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Abstract: Most multi-view based human pose estimation techniques assume the cameras are fixed.
While in dynamic scenes, the cameras should be able to move and seek the best views to avoid
occlusions and extract 3D information of the target collaboratively. In this paper, we address the
problem of online view selection for a fixed number of cameras to estimate multi-person 3D poses
actively. The proposed method exploits a distributed multi-agent based deep reinforcement learning
framework, where each camera is modeled as an agent, to optimize the action of all the cameras.
An inter-agent communication protocol was developed to transfer the cameras’ relative positions
between agents for better collaboration. Experiments on the Panoptic dataset show that our method
outperforms other view selection methods by a large margin given an identical number of cameras.
To the best of our knowledge, our method is the first to address online active multi-view 3D pose
estimation with multi-agent reinforcement learning.

Keywords: multi-person; online poses estimation; multi-agent reinforcement learning; consensus;
panoptic dome

1. Introduction

Human pose estimation has attracted much attention in recent years due to its wide
human-centric applications [1–3]. 3D pose estimation methods provide 3D positions of
human joints by using a single-view image [4] or multi-view images [5,6]. Single-view
based 3D pose reconstruction is an ill-posed problem, so current literature estimates 3D
joints’ positions by the prior knowledge learned from data. Multi-view based approaches
estimate the poses by triangulation. Most of these methods treat the camera as fixed, suffer-
ing from invisibility caused by occlusion and inaccuracy caused by extreme viewpoints.
Many works try to select sparse views to reconstruct human poses from a dense variety
of viewpoints like the Panoptic massive camera grid [7,8]. They use a deep reinforcement
learning-based method to select informative viewpoints for higher estimation accuracy.
This method leverages a single agent selecting views of the same frame in multiple steps,
during which it mandates fixed wall time or static human. This is impractical in a live
environment. Specifically, all agents must observe the environment simultaneously at
each time step, take actions and step to the next frame together. Therefore, we need to
optimize their actions in an online manner rather than select views in a ’time-freeze’ mode.
A typical scenario is that we have a fixed number of moving cameras, i.e., live broadcasting
sports with multiple cameras, and we need to learn a policy to control the movement of
each camera on the current observations of the dynamic scene. Given the requirement
for efficiency of an online scenario in the real world, the moving cost of the camera often
matters due to physical limitations.

In this paper, we propose a distributed Multi-Agent Online Pose estimation architec-
ture (MAO-Pose) to control a fixed number of moving cameras to estimate 3D human poses
actively. In this distributed system, each camera has its individual observation and learns
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from the total reward. The total reward consists of the view quality and penalty term. We
use the joints visibility as the view quality measure instead of the pose reconstruction error,
and thus the network can be trained in a self-supervised way without the requirement of
ground truth pose annotation. The penalty term punishes agents when they select identical
views to encourage the diversity of view selection. Camera movement constraints can be
included in this term as well to increase the continuity between consecutive frames.

We also introduced an inter-agent communication mechanism, Consensus, to ensure
the collaboration of multiple agents. We chose only to share the position information
between agents, which is effective and of low computational cost. The agents plan their
actions sequentially in a pre-defined order. The former agent will inform the following
agents of its movement and the latter agents will optimize their action plans with awareness
of the expected new positions of the former agents. After this coordination process, all
agents will take actions simultaneously to enter the next time step.

We evaluate our method on the Panoptic dataset [9], which has a dense variety of
views forming a spherical dome. These dense views serve as potential viewpoints for our
system. The results show that our method assigns valuable views for the cameras and
can move the cameras with lower movement cost, if needed. Various ablation studies are
provided to corroborate the efficacy of the communication protocol, Consensus, and offer
comparisons of different reward designs, i.e., whether to use the supervised signal as a
view quality measure and enforce movement constraints in the penalty term.

To summarize, our contributions are threefold:

• To the best of our knowledge, we are the first to address the task of online multi-person
3D pose estimation with multiple active views.

• We propose a distributed multi-agent pose estimation architecture (MAO-Pose) to
control a fixed number of moving cameras to estimate 3D human poses actively.

• We explore different reward design choices: self-supervised vs. supervised view qual-
ity measure, and camera movement constraints when camera continuity is required.

