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Abstract: The elimination of hunger is the top concern for developing countries and is the key to
maintain national stability and security. Paddy rice occupies an essential status in food supply,
whose accurate monitoring is of great importance for human sustainable development. As one of
the most important paddy rice production countries in the world, Thailand has a favorable hot
and humid climate for paddy rice growing, but the growth patterns of paddy rice are too compli-
cated to construct promising growth models for paddy rice discrimination. To solve this problem,
this study proposes a large-scale paddy rice mapping scheme, which uses time-series Sentinel-1
data to generate a convincing annual paddy rice map of Thailand. The proposed method extracts
temporal statistical features of the time-series SAR images to overcome the intra-class variability
due to different management practices and modifies the U-Net model with the fully connected
Conditional Random Field (CRF) to maintain the edge of the fields. In this study, 758 Sentinel-1
images that covered the whole country from the end of 2018 to 2019 were acquired to generate
the annual paddy rice map. The accuracy, precision, and recall of the resultant paddy rice map
reached 91%, 87%, and 95%, respectively. Compared to SVM classifier and the U-Net model based on
feature selection strategy (FS-U-Net), the proposed scheme achieved the best overall performance,
which demonstrated the capability of overcoming the complex cultivation conditions and accurately
identifying the fragmented paddy rice fields in Thailand. This study provides a promising tool for
large-scale paddy rice monitoring in tropical production regions and has great potential in the global
sustainable development of food and environment management.

Keywords: Synthetic Aperture Radar; time-series SAR; rice mapping; Sentinel-1; deep learning

1. Introduction

As an important component of the United Nations 2030 Agenda for Sustainable Devel-
opment, food security and sustainable agriculture are closely related to global development
and human livelihood [1]. The timely monitoring of agricultural activities grasps the
accurate grain production situation, which is of great significance to the macro-control
and maintenance of grain security. Paddy rice is one of the most critical food supplies
for human nutrition, which accounted for 9% of the world’s crop production according
to the FAOSTAT 2020 yearbook [2]. As the third most widely cultivated grains (follow-
ing wheat and maize), the cultivation activities of paddy rice greatly influence not only
the global rice marketing and the rice-reliant populations but also the hydrologic cycle
and the ecological balance [3–5]. The land-use-land-cover (LULC) changes due to fast
urban expansions, policy adjustments, and climate changes increase the uncertainty of
paddy rice growth [6–8]. In addition, natural hazards, such as typhoons, floods, droughts,
and pests have direct impacts on the rice yields, which further affect food supplies and
greenhouse gas emissions [9–12]. Consequently, for the maintenance of food supply and
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the formulation of rational regional development policies, elaborate observations of paddy
rice cultivation areas are necessary.

According to the statistics of 2018, Asia accounted for 90.2% of rice production world-
wide, and Thailand was the second-largest rice export country in the world (following
India), whose rice cultivation area reached 49.83% of its all croplands [2,13]. Located at the
Indo-China Peninsula of Asia, the tropical monsoon climate divides the whole year of Thai-
land into the rainy season and the dry season. The average annual temperature of Thailand
ranges from 24 ◦C to 30 ◦C, and the average annual precipitation reaches 1000 mm, which is
suitable for paddy rice growing. Therefore, paddy rice can be cultivated at any time during
a year, and double-season or triple-season rice is common. However, the agricultural
production system is dominated by smallholders in Thailand due to the limitations of labor
intensity, agricultural facilities, and irrigation resources [14,15]; the distributions and the
spatial-temporal patterns of rice ploughlands are difficult to be monitored.

The rapid development in remote sensing techniques offers good opportunities to
monitor paddy rice areas on regional or global scales. The well-produced global land
cover maps, such as GLC2000 [16], GlobCover2009 [17], MCD12Q1 [18], Finer Resolution
Observation and Monitoring-Global Land Cover (FROM-GLC) [19], and GlobeLand30 [20],
have provided valuable global cropland information, but the regional or global paddy
rice maps were still scarce because the paddy rice information was not considered inde-
pendently in these products. Based on statistical approaches, global paddy rice maps
were generally produced with coarse resolutions [21,22]. Regionally, the rice mapping
products were also made over China [23,24], South Asia [25,26], and Southeast Asia [27].
These products provided with large-scale paddy rice information but were unable to fulfill
the monitoring requirements for the small and irregular ploughlands in tropical countries
due to the low resolutions (lower than 500 m). Besides, the updates of these products
usually require large labor and resources.

Great efforts have been made to carry out timely monitoring of paddy rice that adapted
to various growth patterns. Different band combinations of optical remote sensing data
were tested and evaluated for paddy rice recognition [28,29]. With the development of
vegetation indexes (VIs), a stronger link was built between the plant biophysical features
and the spectral information, and the multitemporal observations were acquired to in-
crease the extraction performances [30–34]. These studies achieved promising results and
demonstrated the significance of multitemporal observations, especially in flooding and
transplanting phases during rice growth. However, these methods were difficult to imple-
ment in Thailand for two reasons. First, due to the complex terrains in South and Southeast
Asia, the cropland areas are small, and the shapes are irregular. Second, because of the
favorable high-temperature and high-humidity climate, the seedling and transplanting
of paddy rice can be conducted at any time over the year. Hence, the collection of high
temporal and spatial resolution remote sensing data is a prerequisite to grab the diverse
growth patterns of paddy rice. However, due to the frequent clouds and rains in tropical
region, the stable acquisition of multitemporal optical remote sensing data is unwarranted.
As a result, it is difficult to achieve promising large-scale paddy rice map using only optical
remote sensing data.

A proper solution is Synthetic Aperture Radar (SAR), which is immune to clouds and
rains and is sensitive to the geometric features and the dielectric property. As paddy rice
grows, the plant height increases significantly from the transplanting stage and reaches its
peak at the heading stage. As the paddy rice plant enters the mature stage, the weight of its
ear increases with the accumulation of biomass. Additionally, the stem of paddy rice bends,
leading to slight decrease in plant height. The changes in biophysical features contribute
comprehensively to radar backscattering coefficient (σ0), and the growing conditions
of paddy rice can be retrieved from the analysis of SAR signals or vice versa [35,36],
based on which many rule-based or decision-based methods identifying paddy rice were
proposed using multitemporal SAR data [37–39]. With the increasing spatial and temporal
resolutions, SAR is able to portrait detailed paddy rice growing patterns and has been
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proven to be as promising as optical remote sensing data [37,40–42]. In the past few
years, researches were carried out to monitor paddy rice in Thailand with SAR data.
For instance, Waisurasingha et al. mapped the flood-affected paddy rice in the lower
part of the Chi River Basin with a single-date Radarsat-1 image and a DEM image [43].
Hoshikawa et al. investigated the hydrological characteristics of rice in northeast Thailand
with the multitemporal L-band ALOS-PALSAR images [44]. Nelson et al. presented a
rule-based classification with time-series COSMO SkyMed and TerraSAR-X images for
13 diverse footprints tropical and subtropical rice mapping [45]. However, these studies
were only implemented in limited regions, and the classifications were easily influenced by
manually determining thresholds. So far, nationwide paddy rice extraction in Thailand
was rarely explored with SAR.

