clustering maps generated by different similarity measures
and the ground truth reference map. We can observe that the forest class (purple) is well
recognized by all the five methods. However, Euclidean distance leads to significant
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confusion between sparse vegetation (orange) and water (gray). DTW, SC-DTW, and
TWDTW lead to significant confusion between rocks and bare soil (blue) and water (gray).
PDTW causes an obvious decrease of urban and built-up (green). Some of these issues also
exist in the clustering map generated by TAOT, but they are alleviated in varying degrees.

Table 3 shows the clustering performance with 100 sets of random initial cluster
centers on the Reunion Island dataset. The clustering is repeated 100 times and the average
performance with standard deviation is reported. We can observe that in terms of all the
four criteria, TAOT once again achieves the best results by margins of 1.3%, 1.4%, 1.3%,
and 1.8% compared to the second best result, respectively.

(a) Euclidean distance (b) DTW

(c) SC-DTW (d) PDTW

(e) TWDTW (f) TAOT

Figure 5. Cont.
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(h) Reference map

Figure 5. Clustering maps of Reunion Island dataset generated by different similarity measures and the ground truth
reference map of Reunion Island dataset. (a) Euclidean distance; (b) DTW; (c) SC-DTW; (d) PDTW; (e) TWDTW; (f) TAOT;
(h) Reference map.

Table 3. Comparison of clustering performance on Reunion Island dataset with random initial cluster centers. The best
results are shown in bold.

Similarity Measure ED DTW SC-DTW PDTW TWDTW TAOT

Adjusted Rand Score 0.337 ± 0.043 0.335 ± 0.043 0.339 ± 0.043 0.332 ± 0.042 0.339 ± 0.042 0.352 ± 0.043
Cohen Kappa Score 0.306 ± 0.113 0.312 ± 0.118 0.311 ± 0.118 0.312 ± 0.113 0.309 ± 0.116 0.326 ± 0.117
Overall Accuracy 0.406 ± 0.101 0.410 ± 0.106 0.409 ± 0.106 0.411 ± 0.102 0.408 ± 0.105 0.424 ± 0.104
Weighted F1 score 0.421 ± 0.108 0.428 ± 0.114 0.427 ± 0.114 0.428 ± 0.109 0.425 ± 0.112 0.446 ± 0.111

Figure 6 shows the distribution of each performance metric over the 100 repetitions
performed on the Reunion Island dataset. We can observe that TAOT achieves the highest
median, mean, maximum, and minimum in all the four box-plots.

3.3. Poyang Lake Dataset

The Poyang Lake dataset consists of 23 cloud-free Landsat 8 land surface reflectance
images acquired between 2014 and 2016. The study area is located in Poyang Lake, in
the Jiangxi Province of China. Figure 7 illustrates the location and overview of the study
area. We first mended cloud and cloud shadow pixels in each raw Landsat 8 image by
the method proposed in [14] and then selected 23 clean images to construct the dataset.
Figure 8 shows the temporal coverage of the selected images. We use the FROM-GLC
2015 (Finer Resolution Observation and Monitoring of Global Land Cover) classification
product [74] (http://data.ess.tsinghua.edu.cn/ (accessed on 20 January 2021)) as ground
truth reference. To further ensure the reliability of the reference set, we morphologically
eroded the class labels with two iterations to keep only the central pixels of each land patch,
because the central pixels are more likely to be correctly classified when generating the
classification product. As the FROM-GLC 2015 product adopts different map projections,
we reprojected Landsat images to the 0.00025 degrees per pixel geographic lat/lon projection
used by FROM-GLC 2015. Each data point in a time series contains seven features, namely
the seven surface reflectance bands (Ultra Blue, Blue, Green, Red, NIR, SWIR1, and SWIR2)
of Landsat 8 imagery. The size of these images is 800× 800, where the coordinate of the
upper-left corner of the first image (path: 121, row: 40, date: 2014-March-14) is (1300, 2050)
in the entire scene.

http://data.ess.tsinghua.edu.cn/
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(b) Adjusted Rand Score (c) Cohen Kappa Score

(d) Overall Accuracy (e) Weighted F1 score

Figure 6. Distribution of each performance metric over the 100 repetitions performed on the Reunion Island dataset. The
orange line indicates the median and the green triangle indicates the mean. The gray line locates the mean value of TAOT
for reference. (a) Adjusted Rand Score; (b) Cohen Kappa Score; (c) Overall Accuracy; (d) Weighted F1 score.