2. Related Work

Pose Estimation from Fixed Views Most vision-based methods estimate 3D human
pose with multiple fixed and well-calibrated camera systems. After 2D pose detection from
images, various algorithms [9,10] are exploited to find cross-view joints correspondence
and triangulate all 2D joints to 3D in an epipolar geometry framework. Taking massive
view images as input, Joo et al. [9] vote for the 3D position of every joint and the most likely
connection between them at each time instance. Considering the environment occlusion in
multi-person scenarios, Zhang et al. [11] propose a 4D association graph which introduced
temporal tracking of all joints to ameliorate the missing joint problem. However, such a
statically mounted capture system is inapplicable in outdoor scenarios. Recent studies
have focused on lifting 2D poses to 3D directly from RGB image(s) using different CNN
(convolutional neural networks) based network structures [3,12–16]. Given reliable 2D
pose detection results developed in [1,17–19], learning methods could achieve accurate
results in real-time even under partial occlusion of the target human [20]. However, such
learning methods heavily rely on the observation quality which could not be guaranteed
by casually captured images, especially in long-term tasks.

Active Pose Estimation To overcome the spatial and temporal limitations simultane-
ously, an increasing number of active camera based motion capture methods have been
developed in recent literatures [21–23]. Taking a camera-equipped and manually controlled
drone as a recording device, Zhou et al. [24] formulated this task as a nonrigid structure
from motion (NRSFM) problem and recovered human motion from the video recorded
in fast varying viewpoints. Naegeli [25] propose an environment-independent approach,
Flycon, to reconstruct the target human pose with two camera-equipped drones. This
approach optimizes the drone states and target human pose jointly and could track human
motion in indoor and outdoor environments over a long time and distance. Considering
the cinematography requirements for action scenes, Kiciroglu [21] predicts the best view of
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a single camera in the future frame to maximize the accuracy of 3D human pose estimation
while considering the motion limitations. However, this work is limited to pose estimation
of a single person with a single camera. Huang [26] designed an autonomous cinematogra-
phy system to obtain the most informative viewpoint that respects the physical moving
constraints of a flying robot equipped with one binocular camera. However, existing flying
motion capture methods are not applicable to multiple human scenes without considering
occlusions between human bodies.

Recently, much research has concentrated on deep reinforcement learning methods
for policy-based tasks, such as view planning for 3D object model recovery [27,28] and
action prediction [29–31]. Multi-agent framework is also used in some relevant domains
including multi-robot motion planning [32,33] and environment mapping [34]. An RL-
based multi-person 3D pose estimation method, ACTOR, is committed in [7] to solve the
active view selection problem. In contrast to ACTOR, Pose-DRL [8] introduces 3D fusion
accuracy as the viewpoint selection reward and demonstrates the effectiveness in single and
multi-person settings. These methods select multiple views for a frame in multiple steps,
during which the wall time must be constant. Thus, they must rely on the assumption that
people inside the scene remain static, which is impractical in real environments. Compared
with previous methods, our work could select multiple views simultaneously, allowing for
real-time application, and it achieves better performance in dynamic environments using
multi-agent framework.

3. MAO-Pose: Multi-Agent for Online Pose Estimation

In this section, we demonstrate our distributed multi-agent framework for active 3D
human pose estimation. We first formulate the problem of active 3D human pose estimation
(illustrated in Figure 1) in Section 3.1, together with how the Markov Decision Process
(MDP) proceeds in our setup; then, introduce details of MAO-Pose. The representation of
state and action is presented in Section 3.2. The design of annotation-free reward signal is
introduced in Section 3.4, which can train the agents efficiently to triangulate joints of all
people in the scene while considering possible view duplication at the same time. Camera
movement constraints can be easily integrated to our framework if inter-frame continuity
is required. The inter-agent communication mechanism is presented in Section 3.5, which
encourages agents to work collaboratively. We also provide an explicit optional prediction
module, Prophet, in Section 3.6, which predicts the future state of the observation for policy
learning in a dynamic scene. An overview of MAO-Pose is shown in Figure 2.

Environment Environment

Constrained Movement

` Inter-agent communication

Agents

Occluded views

t t +1

Figure 1. Illustration of how agents operate online view selection from time step t to t + 1, here
shown for a triple-agent scenario. At time step t, agents observe the environment with multiple
views among which some are occluded by human bodies (shown as colored dash lines). To avoid the
current occlusion and get a more accurate estimation of human poses, agents jointly move to new
viewpoints at the next time step t + 1, which are generated by the learnt policy.

3.1. Online Active Pose Estimation

The online active 3D human pose estimation problem is defined in the context of
n agents moving in a 3D space while observing the scene from different views. The
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ultimate goal of agents is getting to the best viewpoints at each time step given the current
observations, and extracting 3D poses of m people in the scene collaboratively. A typical
scenario is illustrated in Figure 1.