To achieve an accurate paddy rice map that portraits the diverse paddy rice practices in
Thailand, stable time-series SAR data covering the whole country are required. Meanwhile,
an intelligent classification method is demanded to fulfill the processing needs of great data
volume. In recent years, the expansion of deep learning advances pattern recognition ability
and achieved conspicuous accuracies [46]. In 2012, Hirose et al. introduced Convolutional
Neural Networks (CNN) into SAR classification for the first time and modified the network
into a complex form [47]. Kussul et al. used one- and two-dimensional CNN to classify
multi-temporal SAR images and multi-spectral images [48]. Ndikumana et al. applied the
Long- and Short-Time Memory (LSTM) and the Gated Recurrent Unit (GRU) for vegetation
classification with 25 dual-polarization SAR acquisitions [49]. Cué La Rosa et al. applied
pixel-based and slice-based strategies respectively to classify crops in tropical regions with
Autoencoder (AE), CNN, and Fully Convolutional Network (FCN) [50]. These studies
have introduced various deep learning models into time-series SAR processing, but when
it comes to the national-scale application, a new processing scheme is needed, considering
the temporal feature inconsistencies caused by various cultivation patterns and different
data acquisitions conditions.

In this paper, a paddy rice mapping scheme based on multitemporal Sentinel-1 data
and deep learning model is proposed to accomplish nationwide paddy rice mapping in
Thailand. A total of 758 Sentinel-1 images were collected to support long-term paddy
rice monitoring in the whole country. To achieve a fine resolution and meanwhile save
the storage resource and processing time of image sequences, FCN rather than CNN or
Recurrent Neural Networks (RNN) was adopted. The U-Net model was adopted in this
scheme, which is suitable for multichannel image segmentation [51] and has been intro-
duced in remote sensing classifications [52]. Simple but effective temporal statistic features
are extracted from time-series SAR as the input of the U-Net model, which grabs key
information of the nursery stage and the reproductive stage for paddy rice. To refine the
edges of the extraction results, fully connected Conditional Random Field (CRF) [53] is
introduced to improve the original U-Net model. Through the comparisons to the ground
truth samples and the statistics of the Thailand Office of Agricultural Economics (OAE),
the feasibility and accuracy of the proposed paddy rice mapping method were evaluated,
which demonstrates the applicability of deep learning in large-scale paddy rice mapping
under the condition of diverse cultivation practices. With all the available Sentinel-1A data
acquired during 2019, the annual paddy rice map of Thailand was generated, which pro-
vides auxiliary information to the global paddy rice supply analysis and pricing policy.

The remaining contents of this paper are organized as follows: Section 2 gives infor-
mation about the study area and the Sentinel-1 dataset and then explains the proposed
paddy rice mapping scheme; Section 3 presents the analysis of temporal features and the
paddy rice map results; Section 4 gives discussions about the results; and finally, Section 5
draws the conclusion.
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2. Materials and Methods
2.1. Paddy Rice Production in Thailand

Thailand is located in the south-central part of the Indochina Peninsula, with a total
area of 513,000 km2 and a total population of 67.4 million. Agriculture is the traditional
industry in Thailand, whose agricultural land reaches 20.8 million ha and whose peasant
population is as high as 3.7 million. Nearly 44% of all agricultural land is cultivated with
paddy rice and 66% of peasants are engaged in rice production. Thailand has complicated
topography, which brings significant influences on the distribution of farmlands over the
country and results in small and irregular shapes of the croplands. Thailand can be divided
into four rice production conditions according to the ecological resource conditions and
the topographic factors: (1) the northern area, which accounts for 23% of all paddy rice
fields; (2) the northeast area, which is the main producing area of fragrant rice and accounts
for 44% of all paddy rice fields; (3) the central plain area, which accounts for 26% of all
paddy rice fields and mainly produces deep water rice; and (4) the southern area, which is
mainly cultivated with economic crops and accounts for only about 7% of all paddy rice
fields. Located at the south of Shan Plateau and east of the Enasserim Chain, Northern
Thailand is dominated by mountains and jungles, where cities and croplands are usually
concentrated in the valleys. This region has a relatively large population and a small
cultivation area. But due to the advanced irrigation condition, paddy rice can grow in two
seasons, and the paddy rice yield per unit area is the highest among four main production
regions. The northeast area is quite the opposite. It has the largest cultivation area but
a relatively low population. The ploughlands in the northeast region are concentrated
and extensive because the flat terrain of the Khorat Plateau is beneficial for agriculture.
However, monsoon rains are the only water source for paddy rice in the northeast area
because of the poor irrigation condition. Paddy rice can only grow during the rainy season
(from May to October), so it has the lowest paddy rice yield per unit area. The central
part of Thailand is crossed by the Chao Phraya River, leading to abundant water resources.
In addition, the irrigation conditions in the delta of the Chao Phraya River are more
advanced, so the fields of paddy rice in central Thailand are densely distributed with
regular shapes. Southern Thailand is located on the mountainous Malay Peninsula, which is
adjacent to the south part of Bilauktaung Mountain. Affected by the topography, southern
Thailand is dominant by tropical economic crops, such as rubber and oil palm.

The growing cycle of paddy rice is composed of the nursery stage (from sowing to
transplanting), the vegetative stage (from transplanting to panicle initiation), the reproduc-
tive stage (from panicle initiation to flowering), and the maturing stage (from flowering
to harvest) [54]. Figure 1 depicts the percentage of monthly cultivated areas and the per-
centage of monthly harvest productivities in Thailand during a year, according to the
statics of OAE. We can see that rice is mainly sown in May, June, and July but can also be
planted from August to October. The majority of the first-season rice (or the single-season
rice) is not harvested until November, while more than a quarter of the first-season rice is
harvested from August to October. For the second-season rice, the harvest takes place from
February to September. These facts indicate that the sowing period and the harvest period
both last for a long time, so the observation window effective for the temperate region is
unlikely to cover the complete growing cycle of paddy rice. In other words, the paddy rice
mapping of Thailand requires continuous observations throughout the year.
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Figure 1. The percentage of monthly cultivated areas and monthly harvest productivities, where (N)
refers to next year.

2.2. Dataset
2.2.1. Time-Series Sentinel-1A Images

The successful launches of Sentinel-1A in 2014 and Sentinel-1B in 2016 have provided
routinely global acquisitions of time series SAR data. With the stable 12-day revisit cycle
and the 250-km swath width (IW mode), Sentinel-1 mission has offered new opportunities
for long-term, large-scale land cover monitoring in rainy tropical and subtropical countries.
In this study, the VH/VV IW mode Sentinel-1 images that belonged to 6 orbits (4 descending
orbits and 2 ascending orbits) and 27 frames were collected to cover the whole of Thailand.
For each frame, Ground Range Detected (GRD) images with a 12-day revisit cycle over a
year were acquired to establish the complete backscattering curves in the paddy rice growth
cycle. In total, 758 available SAR images were acquired. Table 1 shows the basic information
of the data. Under the assumption that the same farmland does not change much between
2018 and 2019, the time-series data are able to establish annual backscattering curves of
paddy rice. The locations of all the collected frames are shown in Figure 2, where each
frame is named after “orbit index-frame index.” The mosaic of the mean backscattering
coefficient (σ0

mean) of each collected frame is presented in Figure 3.