The dataset contains six land cover classes: forest, impervious surface, cropland,
grassland, bareland, and water. Table 4 reports the detailed class distribution. Table 5
shows the clustering performance where average time series of each class in the reference
set is used for initialization. The performance is also evaluated with the four criteria.
We can observe that TAOT outperforms the other methods by margins of 1.8%, 1.8%,
1.5%, and 1.3% compared to the second best result on each respective criterion. Visually,
Figure 9 shows the clustering maps generated by different similarity measures and the
morphologically eroded reference map. TAOT generates more precise contours for the
majority of land cover patches.

Figure 7. Study area location and overview of the Poyang Lake dataset. The Landsat image uses a
false color combination of near-infrared, red, and green bands.
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Figure 8. Temporal distribution of satellite images in the Poyang Lake dataset.

Table 4. Class Ddistribution of the reference set of Poyang Lake dataset.

Class ID Class Name Number of Samples Percentage

1 Cropland 47,181 27.68%
2 Forest 56,115 32.92%
3 Grassland 2937 1.72%
4 Water 54,262 31.83%
5 Impervious surface 9192 5.39%
6 Bareland 766 0.45%

Total 170,453 100.00%

Table 5. Comparison of clustering performance on Poyang Lake dataset with averaged initial cluster
centers. The best results are shown in bold.

Similarity Measure ED DTW SC-DTW PDTW TWDTW TAOT

Adjusted Rand Score 0.725 0.723 0.724 0.711 0.732 0.750
Cohen Kappa Score 0.714 0.723 0.728 0.716 0.731 0.749
Overall Accuracy 0.785 0.792 0.796 0.786 0.798 0.813
Weighted F1 score 0.831 0.839 0.842 0.833 0.844 0.857

Table 6 shows the clustering performance with 100 sets of random initial cluster
centers on the Poyang Lake dataset. The clustering is also repeated 100 times with the
average performance and the standard deviation reported. We can observe that TAOT
outperforms the other methods by margins of 2.0%, 0.9%, 0.7%, and 0.6% compared to the
second best result on each criterion.

Figure 10 shows the distribution of each performance metric over the 100 repetitions
performed on the Poyang Lake dataset. For the adjusted Rand score, TAOT achieves
the highest median, mean, maximum, and minimum by a relatively large margin. For
the Cohen Kappa score, TAOT has the highest mean, maximum, and minimum, while
TWDTW has a higher median (TAOT: 0.668, TWDTW: 0.679). For overall accuracy, TAOT
has the highest mean and maximum. SC-DTW has a slightly larger minimum (TAOT: 0.695,
SC-DTW: 0.696) and TWDTW has a larger median (TAOT: 0.750, TWDTW: 0.760). For
the weighted F1 score, TAOT has the highest mean and maximum, while SC-DTW has
the highest minimum (TAOT: 0.731, SC-DTW: 0.734) and median (TAOT: 0.795, SC-DTW:
0.800). The outliers illustrated by circles below the boxes are mainly caused by poor random
initializations of cluster centers.
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(a) Euclidean distance (b) DTW

(c) SC-DTW (d) PDTW

(e) TWDTW (f) TAOT

Figure 9. Cont.
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(h) Reference map

Figure 9. Clustering maps of Poyang Lake dataset generated by different similarity measures and the reference map of
Poyang Lake dataset. The unclassified pixels (white color) are caused by morphological erosion operations to improve
reliability. When evaluating performance, we only use classified pixels shown in this reference map. (a) Euclidean distance;
(b) DTW; (c) SC-DTW; (d) PDTW; (e) TWDTW; (f) TAOT; (h) Reference map.

Table 6. Comparison of clustering performance on Poyang Lake dataset with random initial cluster centers. The best results
are shown in bold.