In particular, at each time step t, the i-th agent has an observation Vt
i (typically an

image containing multiple people) of the scene from its current position. Then, the agent
samples an action At

i from a stochastic policy πθi parameterized by θi. Once all agents have
taken actions, the system collects 2D human poses Xt estimated by each agent and then
steps to the next frame at time t + 1. The process repeats until the end of the sequence
of frames.

Agent #n

Actor

Agent #2

Prophet

2D Pose BackBone

Feature 
Encoder

Triangulation &
Temporal Fusion

Multi View 

Environment

ActorAgent #1

Actor

 
...

3D pose

Next Viewpoints

Figure 2. Overview of MAO-Pose. Each agent, labeled with different a color, corresponds to each camera with individual
observation. The cameras are placed in the multi-view spherical dome environment. At time step t, the system observes
the environment subject to the current positions of agents, receiving multiple images that are then passed through a 2D
pose estimator. A triangulation and temporal fusion module takes the 2D pose estimates Xt yielded by 2D pose backbone,
combining previous estimates Yt−1 to generate final 3D estimates Yt. Meanwhile, a feature encoder takes feature blobs Bt

from the intermediate layer of 2D pose backbone and auxiliary information Ut into state vector St. The i-th agent produce
the camera moving action At

i from St
i based on policy network Actor. Agents can utilize the Consensus protocol to send its

planned action message Mt
i to other agents for collaboration. Once all the agents have output their actions, they interact

with the environment concomitantly, advancing to next time step t + 1.

We assume that the correspondence of 2D poses between frames is accurate, which
means that there is no need to perform re-identification of human bodies over frames.
Thus, at time step t, the estimated 3D poses Yt are directly triangulated from 2D poses
Xt, and temporally fused with the estimates Yt−1 from the previous time step to refine
estimated poses.

Note that, we idealize our agent–environment setup using Panoptic [9] as it captures
time-synchronized HD videos in a spherical dome with multiple people and views. The
candidate viewpoints are sampled on a spherical dome which is split into w× h bins along
azimuth and elevation directions, respectively.

An OpenPose [35] based backbone is employed to extract feature instances
Bt = [Bt

1, Bt
2, . . . , Bt

n] from observations Vt = [Vt
1 , Vt

2 , . . . , Vt
n] , yielding 2D pose estimates

Xt = [Xt
1, Xt

2, . . . , Xt
m] for all visible people. The 3D poses estimation Yt generated by

triangulation over 2D poses Xt is referred to as Yt = [yt
1, yt

2, . . . , yt
m] at each time step t,

where m is the number of people estimated.
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3.2. State-Action Representation

In this section, while describing the state and action representations, we must em-
phasize that the distributed agents act over the time sequence which can be formulated
as a multi-agent decision process. The state of the i-th agent is represented as a tuple
St

i = (Bt
i , Ut

i ), where Bt
i is the feature map from an Openpose [35] based backbone and

Ut
i is auxiliary information consists of Ct

1,i, Ct
2, Nt

1, Nt
2. More specifically, Ct

1,i ∈ Nw×h is
a camera state counter for the i-th agent, Ct

1,i(j, k) increases once the bin at location j, k is
selected by the i-th agent. Ct

2 ∈ Nw×h is a fixed matrix denoting available camera locations
on the spherical dome. Nt

1 ∈ N equates to number of people detected at current time step t
while Nt

2 indicates that whether the current frame is the initial one of a sequence.
We employed a deep stochastic policy πθi (At

i |St
i ) to guide the agents taking ac-

tion, where θi denotes the policy parameters for the i-th agent. The action is defined
as At

i = (φt
a, φt

e), where (φt
a, φt

e) is the azimuth–elevation angle pair indicating the relative
camera movement along azimuth and elevation, respectively. We sampled these angles
from the periodical Von Mises distribution. The structure of the policy network is shared
by all agents while each agent has its own parameters, i.e., πθ = [πθ1 , πθ2 , . . . , πθn ].

3.3. MAO-Pose Agent

Figure 3 illustrates the structure of the policy network of the i-th agent. Taking the
feature map Bt

i as input, the shared convolution layer consists of Conv(128− 3× 3− 8)-
Conv(8− 3× 3− 4) where Conv(I − K× K−O) represents convolution layer has I input
channels and O output channels with kernel size of K × K. In order to down-sample
sufficiently, we employed max pooling with kernel size of 2× 2 after the first convolution
layer. We then introduced fully-connected layers after the flattened output of the feature
encoder concatenated with auxiliary information Ut

i .

B
t
i

U
t
i

A
t
i

Feature

Encoder

Shared Conv

FC

1024

FC

512

FC

2

FC

1192

Figure 3. Structure of the policy network of the i-th agent.