Figure 2. The location of the collected frames.
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Figure 3. The mosaic image of σ0
mean in Thailand.

Table 1. Information of time series Sentinel-1 data.

Frame
(Satellite) Time* No.* Size* Frame

(Satellite) Time* No.* Size*

62-1(S1B) 2018/10/6~2019/10/1 29 19,488 × 25,150 164-1(S1B) 2018/9/7~2019/9/26 32 19,492 × 25,149
62-2(S1B) 2018/10/6~2019/10/1 29 16,790 × 25,147 164-2(S1B) 2018/9/7~2019/9/26 32 16,792 × 25,146
62-3(S1B) 2018/10/6~2019/10/1 29 16,790 × 25,145 164-3(S1B) 2018/9/7~2019/9/26 32 16,791 × 25,144
62-4(S1B) 2018/10/6~2019/10/1 29 16,790 × 25,143 164-4(S1B) 2018/9/7~2019/9/26 32 16,792 × 25,142
62-5(S1B) 2018/10/6~2019/10/1 29 9438 × 25,143 164-5(S1B) 2018/9/7~2019/9/26 32 20,564 × 25,141

62-20(S1A) 2018/12/11~2019/12/6 27 16,776 × 25,563 164-20(S1A) 2018/12/6~2019/10/14 13 16,786 × 25,421
62-21(S1A) 2018/12/11~2019/12/6 27 16,777 × 25,563 91-1(S1B) 2018/9/2~2019/9/21 32 19,495 × 25,153
62-22(S1A) 2018/12/11~2019/12/6 26 16,776 × 25,563 91-2(S1B) 2018/9/2~2019/9/21 32 16,793 × 25,150
62-23(S1A) 2018/12/11~2019/12/6 24 16,777 × 25,568 91-3(S1B) 2018/9/2~2019/9/21 32 16,793 × 25,148
62-24(S1A) 2018/12/11~2019/12/6 25 16,776 × 25,570 91-4(S1B) 2018/9/2~2019/9/21 32 16,793 × 25,146
172-17(S1A) 2018/12/7~2019/12/14 31 16,780 × 25,705 135-16(S1A) 2018/9/11~2019/9/18 23 16,772 × 25,571
172-18(S1A) 2018/12/7~2019/12/14 31 16,781 × 25,701 135-17(S1A) 2018/9/11~2019/9/18 23 16,772 × 25,568

99-16(S1A) 2018/1/12~2018/12/26 29 16,784 × 25,637
135-18(S1A) 2018/9/11~2019/9/18 23 16,772 × 25,565
135-19(S1A) 2018/9/11~2019/9/18 23 16,772 × 25,564

Time*: Data acquisition period of each frame, with 12-day revisiting cycle. No.*: Number of observations in each frame Size*: Original
image size of each frame (row × column).
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2.2.2. Construction of Training Dataset

Frame 99-16 was used to generate the training dataset. As shown in Figure 2,
frame 99-16 was overlapped with frames 62-2, 62-3, 164-2, 164-3, where rice and non-
rice regions (for instance, non-rice crops, water, urban, and forest) showed clear contrast
and were easy to separate. The paddy rice label image of frame 99-16 is shown in Figure 4.
To generate the label image, FROM-GLC product was acquired to extract the mask of crop-
land firstly. Some typical paddy rice fields were then selected through the visual inspection
of optical remote sensing images, including Google Earth and Sentinel-2. These fields were
used to generate the temporal curves of paddy rice. In addition, the initial paddy rice map
was generated with the classification proposed in [55]. Finally, the paddy rice label image
was refined manually with ArcGIS according to the Google Earth image data as references.
The label image was cut into patches by sliding window of 224 × 224 with an overlapping
rate of 50%. In total, the training dataset was composed of 15659 patches with a size of
224 × 224. Paddy rice pixels account for more than 10% of all pixels in 7931 patches.

Figure 4. Information of the training image: (a) location of frame 99-16; (b) the VH polarization of frame 99-16 on
12 January 2018; (c) label image of frame 99-16, where bright and dark pixels indicate paddy rice and non-rice, respectively.

2.3. Methodology

The difficulty of Thailand paddy rice mapping lies in two aspects. On one hand,
the paddy rice in Thailand has various growth patterns. The σ0 of the paddy rice fields
may differ significantly from each other, so it is difficult to apply the classification methods
that rely on the fixed relationship between phenology and time directly. On the other
hand, the complicated distribution of croplands in Thailand caused by topography raise
up with high requirement for the classification method. A reliable method that is able to
identify small and scattered paddy rice fields and meanwhile be resistant to the sporadically
distributed false alarms is demanded.

As a solution, this paper comes up with a paddy rice mapping scheme that is inde-
pendent of the diverse cultivation patterns in Thailand and is capable of extracting small
ground parcels despite the broken and irregular shapes. The flow chart of the proposed
method is presented in Figure 5. First, the multitemporal Sentinel-1 images are prepro-
cessed to get the calibrated σ0. The necessary preprocessing steps include coregistration,
filtering, and geocoding. Then, features that capture the key information during growth
are extracted from multitemporal SAR data. Considering the big data processing demands
for the large area paddy rice mapping, the temporal statistic features of the time-series SAR
data are computed and stacked as input to the deep learning network. To fully utilize the
pixel-level semantics of the features, the U-Net model [51] is adopted to train the paddy
rice prediction model, which uses the deconvolution layer instead of the pooling layer
to construct the decoder structure and is capable to recover the spatial details of feature
images. Finally, to improve the compactness and homogeneity of the classification result,
the fully connected CRF is introduced to modify the U-Net model.
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Figure 5. Flow chart of the proposed paddy rice mapping method.

2.3.1. Preprocessing of Multitemporal SAR

The multitemporal Sentinel-1 images were preprocessed before the classification.
The preprocessing was accomplished with ENVI Sarscape 5.2. First, the observations of the
same frame were registered. Then, a multitemporal filter [56] was applied to each frame to
suppress the speckle noise. Figure 6 compares the backscattering coefficient image of VH
polarization (σ0

VH) of a region of interest (ROI) area. It can be seen that the speckle noises
are largely reduced after multitemporal filtering, and the boundaries between croplands
and the other ground objects become clearer. After the filtering, the 30-m resolution Shuttle
Radar Topography Mission (SRTM) DEM data were used for radiometric calibration and
geocoding to extract σ0

VH and σ0
VV with a grid size of 20 m. Finally, the backscattering

sequence models of σ0
VH and σ0

VV were generated, according to which the analysis of
sowing and harvest patterns were carried out.

Figure 6. The σ0
VH image of an ROI before (a) and after (b) multitemporal filtering.