Similarity Measure ED DTW SC-DTW PDTW TWDTW TAOT

Adjusted Rand Score 0.737 ± 0.046 0.728 ± 0.032 0.730 ± 0.035 0.713 ± 0.039 0.737 ± 0.031 0.757 ± 0.030
Cohen Kappa Score 0.627 ± 0.124 0.610 ± 0.161 0.627 ± 0.138 0.599 ± 0.159 0.628 ± 0.154 0.637 ± 0.150
Overall Accuracy 0.715 ± 0.105 0.703 ± 0.129 0.716 ± 0.114 0.695 ± 0.127 0.716 ± 0.126 0.723 ± 0.123
Weighted F1 score 0.746 ± 0.111 0.736 ± 0.138 0.747 ± 0.120 0.726 ± 0.133 0.748 ± 0.131 0.754 ± 0.128

3.4. Extraction of Parameters

When parameters are involved in any similarity measure in the experiment, we search
for the optimal values. Table 7 lists the optimal parameter values used in this paper.
Euclidean distance and DTW are both parameter-free. SC-DTW has one parameter r,
which is the radius of the Sakoe–Chiba band. PDTW also has one parameter n, which
is the number of pieces. TWDTW has three parameters: the temporal weight coefficient
θ, the steepness α, and the midpoint β of the logistic weight model. TAOT involves two
parameters: the regularization coefficient λ and the temporal weight w. For SC-DTW and
PDTW, as they are reference methods, we use the global optimal parameters found by
linear search on the testing sets to show their best possible performance. For TWDTW,
a linear search of θ with different combinations of α (α = 0.1 or 0.2) and β (β = 50, 100,
150, or 200) is conducted on the testing sets to find the optimal parameters. For TAOT,
we find the optimal λ and w by grid search on the training sets. If a full grid search is
too time-consuming, we can search for w first with a coarse interval of λ, and then search
for an optimal λ with a dense interval given fixed w. Figure 11 illustrates the extraction
process of λ when the optimal w is decided.

Table 7. Optimal parameters for each method on the two datasets.

Similarity Measure ED DTW SC-DTW PDTW TWDTW TAOT

Reunion Island Dataset n/a n/a r = 3 n = 5 θ = 800,000, α = 0.1, β = 100 λ = 15, w = 400,000
Poyang Lake Dataset n/a n/a r = 3 n = 21 θ = 600,000, α = 0.2, β = 100 λ = 12.5, w = 3,500,000
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(b) Adjusted Rand Score (c) Cohen Kappa Score

(d) Overall Accuracy (e) Weighted F1 score

Figure 10. Distribution of each performance metric over the 100 repetitions performed on the Poyang Lake dataset. The
orange line indicates the median and the green triangle indicates the mean. The gray line locates the mean value of TAOT
for reference. (a) Adjusted Rand Score; (b) Cohen Kappa Score; (c) Overall Accuracy; (d) Weighted F1 score.

(a) Reunion Island dataset (b) Poyang Lake dataset

Figure 11. The extraction of parameter λ given fixed w on the two datasets. (a) Reunion Island dataset; (b) Poyang
Lake dataset.

4. Discussion
4.1. Alignments Generated by TAOT

A major motivation of using TAOT instead of DTW-based methods is to avoid the
issues of pathological alignment and spike noise when coping with SITS data. Throughout
this paper, similarity measure methods of time series are introduced from the perspective
of alignments, and thus an intuitive way to see whether TAOT can solve these issues is to
compare the alignments generated by different methods on real SITS datasets. Figure 12
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illustrates three sets of alignments generated by DTW and TAOT on the TiSeLaC Reunion
Island dataset. Recall that TAOT produces a fully-connected alignment represented by
a transport matrix, but a large portion of the matrix cells have small values that are
close to zero. To extract the essential part of the alignment and make it comparable with
DTW, we filter the alignment of TAOT by weights of connections and only significant
connections are kept. Two filter thresholds are adopted, where the smaller one (0.005)
gives an overall impression of the alignment generated by TAOT, and the larger one (0.01)
enables a comparison with DTW. In addition, we use the widths of lines to reflect the
weights of connections.

(a) 2101 vs 6507 (b) 6362 vs 7487 (c) 17842 vs 10067

Figure 12. Alignments generated by DTW and TAOT between time series from the TiSeLaC Reunion Island dataset. The
subtitles of figures show the indices of time series in the testing set. (a) 2101 vs. 6507; (b) 6362 vs. 7487; (c) 17842 vs. 10067.