3.4. Reward Design

Our objective is to select more valuable views and avoid unwanted occasions, in our
case, multiple agents selecting the identical views.

In order to maintain a distributed architecture, each agent receives its reward individ-
ually. The reward of agent i at time step t is a sum of two terms,

rt
i = Qt + Pt

i (1)

where Qt is the quality of the selected views. We set Qt = mink J t
k , where J t

k is the
proportion of joints visible for the k-th person at time step t, which represents the visibility
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of 3D joints in all views. A joint is visible if it could be seen from at least two views. To
encourage agents working collaboratively, Qt is shared across agents at time step t.

Pt
i is the penalty term and Pi = wcolτ

t
col , where the weighting factor wcol = 0.2 and

τt
col is set to 1 when two or more agents selects the same view. The penalty term Pt

i is
designed to simulate collisions between moving cameras on the idealized setup, Panoptic
Studio, where cameras are distributed on a spherical dome. Intuitively, this term not only
simulates potential collisions, but also plays an important role to improve the qualities of
viewpoints and encourage exploration at the training stage. According to our experiments,
agents do not separate enough without this penalty term, leading to a poor performance
on reconstruction error. From the perspective of view-selection, such a penalty forces the
agents to decline repeated observations which are not informative and bring no benefit
to triangulation accuracy. On the other hand, in terms of reinforcement learning, such
a penalty encourages each agent to explore novel viewpoints during the early training
phase, helping the system getting away from local optima of MPJPE. Furthermore, note
that, MAO-Pose aims to generate an online policy for 3D human pose estimation instead
of a full stack controller. When extending MAO-Pose to real-world scenarios, a possible
solution for collision avoidance is to set an exclusive sphere for each agent, whose radius
could be the minimum distance between the two viewpoints on the Panoptic dataset.

Policy gradients are used to train policy parameters θi of each agent in which we
maximize expected cumulative rewards with the objective

J(θi) = Es∼πθi
[
|s|

∑
t=1

rt] (2)

where s denotes state-action trajectories generated on policy πθi . We used REINFORCE [36]
to approximate the gradient of this objective.

3.5. Inter-Agent Communication

We introduced an efficient inter-agent communication mechanism, Consensus, to
encourage the agents to work together. In our distributed multi-agent framework, the
agents do not share any observations. Consensus works in the action procedure. Each agent
is assigned an ID beforehand and they will plan action in the order of their IDs. When
agent #i finishes planning, it will inform agents with ID bigger than i of its planned action.
Furthermore, these notified agents will record the plan of agent #i by incrementing the
camera counter Ct

1, i in their local coordinate. The detailed mechanism of Consensus is listed
in Algorithm 1. With the communication protocol, agents can coordinate their actions
before interacting with the environment, resulting in better choices with the awareness of
further system states.

Algorithm 1 Consensus Protocol

1: procedure CONSENSUS(agents) . Each agent is given an ID #1, #2, · · · , #n beforehand
2: CLEAR(agent[1].state.Ct

1, 1)
3: action_list← ∅
4: for i ∈ {1, 2, · · · , n} do
5: angle← PLANACTION(agent[i]) . Output an action via policy network
6: action_list← action_list ∪ {angle}
7: for j ∈ {i + 1, · · · , n} do . Agent #i sends message to later ones
8: local_angle← CONVERTTOLOCAL(angle) . Angles relative to current agent
9: INCREMENTCOUNTER(agent[j].state.Ct

1, j, local_angle)

10: COMMITACTION(action_list) . All agents reach a consensus and act simultaneously

3.6. Prediction Module Prophet

In this task, we need to assign the cameras to the optimal positions to capture the
people in the next time step based on the observation of the current time step. However,
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in a dynamic environment, policy based on the current state is inaccurate. Hence, we
introduce an optional explicit prediction module, Prophet, to predict the state in the next
time step. This module is connected before Actor and shares the same structure among all
the agents. Here we consider the state of i-th agent.

Modified from [37], Prophet consists of three modules parameterized by
θ = (θvalue, θout, θtrans): (i) Value module f value

θ estimates the value of state St
i . A sim-

ple fully connected network consists of three layers is used as value module. (ii) Outcome
module f out

θ predicts reward rt
p,i of state St

i . (iii) Transition module f trans
θ transforms from

state St
i to predicted state St+1

p,i at the next time step. We employed a simple fully-connected
network and add a residual connection from the previous state to the next state so that the
transition module learns the difference from previous states to future states.