2.3.2. Extraction of Temporal Statistic Features

As illustrated above, the rice planting cycle in tropical countries such as Thailand can
be very complex so that the general evolution models of σ0 can hardly be summarized.
Hence, three simple but effective temporal statistic features are defined from the dense
time-series σ0 images, which describe the most prominent SAR characteristics during
paddy rice growth.
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• The temporal variance σ0
var

With the dramatic changes over leaves, stems, and fruits, the interactions between
microwave radiation and crop canopy vary with time, leading to a large range of varia-
tions during plant growth and periodic changes in multiyear observations. By contrast,
for non-agricultural objects, such as buildings, water, and forest, the change of σ0 with time
is less significant so that the temporal variance of σ0 in annual SAR observations is the key
to separate croplands from other land covers. The computation of σ0

var can be expressed as
follows, where n indicates the number of images, and σ0

mean refers to the temporal average
value of n images:

σ0
var =

1
n

n

∑
i=1

∣∣∣σ0
t=i − σ0

mean

∣∣∣2 (1)

• The temporal minimum σ0
min

Different from dryland crops, paddy rice has the transplanting stage when the plants
are flooded underwater [57]. In this period, the σ0 of paddy rice is only slightly higher
than that of the water body, leading to distinct backscattering characteristic difference
from other crops. Previous studies that targeted paddy rice mapping or crop classification
methods have demonstrated the potential of the temporal behavior of σ0 to distinguish
paddy rice from other crops [54,55]. Therefore, in this study, the temporal minimum of
σ0 in each frame is computed with Equation (2) to determine whether the flooded period
exists and to discriminates rice from other crops:

σ0
min = min

t=1,2...n
σ0

t (2)

• The temporal maximum σ0
max

Influenced by factors such as monsoons, floods, aquatic plants, and so on, some water
bodies can also display seasonal backscattering changes. If the identification of paddy
rice only relies on σ0

min, false alarms might occur because of the misclassification of water
bodies. Since σ0 of paddy rice rises substantially in vegetative and reproductive stages,
the temporal maximum of σ0 in SAR sequences is useful to avoid the influence of water.
The computation of σ0

max can be expressed as:

σ0
max = max

t=1,2...n
σ0

t (3)

To illustrate the potential of the temporal features, Figure 7 depicts the mean σ0
VH and

σ0
VV curves of several regions of interest (ROIs), whose locations are shown in Figure 7a.

The error bars represent the standard deviations of each ROI. Firstly, the mean σ0
VH and

σ0
VV curves of different land covers are compared in Figure 7d,e. Compared to other

land covers, such as buildings, non-rice crop, and forest, σ0
VH and σ0

VV curves of paddy
rice both show obvious fluctuations, especially from March to October 2019. Meanwhile,
from 6 October 2018 to 4 April 2018, the standard deviations of paddy rice were no less than
2 dB and even reached to 4.32 dB (in VH polarization) on 23 November 2018. Other land
covers, such as buildings and non-rice crops, also have higher standard deviations, espe-
cially in VV polarizations. As a result, in both VH and VV polarizations, the σ0 values
of paddy rice and other land covers overlap with each other, which are likely to cause
misidentifications if using traditional thresholding methods.

To make further inspection on the diverse paddy rice cultivation patterns, six adja-
cent paddy rice parcels were selected, whose location is indicated by the yellow box of
Figure 7a. Figure 7b shows the false-color image composited by σ0

VH on 11 March, 22 May,
and 14 August 2019, whereas Figure 7c displays the false-color image of σ0

max, σ0
min, and σ0

var
in VH polarization. In Figure 7b, these ROIs display different colors, indicating differ-
ent backscattering intensities in VH polarization on 11 March, 22 May, and 14 August.
In other words, even though spatially close to each other, these ROIs had different cultiva-
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tion practices, which is also validated by the mean σ0
VH and σ0

VV curves shown in Figure 7e,f.
For ROI 1 and ROI 2, triple-season paddy rice was cultivated during the observing period:
the first-season lasted from October to February, the second-season lasted from February to
May, and the final season lasted from May to September. For ROI 3, two complete paddy
rice growing seasons can be observed: the first one was from December to April, and the
second one was from April to August. As for ROI 4, only one complete paddy rice growing
season is observed, which lasted from December to June. ROI 5 had a similar first two
seasons as ROI 1 and ROI 2, but the third paddy rice season was much longer. ROI 6 also
cultivated double-season paddy rice, but the growing cycle is different from ROI 3:
the first-season lasted from December to May, and the second one was from May to
September. As demonstrated by Figure 7b,f,g, the diverse paddy rice cultivation patterns in
Thailand was exactly the most notable characteristic in tropical areas. In contrast, despite
the various cultivation practices, these ROIs display similar hues in Figure 7c (purple,
magenta, and red), which indicates that the temporal features are capable to capture the
key information of paddy rice fields even under different growing patterns.

Furthermore, Figure 8 gives the false-color images and corresponding Google Earth
optical images of typical land covers. The uniqueness of paddy rice lies in its high values
of σ0

var and σ0
max and meanwhile with a low value of σ0

min, which usually leads to magenta
in the false-color image. Since the hue is affected by the relative intensity of σ0

var and σ0
max

compared to the whole frame, sometimes paddy rice fields also appear as red or dark
blue. Compared to paddy rice, the values of σ0

min of other non-rice crops are much higher.
In other words, the green component is higher, resulting in green, dark yellow, or brown in
the RGB image. Water bodies appear as dark regions because of low σ0

max, σ0
min, and σ0

var.
Land covers with stable backscattering intensities, such as buildings and forest, generally
have very low σ0

var and high σ0
min; as a result, these land covers appear yellow or green in

the false-color image.
Previous studies have demonstrated the correlation between paddy rice parameters

and cross-polarizations (HV or VH) was slightly higher than that of VV polarization in
C-band and performed better in paddy rice identification [52,55,58–60]. The VH polariza-
tion is mainly affected by the volume scattering mechanism of the canopy, whereas VV
polarization is affected by the double-bounce and surface scattering mechanisms of the
canopy and ground surface. The disappearance of standing water, the reflection changes
between stems and ground surfaces, and the vertical structure variations of paddy rice
during the vegetation stage contribute comprehensively to VV polarization. It is more
difficult to summarize the growth pattern of paddy rice using VV polarization, which
is also confirmed by the comparison of Figure 7f,g. Therefore, in this study, only VH
polarization is used for paddy rice mapping. Figure 9 displays the temporal features of
VH polarization extracted from frame 99-16. The false-color image shown in Figure 9d is
taken as the training dataset, and the corresponding label image is displayed in Figure 9e.
Figure 10 shows some examples of the training patches for the paddy rice mapping model,
which were randomly selected from the training dataset. When the model is trained,
the false-color images of all other frames were extracted and constitute the classification
dataset that to be predicted. Figure 11 shows the false-color temporal feature images of
whole Thailand, which is mosaicked and harmonized to get consistent hues. The automatic
mosaicking was accomplished by ENVI 5.3. In overlapping regions, the frames on the west
and north side was in front of the ones on the east and south side.
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VH on
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2.3.3. The Modified U-Net Model for Paddy Rice Mapping

In this study, the U-Net model was utilized to accomplish the paddy rice mapping task.
The fully connected CRF module was introduced to modify the U-Net model to improve
the performance of paddy rice extraction in Thailand. The flowchart of the proposed model
is shown in Figure 12.