In pathological alignments a point can be mapped onto an excessively large subsection
of other points and distort the results. From all three sets of alignments shown in Figure 12
we find that DTW leads to pathological alignments locally in varying degrees, while
TAOT leads to more balanced alignments. In Figure 12a,c we observe the appearance
of spike noise and how it causes distortions to DTW. In contrast, TAOT is not obviously
affected by the spike noise. These observations demonstrate our hypothesis that TAOT can
alleviate the pathological alignment issue of DTW and it is not sensitive to spike noise. In
addition, we observe that TAOT connections of points only happen in moderate temporal
neighborhoods, which proves that TAOT achieves a trade-off between numerical and
temporal similarities.

4.2. Capacity of TAOT

Another motivation of using TAOT is that TAOT derives a fully-connected alignment
and thus theoretically has a larger capacity for a more precise result. The second row of
Figure 12 shows that although weak connections are not drawn, each point still involves
multiple connections with different weights. Rather than the many-to-many alignment
generated by TAOT, DTW generates either one-to-many or many-to-one alignment. As
a consequence, TAOT has a larger search space and more flexibility. Statistically, we
have tested the capacity of TAOT in the previous experiments by giving each method
an ideal initial condition and observing how well they could perform. On the Reunion
Island dataset, TAOT outperforms the second best method by a large margin of 9.6% in
terms of the Cohen Kappa score, and on the Poyang Lake dataset the margin is 2.1%.



Remote Sens. 2021, 13, 3993 19 of 23

This observation proves that TAOT can reach an obviously higher limit than the other
well-established methods.

4.3. Limitations of TAOT

While TAOT has advantages on accuracy, its computational efficiency still has significant
room for improvement. In theory, given two time series of length N, the time complexity
of TAOT is approximately O(N2 log N) [75], which is slower than DTW-based methods
(O(N2)) and Euclidean distance (O(N)). Note that the time complexity of naive optimal
transport is O(N3 log N) [49] and TAOT is already a faster variant of optimal transport.

In practice, Figure 13a,b shows the distribution of computational times for each
method over the 100 repetitions performed on the two datasets, respectively. The times
are measured on a configuration with 8 CPU cores of 2.5 GHz and 16-GB memory. We
observe that Euclidean distance is the fastest due to its simplicity. Among DTW-based
methods, PDTW is relatively rapid because it reduces the length of time series by piecewise
averaging. TWDTW is the slowest on both the two datasets. TAOT runs moderately slower
than DTW and SC-DTW on the Reunion Island dataset, which coincides with the theoretical
analysis above. However, TAOT runs faster than DTW and SC-DTW on the Poyang Lake
dataset. This might be because TAOT involves many matrix operations whose efficiency is
better optimized when the size of matrices scale. Further acceleration of TAOT might be
achieved through decomposing a multi-dimensional OT problem into one-dimensional
ones and using one-dimensional results to compose the high-dimensional result [76].

(a) Reunion Island Dataset

(b) Poyang Lake Dataset

Figure 13. Computational times of different methods on the two datasets. (a) Reunion Island Dataset;
(b) Poyang Lake Dataset.

Another issue of TAOT is that sometimes it will encounter the machine precision limit
when λ increases beyond a problem-dependent value λmax, beyond which some elements
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of e−λM are represented as zeroes. In this case we have to use a smaller λ that may lead to
a stricter regularization than desired.

5. Conclusions

In this paper, we have introduced time adaptive optimal transport (TAOT) as a
similarity measure tool for satellite image time series (SITS), with the aim of avoiding the
issues of DTW-based methods, namely the pathological alignment, sensitivity to spike
noise, and limitation on capacity. TAOT is derived from the classic optimal transport
framework which has long been a powerful tool to compare probability distributions
or histograms. In addition, TAOT further considers temporal similarities to make it
suitable for SITS data. In order to demonstrate the properties of TAOT, we have presented
SITS clustering experiments on two real SITS datasets in two different settings. TAOT
consistently outperformed the other methods in terms of four well-established accuracy
criteria. To gain a deeper understanding of TAOT, we have illustrated the alignments
generated by TAOT and compared them with DTW. TAOT is able to generate a more
balanced fully-connected alignment to precisely capture the similarity between time series,
and thus TAOT can serve as a usable tool for the analysis of complex SITS data.
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