Here we demonstrate how Prophet performs 1-step prediction by composing the above
modules: f prophet

θ : St
i −→ St+1

p,i , rt
p,i, V(St+1

p,i ). Note that, though only the Transition module

is needed (to predict St+1
p,i ) for evaluation, Value and Outcome are required during the

training process of Prophet.
As shown in Figure 4, the Transition module of Prophet consists of two fully-connected

layers whose dimension is equal to the dimension of state St. The Value module consists
of FC(1192)-FC(512)-FC(1) where FC(N) represents a fully-connected layer with N hidden
units. Furthermore, the Outcome module shares the same structure with the Value module
but has independent parameters. An exponential linear unit (ELU) [38] was used as an
activation function for all architectures.

Prophet

S^t_{p
+1}

Outcome

Value

Transition

S
t

r
t

p

S
t+1
p

S
t+1
pV(      )

Figure 4. Structure of prediction module, Prophet.

4. Results
4.1. Implementation Details

MAO-Pose is implemented on top of an optimized version of Lightweight Open-
Pose [35]. Theoretically, our framework can be easily adapted to any 2D pose estimator
with feature backbones. The 3D pose estimation is achieved by triangulating each pair of
estimated 2D poses via multi-view geometry and taking the median of all 3D candidates.
For temporal fusion, we used One Euro Filter [39], a speed-based low-pass filter to refine
estimated poses. The missing joints on the current frame are inferred from previous frames,
if available. In case there is no valid previous estimation, we set the reconstruction error a
high value (500 mm) to avoid NaN values.
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4.1.1. Dataset

We consider multi-people scenes (Mafia, Ultimatum and Haggling in the Panoptic
dataset), where occlusions occur frequently, posing a challenge for the agents to reconstruct
the 3D pose. The Panoptic dataset consists of 30 FPS time-synchronized multi-view videos.
To ensure the convenient extraction of single frames and agree with maximum control
frequency 10 Hz, we convert them to JPEG images and temporally downsample frame rate
to 10 FPS beforehand. We only use HD cameras, the number of which is about 31 per scene,
since they provide better image quality and their locations are not too sparse to hinder the
decision process of agents. We randomly chose 10 scenes out of Mafia for training, 6 and
21 scenes from all scenes for validation and test, respectively. The splits have no overlap
between each other. We trained on limited scenes but tested on all three kinds to force
agents to learn a fairly generalized policy. Table 1 shows the size of the train, validation
and test splits. The Haggling scene is completely invisible during training (with validation
sets for early stopping).

Table 1. The number of frames categorized by scene name and split type. Note Mafia and Ultimatum
are denser scenes with 7 people, while Haggling comes with 3 people.

Scene Train Validation Test

Mafia 1741 930 1088
Ultimatum N/A 140 1925
Haggling N/A N/A 1609

Total 1741 1070 4622

4.1.2. Evaluation Metrics

We used two metrics to evaluate the performance. Mean per joint position error (MPJPE)
indicates the pose reconstruction error w.r.t. the ground truth. Camera distance (CamDist),
defined as the geodesic distance between camera positions in consecutive frames on the
dome-like spherical surface of the Panoptic dataset, denotes the moving cost of cameras.

4.1.3. Baselines

We implemented four baselines to compare with our agents. All methods utilized
completely identical 2D pose estimator, temporal fusion, matching, triangulation method
and multi-agent environments for fairness. The baselines are as follows: (i) Random:
randomly selects N cameras in a given frame; (ii) AngleSpread: spreads cameras by choosing
cameras that have 2π/N of azimuth difference. At each azimuth angle, a random elevation
angle is sampled; (iii) Greedy: greedily choose unvisited cameras that minimize pose
reconstruction error most. This exhaustive search method is impractically slow compared
with other baselines, yet it exhibits the nearly optimal lower bounds of reconstruction
error; (iv) ACTOR: a deep-RL architecture we implemented according to [7]. Note that
as a single-agent paradigm, ACTOR requires multiple time steps to select multiple views,
which must pause the wall time before it selects enough cameras.

For all the baselines, since they do not model different views as individual agents, we
used the Hungarian algorithm to match the cameras selected in the current and previous
frame to greedily minimize the camera distance between frames and simulate the behavior
of multiple agents. However, this matching mechanism is disabled for MAO-Pose agents,
as they are not fungible in our context.