Remote Sens. 2021, 13, 3994 12 of 31

Figure 8. Typical performance of different land covers (water, rice, non-rice crops, building, forest) of VH polarization:
(a,c,e) the false-color images of three temporal features in three ROIs (R: σ0

max, G: σ0
min, B: σ0

var); (b,d,f) the Google Earth
optical images of ROIs (a,c,e).
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Figure 9. Temporal features of time-series VH polarization of frame 99-16: (a) σ0
max; (b) σ0

min; (c) σ0
var; (d) false-color image

(R: σ0
max, G: σ0

min, B: σ0
var); (e) label image of frame 99-16, where bright pixels indicate paddy rice.
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Figure 10. Examples of the training dataset, where the first row shows the input false-color images, and the second row
shows the corresponding label images.

Figure 11. The mosaicked false-color image of temporal features in Thailand.
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Figure 12. The flowchart of the proposed paddy rice mapping model in this study.

• The basic structure of U-Net

The classical CNN structure can only tell whether a certain class exists in the input
image but cannot predict the semantic information of each pixel. In contrast, FCN outputs a
pixel-by-pixel semantic label image corresponding to the input image by replacing the fully
connected layers of CNN with the convolution layers so that the output classification map
maintains the same resolution as the input images [61]. In this study, we applied the U-Net
model to extract a high-resolution paddy rice map of Thailand. As an improved FCN
model, U-Net extracts high-level semantic features while maintaining the spatial details of
the input image [51]. The structure of U-Net is displayed in Figure 13. The model contains
23 convolution layers in total. The encoder part is consisted of five down-sampling units,
where each unit is composed of two 3 × 3 convolution layers and a 2 × 2 max-pooling
layer. The decoder contains four up-sampling units, where each unit is composed of two
3 × 3 convolution layers and a 2 × 2 deconvolution layer. Finally, the feature vector of
the last up-sampling unit is converted to probability maps by a 1 × 1 convolution layer,
where the dimension of probability maps equals the number of classes, and the pixel value
of each map represents the probability that the pixel belongs to the corresponding class.

• The Batch Normalization (BN) layer

To improve the training efficiency, in this paper, we introduce the Batch Normalization
(BN) layer [62] into the original U-Net model. Before each convolution layer, a BN layer
is applied to the input of the activation function (such as a sigmoid function or a ReLU
function) to ensure that the input data follows the same distribution whose mean is 0 and
variance is 1. The formula for BN can be expressed as:

BN(xi) = γ

 xi − µB√
σ2

B + ε

+ β (4)

where xi represents the input of mini-batch i, µB and σ2
B represent the mean and variance

in the mini-batch, γ and β are scale and bias parameters that need to be trained, and ε is a
smooth item to assure that the denominator will not be zero.
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Figure 13. The structure of the U-Net model applied in this study.

• The fully connected CRF module

As mentioned above, the paddy rice plots in Thailand are small, fragmented, and with
unclear edges, which may cause broken plots and rough boundaries in the classification
results. To solve this problem, this study introduces fully connected CRF [53] to improve
the output of the U-Net model.

CRF is essentially an undirected graph model based on Markov Random Fields (MRF),
which can describe the dependence or spatial correlation between pixels [63]. As shown
in Figure 14a, each node in CRF is composed of the label xi and the value yi of pixel i,
and the edge between two nodes denotes the relationship between two corresponding
pixels. Through the spatial correlation between nearby pixels, misidentifications will be
effectively eliminated, leading to consistent classification results. As a modification of CRF,
fully connected CRF links all the pixels in the image to avoid over-smoothing caused by
spatial modeling in a limited neighborhood, as shown in Figure 14b. The pixel value yi and
the spatial distances between pixel i and others are both considered to modify the label xi.
The energy function of fully connected CRF can be expressed by:

E(x) = ∑
i

Ψu(xi) + ∑
i<j

Ψp
(
xi, xj

)
(5)

Ψp
(
xi, xj

)
= u

(
xi, xj

) M

∑
m=1

v(m)k(m)
G
(

fi, f j
)

(6)

where Ψu(xi) is the unary potential energy provided by xi, which is the probability map
generated by the softmax function of U-Net model; Ψp

(
xi, xj

)
is the binary potential energy

provided by adjacent pixels i and j; u
(
xi, xj

)
is a label compatibility function; v(m) is the

linear combination weight; k(m)
G is the Gaussian kernel function that considers the spatial

similarity and pixel value similarity comprehensively and assigns the same semantic label
to similar pixels; and fi and f j are feature vectors of pixels i and j in an arbitrary feature

space. The detailed expressions of k(m)
G were given in [53], which presented a fast inference

algorithm of applying fully connected CRF. The probability maps acquired by U-Net as well
as the original feature images are used to calculate the energy function of fully connected
CRF, which is minimized iteratively to obtain the final paddy rice mapping results.
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Figure 14. Schematic diagram of (a) CRF and (b) fully connected CRF.

2.3.4. Accuracy Assessment and Validation Data

Auxiliary data, including Google Earth optical image and Sentinel-2 optical data,
were also acquired to collect the validation samples of accuracy evaluation. The validation
samples were divided into “paddy rice” and “non-rice” according to visual interpretation,
which includes 925 paddy rice plots and 1096 non-rice plots (including non-rice crops,
water, urban, and forest), as given in Table 2. The validation sample plots were randomly
distributed across the main paddy rice production regions, as presented in Figure 15.
These plots were utilized for the accuracy assessment of paddy rice mapping. Considering
paddy rice as “positive” and non-rice as “negative,” four indexes can be calculated to
evaluate the performance of the proposed model:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

Kappa =
Accuracy − pe

1 − pe
(10)

pe =
(TP + FN)× (TP + FP) + (TN + FP)× (TN + FN)

(TP + TN + FP + FN)2 (11)

where TP, TN, FP, and FN refer to true-positive, true-negative, false-positive, and false-
negative predictions; Accuracy evaluates the overall prediction performance; Precision
refers to the capability of extracting paddy rice correctly; Recall describes to the omission
level of paddy rice; and Kappa refers to Kappa coefficient, which indicates the overall
consistency of prediction and ground truth.

Table 2. Information of the validation data set.

Class Number of Plots Number of Pixels

Rice 925 1,572,940
Non-rice 1096 1,321,614
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Figure 15. Distribution of the validation samples.

3. Results
3.1. Training Details of the Proposed Paddy Rice Mapping Method

The details of the U-Net model training are given in Table 3. The kernel function size,
stride size, activation functions of the convolution layers, pooling layers, and deconvolution
layers were the same as the original model in [51]. The padding strategy was applied
to make sure that the output has the same size as the input. The padding value was set
to 1. The model was trained using frame 99-16 as illustrated in Sections 2.2.2 and 2.3.2.
The temporal features of all other data frames were extracted, and the false-color image
patches were generated for paddy rice recognition. After the predictions, all the patches
were stitched together to generate the paddy rice map of Thailand. If the predictions of the
overlapping areas in different frames were inconsistent, the result takes the union of the
predictions to avoid misidentification.

Table 3. Details of model training.

Training Environment

CPU Core i7
GPU GTX 1080Ti 16G

Platform TensorFlow

Training Parameters

Input patch size 224 × 224 × 3
Batch size 5

Learning rate 0.001
Total number of training samples 15,660 (7931 rice, 7728 non-rice)

Epoch 10

3.2. Paddy Rice Mapping Results and Accuracy Assessment

Figure 16 displays the paddy rice mapping result of Thailand in 2019. As mentioned
in Section 2.1, the distributions of paddy rice are influenced by the complex terrains as well
as the production conditions. Affected by topographical factors, the paddy rice fields are
usually small and scattered.
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Figure 16. Paddy rice mapping result of Thailand.

Figures 17–20 display some detailed results and the false-color images of the repre-
sentative paddy rice production regions. Figure 17 shows the partial paddy rice mapping
result in northeast region. Located at the central part of the Khorat Plateau, Khon Kaen,
Mahasarakham, and Kalasin all have distinct dry and rainy seasons. The rain-fed, single-
season rice is the main production in these areas because rain is the main water source.
As reflected by Figure 17, the total paddy rice cultivation area is very large, but the paddy
rice plots are small and have irregular shapes. Figure 18 shows the paddy rice mapping
results around Bangkok, the capital of the nation. In contrast to the Northeast region,
the central plain has a higher urbanization level and more advanced irrigation facilities.
Located near the most prosperous city in the country, the fields in the suburbs of Bangkok,
Chachengsao, Pathum Thani, and Nakhon Nayok are well organized. The paddy rice
fields in Figure 18b display clear boundaries, which indicate regular land-use allocation.
Figure 19 shows the results of Chiang Mai and Chiang Rai, which are representative in
northern region. The distribution of paddy rice is concentrated at the valleys, which is
in good consistency with the false-color image of the temporal features. Besides, even
small and discrete paddy rice plots were successfully extracted by the proposed method.
Figure 20 depicts the results in southern Thailand, where paddy rice only accounts for a
small portion and the paddy rice plots are relatively small compared to other regions.
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Figure 20. Paddy rice mapping result of Nakhon Si Thammarat (southern Thailand): (a) paddy rice mapping result and
(b) false-color image of the temporal features.

With the validation samples given in Table 2 and Figure 15, the paddy rice mapping
accuracy is evaluated as listed in Table 4. According to Equations (7) to (10), Accuracy is
the ratio of correctly discriminated pixel number to the total validation sample number,
and Recall is the ratio of the correctly discriminated paddy rice pixel number to the total
paddy rice pixel number. The fact that these parameters surpass 90% and 95% indicates that
most pixels in the validation dataset are successfully identified; meanwhile, the omission
rate of paddy rice is low. Precision is the proportion of true paddy rice pixels in all detected
paddy rice pixels. For the proposed method, Precision reaches 87%, which illustrates that
the false alarms can be effectively eliminated by the proposed method. For the classification
task, Kappa evaluates whether the predicted result is consistent with the ground truth
and is influenced by the degree of imbalance in the classification result. In this study,
Kappa is 0.8262, which indicates that no significant imbalance exists in the predicted
paddy rice map. The paddy rice mapping result matches well with the validation samples,
which demonstrates that the proposed method is capable of grabbing key information
and portrays accurate paddy rice distribution in the large tropical areas under various
topographies and cultivation conditions.

Table 4. The accuracies of Thailand paddy rice mapping result.

Class Accuracy Precision Recall Kappa

Paddy rice 91.31% 87.76% 95.89% 0.8262

3.3. Comparisons to the Official Statistics

Figure 21 compares the predicted paddy rice area and the statistics of paddy rice culti-
vation area released by OAE [64]. According to the statistics of agricultural land utilization
in 2019, the total area for agricultural use was about 238,803.92 km2 (149,252,451 Rai, where
1 Rai = 0.0016 thousand km2), among which paddy rice accounted for about 46.04% and
was 109,955.82 km2, approximately. The total predicted paddy rice area of the proposed
method was approximately 136,587.16 km2, which was overestimated by 24.22% compared
to the statistics of OAE.

To investigate possible reasons for this overestimation, we further calculated the
proportion of predicted paddy rice area to all croplands using another remote sensing
LULC product. The FROM-GLC global LULC product (2017v1) [19] was chosen to make
a direct comparison to our paddy rice map after resampling the 10-m resolution LULC
product into 20-m resolution. The comparison was carried out under the assumption that
the total cropland area had not changed significantly in two years, which was supported by
the statistics of OAE (the agricultural land from 2017 to 2019 were almost the same [64–66]).
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The total cropland of Thailand extracted by FROM-GLC was 311,974.23 km2, and the ratio
of predicted paddy rice area to all croplands in FROM-GLC LULC was 47.55%, which was
close to the paddy rice proportion of OAE statistics.

Compared to the official statistics, the paddy rice areas have been overestimated in our
paddy rice mapping result and the FROM-GLC LULC product. A possible reason was that
the statistical cycle was not strictly consistent with data acquisition periods. In this study,
no matter when the field was planted, all the fields that were cultivated with paddy rice
were labeled by the proposed method. However, some paddy rice fields might have con-
tributed to the last year by OAE because it computed the statistical data according to the
planting seasons. Besides, the statistical data itself may also contain errors. OAE mainly con-
sidered well-organized, single-season and double-season paddy rice in all the statistics so
that some casual and irregular planting practices by individual households were inevitably
ignored. Considering the data acquisition conditions and statistical errors, the difference
between the extracted paddy rice map and the official statistics was understandable.

Figure 21. The total area of paddy rice in 2019.

3.4. Comparisons to Other Classification Methods
3.4.1. Experimental Area

To demonstrate the effectiveness of the proposed scheme and to evaluate how different
methods perform in paddy rice discrimination, we used frame 62-4 as an example to
make direct comparisons to other two methods. Frame 62-4 contains typical land covers,
including paddy rice, non-rice crops, water, urban, and forest areas, whose location is
shown in Figure 22a. It contains 173 paddy rice validation plots (575,307 pixels) and 285
non-rice validation plots (588,658 pixels), which make good support to a reliable accuracy
assessment, as shown in Figure 22b.

3.4.2. Other Classification Methods for Comparison

• Support Vector Machine (SVM)

To illustrate the performance of the modified U-Net model designed in this study,
SVM was taken as the baseline. It is one of the most widely applied methods for the
classification of remote sensing images [67], which projects the non-linear feature space
into linear feature space in a higher dimension and acquires accurate classification model.
The same input feature image (false-color image of σ0

max, σ0
min, and σ0

var in VH polarization)
is taken as the input to the SVM classifier to evaluate the performance of the proposed
paddy rice mapping method.