4.1.4. Training

We used sampled returns to approximate value function, with discount factor γ = 0.9
for future rewards. Each agent receives the rewards individually and normalizes the
discounted rewards during each training step to reduce variance and increase stability.
The objectives are optimized via the Adam optimizer with a fixed learning rate 10−6. We
trained the agents together for 80 k episodes, annealing the concentration parameters
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(κa, κe) of Von Mises distribution linearly with rate (3× 10−4, 5× 10−4), which ensures
adequate exploration at first and then becomes more deterministic as the agents grow more
sophisticated. We utilized validation sets during training to perform early stops when
necessary. The average reward each agent receives during the training process is shown in
Figure 5.
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Figure 5. Average rewards per agent with Consensus.

4.2. Main Results

Our MAO-Pose is trained with 5 agents in total, Consensus enabled and FPS set to 10
and is compared with four baselines on the Panoptic test dataset. In Tables 3 and 4, we
report the numerical values of MPJPE and CamDist for MAO-Pose. The results are averaged
across the union of three scenes (Mafia, Ultimatum and Haggling) and 5 random seeds, with
standard deviation in the bracket. In terms of MPJPE, our model significantly outperforms
other methods and is very close to Greedy, which is nearly a theoretically optimal solution.
In terms of CamDist, our model with movement constraints (MAO-Pose-Cons) achieves the
lowest moving cost.

Since MAO-Pose operates on frame sequences, we want to evaluate its performance
temporally. Figure 6 illustrates MPJPE and camera distance on Mafia (7 people) and
Haggling (3 people) scenes, to compare the performance in environments with different
human densities. MAO-Pose exhibits more stability during the entire sequence without
large peak values while keeping both metrics low enough to outperform all other baselines.
Here, we visualized the estimated 3D poses and their reprojected 2D poses in each view
the agents have selected. Please refer to Figure 7 for detail.
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Figure 6. Sequential performance in the scene from Mafia (left column) and Haggling (right column),
respectively. The metric: top row is MPJPE and bottom row is camera distance. MAO-Pose is able
to achieve both a lower camera moving distance and reconstruction error, and works more stably
during the whole sequence. Though Greedy can achieve lower average MPJPE, its stability is not
sufficient, thus overall MAO-Pose outperforms all other baselines.

4.3. Ablation Studies

The number of agents: As the results showed in Table 3, with an increasing number
of views, MAO-Pose achieves lower estimation error, since more valid views are used for
reconstruction. However, in Table 4 CamDist increases slightly, especially for MAO-Pose-
Cons. This is because, with more cameras in the system, the collision probability is higher.
The cameras may move a larger distance to avoid collision.

Consensus: Without the Consensus module, all the agents take action independently
without knowing the action of other agents. The result is shown in Tables 3 and 4 as
MAO-Pose-noComm. Both MPJPE and CamDist metrics decrease significantly without
Consensus module, which proves that our Consensus module enables the agents to work
together collaboratively with more information shared in between.
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Figure 7. Experiment results on two different types of multi-people scenes. The 2D poses in each view are obtained by
reprojecting 3D poses to camera coordinates via camera parameters. Top: Dense scene with 7 people in total. MAO-Pose is
able to reconstruct all the peoples using 5 views. Bottom: Sparser scene with only 3 people.
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Movement constraints: Since our agents operate on temporal sequences, it would be
beneficial to take inter-frame continuity into account. It is desirable if camera movements
between two consecutive frames are not too large. To encourage the agent to move with
lower cost, a piece-wise linear function wdisτdis can be added to the penalty term Pi in
Equation (1), which is based on moving constraints to punish large camera movements
between two frames:

τdis(x) =



0, x ≤ λ1

x− λ1

λ2 − λ1
, λ1 < x ≤ λ2

µ
x− λ2

πr− λ2
+ 1, x > λ2

(3)

where weighting factor wdis = −0.2, and x is the geodesic distance of camera position
between time step t and t + 1 on the spherical dome in the Panoptic dataset. λ1, λ2 are
predefined parameters of sensitivity and r is the radius of the dome. µ is a scaling factor
typically larger than 1. We set λ1 = 5.0 (smaller than the minimum distance of cameras
in the dataset) to encourage local exploration, within which agents will not be penalized.
λ2 = 100.0 and µ = 10 to enforce high penalty for large camera distances. λ2 is set
according to the experiments in Table 2. It is worth noting that camera distance and
reconstruction error are partially adversarial. Constraining camera distance can result in a
limited search area and thus deter the accuracy. We chose λ2 = 100 since its error is close
to that of λ2 = 700, with a much lower camera distance, which is an acceptable trade-off
between the two metrics.

Table 2. The results on different sets of λ2. The final λ2 is in bold.