The SVM experiments were carried out with LibSVM 3.2.4 [68]. The Gaussian Radial
Basis Function (RBF) was chosen as the kernel function, and the penalty parameter C
and Gaussian kernel parameter g were selected by hyperparameter optimization strategy
in the range of [2–8,28]. To increase the search efficiency and avoid overfitting, several
independent training groups and a validation group were randomly extracted from frame
99-16 for cross-validation, where each dataset contained 20,000 paddy rice and 20,000
non-paddy rice samples, and each sample was characterized with the RGB values and
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corresponding label. The hyperparameters that achieved the highest classification accuracy
was selected and corresponding SVM classifier was used for the comparison.

Figure 22. The experimental area used for the comparisons of different paddy rice mapping methods: (a) location of frame
62-4 and (b) false-color image of the temporal features and the distribution of validation samples.

• The U-Net model based on feature selection (FS-U-Net)

The second comparison intends to illustrate the performance of the temporal statistic
features in large-scale paddy rice mapping. In this study, the useful information is con-
densed from the time-series SAR observations with feature extraction strategy. Feature
selection strategy, on the other hand, is another common operation to obtain useful informa-
tion from high-dimension observations. In our previous research, a classification method
based on feature selection strategy and U-Net model was proposed, whose potential was
proved in large-scale crop classification [52]. It selects several optimal observations by the
analysis of variance (ANOVA) and Jeffries–Matusita (JM) distance as the input of the U-Net
model. In this paper, this method is denoted as “FS-U-Net” and is compared with the
proposed method. With the same deep learning model, the comparison demonstrates the
performance of the temporal statistic features for national-scale paddy rice discrimination
task with time-series SAR.

The optimal observations of frame 99-16 selected by FS-U-Net [52] were the σ0
VH of

12 January, 24 January, 5 June, 17 June, 11 July, 23 July, and 4 August, which indicated that
the critical information for paddy rice discrimination occurred in January, June, July, and
August. However, it is nearly impossible to get the same timestamps of different frames in
large-scale classification because the data were acquired by different orbits. The acquisition
times of frame 99-16 were 2 days or 10 days later than frame 62-4. Thus, for frame 62-4, the
classification features were the σ0

VH of 10 January, 22 January, 15 June, 27 June, 9 July, 21
July, and 2 August, which were observed at similar times as the training dataset. The input
tensor of FS-U-Net had a size of 224 × 224 × 7, whereas other configurations of the network
were the same as the proposed method.

The detailed training configurations of SVM and FS-U-Net are given in Table 5.



Remote Sens. 2021, 13, 3994 24 of 31

Table 5. The accuracies of Thailand paddy rice mapping result.

Method Input features Hyperparameters Selected values

SVM
False-color image of σ0

max, σ0
min, and σ0

var in
VH polarization

penalty parameter C C = 16
kernel parameter g g = 4

FS-U-Net
σ0

VH acquired on 12 January, 24 January, 5 June,
17 June, 11 July, 23 July, and 4 August (optimal

observations selected by the method in [52])

Input patch size 224 × 224 × 7
Batch size

Same as the proposed methodLearning rate
Epoch

3.4.3. Qualitative and Quantitative Analysis of Different Methods

The paddy rice mapping results of frame 62-4 using different methods are compared
in Figure 23, and the details of three ROIs are displayed in Figure 24. Figure 23b shows the
prediction results of the proposed paddy rice mapping scheme, which is in good accordance
with the false-color image of temporal features. As shown by Figure 24a2, b2, and c2,
the boundaries of ploughlands are clear and accurate regardless of the various distributions,
structures, shapes, and sizes of the paddy rice fields. Roads, water bodies, buildings,
and other vegetation are well discriminated from paddy rice lands even under diverse
cropping conditions.

As indicated by Figure 23c, SVM grossly overestimated the area of paddy rice, es-
pecially in the central and north areas. Some non-rice crops with high σ0

max and low σ0
var

displayed as red color in the temporal feature image. As shown in Figure 24a3, b3, and c3,
these fields were misidentified as paddy rice by SVM as well as some roads, banks be-
tween ponds, and ridges between paddy rice plots. One possible reason is that SVM takes
each pixel independently and is unable to learn the spatial distribution from the training
dataset. As a result, the objects with linear shapes can hardly be discriminated from the
true ploughlands.

The classification results of FS-U-Net are displayed in Figures 23d and 24a4, b4 and c4.
Different from the proposed method that summarizes temporal statistic information,
the FS-U-Net method selects several useful timestamps from the whole time-series. In our
previous research, single-season crops were cultivated in the study area, and the feature
selection procedure helped us to choose the most essential observations from the whole
time-series. Good classification results demonstrated the effectiveness of the method on
single frame of time-series SAR. However, in this experiment, the result of FS-U-Net
showed serious underestimation of the paddy rice area. There are two possible reasons.
First, the inconformity of training and predicting datasets is probably the main cause of
the omission. Even though the features of training and predicting datasets were selected
at similar times, the intrinsic discrepancies between two time-series (frame 99-16 and
frame 62-4) brought uncertainties to the results. This kind of inconformity is inevitable in
national-scale crop discrimination task because remote sensing data have to be stitched
together to cover the entire country. SAR images collected in different strips always have
different imaging configurations and timestamps. As a matter of fact, it is also why RNN
models are unsuitable for large-scale land classification task. The classic RNN meth-
ods, such as LSTM or GRU, require independent models for each time sequence because
the lengths and intervals of time-series SAR observations are incompatible. In this case,
an independent training sample set for each data frame is demanded, which raises the
labor of sample collection and decreases the efficiency of data processing dramatically.
The second possible reason for the severe omission is the lack of information. The selected
observations for paddy rice mapping were acquired in January, June, July, and August,
but key information was also contained in other periods because of the complicated paddy
rice cultivation patterns in Thailand. For instance, great amounts of early paddy rice
fields were harvested from September to December, and most late rice was harvested from
February to April. However, observations at these periods were not adopted by the feature
selection procedure. As a result, the deep learning model only discriminates paddy rice
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based on characteristics of the vegetation stage. Lack of information in the reproduction
stage and the harvest stage are likely to be the second reason of severe omissions.

With the validation samples shown in Figure 22b, Table 6 compares the paddy rice
mapping accuracies of three methods, which is in good accordance with the visual inter-
pretation of Figures 23 and 24. For the proposed method, the accuracies in this frame were
slightly higher compared to Table 4. All the accuracy parameters were higher than 0.9,
indicating good consistency between the paddy rice mapping result and the validation
data. For SVM, the Accuracy was at a similar level as the proposed method. The Recall
reached 99% because the accuracy assessment was carried out with limited validation plots,
and most of the paddy rice plots were correctly discriminated as paddy rice. However,
Precision and Kappa were much lower because of the severe overestimations. Cases for
FS-U-Net method were just the opposite. Despite the fact that Precision reached 96%,
serious omissions of paddy rice led to very low Recall and Kappa. Both overestimation
and underestimation can lead to serious miscalculation of the real cultivation area and
result in biased production estimation and wrong market strategy. Among these methods,
only the proposed method accurately mapped paddy rice while effectively excluding the
commission error coming from other land covers.

Figure 23. The paddy rice mapping results of different methods: (a) false-color image of the temporal features of frame 62-4;
(b) paddy rice mapping result of the proposed method; (c) paddy rice mapping result of the SVM classifier; (d) paddy rice
mapping result of the FS-U-Net method.
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Figure 24. Details of the paddy rice mapping results of different methods: (a1–c1) false-color image of the temporal features
of frame 62-4; (a2–c2) paddy rice mapping result of the proposed method; (a3–c3) paddy rice mapping result of the SVM
classifier; (a4–c4) paddy rice mapping result of the FS-U-Net method.

Table 6. Paddy rice mapping accuracies of frame 62-4.

Method Proposed Method SVM FS-U-Net

Precision (%) 97.3544 86.4317 96.81204
Recall (%) 92.7615 99.6269 41.5065

Accuracy (%) 95.9182 93.3026 74.9632
Kappa 0.9156 0.8653 0.4406

4. Discussion

This study proposes a novel solution to the accurate national- or regional-scale paddy
rice mapping task in tropical area, with the time-series Sentinel-1 SAR images and a
modified U-Net model. Using 758 Sentinel-1 images, we generated the annual paddy rice
map of Thailand in 2019. The paddy rice mapping result and the accuracy assessment
declared that the proposed temporal features can portrait the unique growth characteristics
of paddy rice, and the modified U-Net model is able to maintain the shapes of irregular
ground parcels and be resistant to the sporadically distributed false alarms caused by
complex topography.

The novelty of the proposed method can be summarized in two aspects. First, the pro-
posed method designed three time-dimensional statistical features based on the analysis
of the scattering variations during paddy rice growth. Previous research has proved that
single-polarization data can achieve compatible accuracy as dual or full polarization with
the increase of observation number [69]. To achieve reliable paddy rice map in Thailand,
features extracted from time-series SAR should be stable under different observing con-
figurations and cultivation conditions while also being simple enough to implement on
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a national scale. The temporal features used in this study mainly rely on the flooding
period of paddy rice transplanting and the scattering changes due to biomass accumulation.
Compared to previous researches [38], σ0

var was introduced to indicate the fluctuations
of σ0 in the growing cycle, which can effectively distinguish the vegetation area and the
non-vegetation area. Moreover, the temporal minimum σ0

min captures the signals of paddy
rice transplanting so that it can distinguish paddy rice from other non-rice crops. The tem-
poral maximum σ0

max avoids false alarms caused by seasonal changes of lakes and rivers.
The proposed features and corresponding false-color composite images highlight the key
information of paddy rice discrimination, which avoid the difficulties of paddy rice growth
modeling caused by diverse paddy rice planting cycles. With the reliable radiometric
calibration of Sentinel-1 data, the backscattering coefficients and their statistics keep good
consistency with each other despite different orbits and different timestamps. The classifica-
tion model can be trained by a group of representative samples and then directly extended
to the whole country. In this way, there is no need to utilize RNN model (such as LSTM
or GRU), which requires independent classification model for each data frame because
the lengths and intervals of time-series SAR observations are incompatible. Moreover,
the dimension of temporal features is much smaller compared to the original time-series
SAR observations. This greatly improves the classification efficiency, which is important
for the national-scale paddy rice mapping, especially under limited hardware conditions.

Second, the proposed method adopts a modified U-Net model for paddy rice identifi-
cation. As an effective FCN method, the U-Net model has been proven to be potential in
large-scale agriculture classification in our previous researches [52]. In this study, the fully
connected CRF module was introduced to correct the misidentification of small plots
and improve the consistency and completeness of the paddy rice fields. Figure 25 com-
pares the paddy rice mapping results with and without fully connected CRF. In general,
the performance of the original U-Net model without fully connected CRF was very simi-
lar to the proposed method. However, with fully connected CRF, the proposed method
resulted in more accurate field edges, and the compactness inside each ploughland was
higher compared to the cases without fully connected CRF, as denoted by the red rectangles.
With the spatial correlated information of surrounding pixels, the fully connected CRF
corrected misclassified pixels inside the paddy rice plots and achieved smooth outlines
and intact shapes of the paddy rice fields.

According to the accuracies given in Tables 4 and 6, the proposed method worked
very well under different natural conditions and production strategies: the Accuracy and
Recall both surpassed 90%, and the Precision was as high as 87.76%. The estimated paddy
rice area was slightly overestimated compared to the statistics because the time window for
data collection was not strictly coincident with the statistics. Some paddy rice fields in the
final map were attributed to 2018 by official statistics data. However, the distribution of the
paddy rice map was in good consistency with the overall tillage situation of paddy rice in
Thailand. Besides, compared to the croplands extracted by the FROM-GLC LULC product,
the proportion of paddy rice fields to all available croplands was in good consistency with
the report of OAE.

The proposed method is suitable for large-scale paddy rice mapping in tropical or
subtropical areas where the paddy rice cultivation cycles are too complicated to establish a
reliable growth-pattern model. The effectiveness of the method relies on the detection of
the flooding stage and the contrast of backscattering intensity between exuberant growing
and harvest. Because of the diverse cultivation time schedules, the proposed method
requires as much time-series SAR data as possible to cover the large area and capture the
complete paddy rice growing cycle to avoid possible omissions. However, we believe
that the proposed method can be easier to execute in temperate regions because paddy
rice in temperate regions usually has a stable growing window. SAR data obtained in
certain time windows will be sufficient to extract reliable backscattering features for paddy
rice discrimination. In future studies, we will expand the experimental area to verify
the conjecture.
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Figure 25. Comparisons between the paddy rice mapping results with and without fully connected
CRF: row(a) temporal feature image; row(b) labels of row(a); row(c) paddy rice mapping results
without fully connected CRF; row(d) paddy rice mapping results of the proposed method.

5. Conclusions

As one of the most important grains in the world, the precise estimation of paddy rice
planting area is essential for the eradication of hunger. Targeting the demand for large-scale
paddy rice mapping, in this study, we propose an annual paddy rice mapping scheme
based on temporal statistical features of time-series SAR data and a deep learning model to
solve the difficulties caused by complex paddy rice growing cycles in tropical climate zones.
Based on the analysis of time-series backscattering responses of typical paddy rice fields,
the temporal variance σ0

var, temporal minimum σ0
min, and temporal maximum σ0

max are
extracted to provide distinguishing information, and the U-Net model with fully connected
CRF is proposed to learn the contextual patterns of paddy rice accurately. Using 758
Sentinel-1 images acquired in 2019, we generated an annual paddy rice map of Thailand.
To verify the effectiveness of the method, we carried out the accuracy assessments with the
validation dataset and made comparisons to official statistics and the FROM-GLC global
cover dataset. The accuracies based on validation samples show good reliability of the
proposed method. The comparisons with other methods demonstrated the great potential
of the proposed temporal features in discriminating paddy rice and the effectiveness of
the modified U-Net model in maintaining compact shapes and field edges. These results
showed that the proposed scheme can obtain precise paddy rice distribution and get
accurate field areas, which provides a useful solution for paddy rice monitoring and crop
management in tropical regions and is conducive to maintaining the balance of global food
supply and demand.
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