λ2 50 100 150 200 300 500 700

MPJPE 97.93 95.88 96.89 95.98 95.88 95.54 95.27
CamDist 44.48 46.16 49.95 52.32 54.95 59.73 57.05

As shown in Tables 3 and 4, this movement constraint term sacrifices a little accu-
racy (mostly within 2) while yielding much better continuity, with consistent decrease
in CamDist.

Supervision signal in reward design: In Equation (1) we associate the quality term
Qt with minimum joint visibility mink J t

k , which is a self-supervised signal as it does not
leverage dataset annotation during training. We can replace this term with a supervised signal

Qt = 1−
εt

k
E

(4)

where εk is the pose reconstruction error of the k-th person, which needs ground truth pose
label to calculate. The scaling factor E is set to 200. The supervised signal helps agents
to achieve higher accuracy in pose estimation when the number of views is more than 5,
without movement constraints in Table 3. In other cases, its performance is close to that of
self-supervised signal designed in Equation (1). When movement constraints come into
play, supervision signal boosts CamDist as shown in Table 4.

Prophet When agents need to work on wilder and more dynamic environments,
where movements between frames can be remarkable, the performance can thus be ham-
pered. We change the FPS of our scenes to simulate this scenario, and compare MAO-Pose
with or without Prophet module. The results are provided in Table 5.
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Table 3. Comparison of mean per joint position error (mm/joint) on the Panoptic datasets. Standard deviation is shown in
the bracket. Columns 2–6 indicate the number of agents (or views) we use. Our model outperforms all baselines (except the
Greedy method). Supervised means using supervised signal as the view quality term in the reward. Cons means adding
movements constraints to penalty term. noComm means disabling communication protocol, Consensus, between agents.

Policy 4 5 6 7 8

MAO-Pose 113.60 (1.73) 94.21 (0.86) 87.53 (0.84) 84.02 (0.92) 80.81 (0.34)
MAO-Pose-Supervised 116.35 (1.05) 95.83 (0.60) 87.44 (0.41) 83.79 (0.32) 80.67 (0.12)
MAO-Pose-Cons 125.45 (16.87) 96.09 (0.56) 88.85 (0.32) 84.17 (0.43) 81.87 (0.35)
MAO-Pose-Cons-Supervised 110.88 (1.28) 96.65 (1.17) 88.19 (0.30) 84.79 (0.23) 82.14 (0.27)
MAO-Pose-noComm 139.18 (2.80) 118.02 (2.29) 102.33 (0.33) 94.07 (0.49) 87.47 (0.68)
ACTOR [7] 122.09 (1.39) 100.55 (1.27) 89.79 (0.30) 85.04 (0.29) 82.24 (0.24)
Random 167.77 (2.12) 138.05 (1.26) 117.54 (1.09) 103.07 (0.59) 94.58 (0.46)
AngleSpread 171.21 (2.16) 112.45 (0.25) 105.47 (1.19) 93.97 (0.40) 87.8 (0.33)
Greedy 106.43 89.65 78.66 70.60 66.01

Table 4. Comparison of camera distance (cm) on the Panoptic datasets. Format follows Table 3.

Policy 4 5 6 7 8

MAO-Pose 111.64 (0.57) 55.92 (0.40) 64.28 (0.82) 104.34 (0.49) 78.56 (0.64)
MAO-Pose-Supervised 71.4 (1.05) 81.99 (0.85) 79.6 (0.75) 79.46 (0.55) 87.36 (0.48)
MAO-Pose-Cons 39.20 (0.55) 38.36 (0.54) 41.83 (0.24) 45.05 (0.18) 42.39 (0.27)
MAO-Pose-Cons-Supervised 29.88 (0.48) 32.91 (0.78) 36.87 (0.20) 37.98 (0.56) 44.40 (0.26)
MAO-Pose-noComm 101.55 (0.85) 84.73 (0.64) 93.28 (0.32) 135.07 (0.18) 96.56 (0.94)
ACTOR [7] 181.02 (1.72) 134.96 (1.23) 122.33 (0.34) 123.06 (0.70) 126.94 (0.27)
Random 245.29 (0.85) 220.27 (0.53) 201.77 (0.84) 185.84 (0.72) 172.34 (0.27)
AngleSpread 103.09 (0.34) 101.94 (0.56) 102.42 (0.28) 97.01 (0.60) 99.61 (0.35)
Greedy 205.52 175.83 152.62 135.41 120.94

Table 5. Ablation study of MAO-Pose with or without Prophet on the Panoptic test datasets. Columns
3–5 indicate the FPS of the environment. The smaller the FPS is, the more dynamic the environment
can be. Prophet enables our system to outperform in the dynamic environment while maintaining the
smoothness of camera movements.

Policy Metric 10 FPS 2 FPS 1 FPS

MAO-Pose w/o Prophet MPJPE 100.08 103.42 110.85
CamDist 59.43 61.80 64.58

MAO-Pose with Prophet MPJPE 97.37 101.40 107.05
CamDist 59.27 61.12 64.53

4.4. Inference Speed

We conducted the performance test on a server with one Intel E5-2680 V4 and a single
GTX 1080Ti GPU. The results are shown in Table 6. Note, we evaluate all the agents jointly,
of which the frame rate will be lower than that of agents running independently on different
machines in real deployments. In all the settings, the average FPS can exceed our maximum
control frequency (10 FPS), denoting that the system can run in real-time. The inference
speed of each module in MAO-Pose is in Table 7. Note that, 2D pose backbone occupies
the majority of time during inference, which indicates that our method is complementary
to any 2D pose backbones. Furthermore, one can achieve desired the FPS by choosing a
proper 2D pose estimator.
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Table 6. Performance on all test datasets.

# Views 4 5 6 7 8

Average FPS 22.38 16.92 15.25 13.11 11.35

Table 7. Inference speed of each module in MAO-Pose.

Module Speed (ms) GFlops

2D Pose Network 55.18 7.76
Policy Network (single agent) 0.78 0.017

Communication 0.79 -
Person Matching Triangulation 43.99 -

4.5. Proof of Concept

Our MAO-Pose can be easily modified for a multi-drone capture hardware system.
A typical application scenario is that people are walking outdoors, and we need to track
those moving targets and reconstruct the 3D pose as well. Due to the lack of datasets for
3D pose estimation in the wild, we built up a simulation environment (Figure 8) based
on the virtual dataset, JTA Dataset [20], which contains massive body poses with full 3D
annotations. The JTA consists of many full-HD videos that are each 30 s long, recorded at
30 FPS and 1080P resolution with a locked camera. We randomly chose 5 urban scenes, 4
scenes for training and 1 scene for evaluation. Like the training process of Panoptic, the
scenes are split into parts with no overlap between each other.

In this simulation, each camera is mounted on a flying drone with 6DoF and minimizes
the limitation of the dome localization in the Panoptic dataset. The view optimization is
proceeded in a virtual dome containing discrete viewpoints similar to Panoptic. We insert
a tracking action to move the cameras after the view optimization to keep the target people
in the center of the virtual dome.

It is worth noting that there are a limited number of views in the dataset (with only
6 views for each scene). As a consequence, it is hard to extract feature Bt as the input
of policy network of MAO-Pose given a view of the agent. Therefore, we manage to
generate a quasi feature based on 3D annotations to solve the dilemma. Note that, in the
simulation environment, our system is still in an annotation-free manner while we only use
3D annotations to simulate features of arbitrary views owing to the limits of the dataset.

Given the pose of the i-th drone Pi =

[
Ri Ti
0 1

]
, where Ri ∈ R3×3 indicates the rotation

and Ti ∈ R3×1 indicates the translation to the world coordinate. Given camera intrinsic
K ∈ R3×3 and 3D poses Y ∈ R3×m, we can get access to the 2D poses Xi ∈ R2×m in the

view of the i-th drone by Zi

[
Xi
1

]
= [K 0]Pi

[
Y
1

]
, where Zi is a scale factor and m is the

number of people in current view.
Then, we used the depth of joints as the grayscale value of pixels given the 2D position

of joints and skeletons, which aims to encode the spatial information of human bodies.
Meanwhile, we computed the occlusion in the current view according to a simple human
model, adding noise to the 2D position of occluded joints to encode the occlusions in
the quasi feature. In this simulation, the view optimization has proceeded in a virtual
dome containing discrete viewpoints similar to the Panoptic dataset. Moreover, we insert
a tracking action to move the cameras after the view optimization to keep the target
people in the center of the virtual dome, which is applicable in an outdoor scenario. As
shown in Figure 8, the virtual dome is drawn in gray lines and each vertex represents the
possible camera position. The selected views are displayed in yellow, blue, purple and
light green rays.
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Figure 8. MAO-Pose operates on simulation environment based on the JTA dataset. The virtual dome is drawn in gray, and
the cameras selected by agents are all pointing to the target man. Other people within the dome are reconstructed as well.

5. Discussion

We proposed an active 3D human poses reconstruction system MAO-Pose. In this
architecture, each camera is modeled as an agent with individual observation and ex-
changes the relative position information with an inter-agent communication mechanism,
Consensus. By maximizing the visibility of dynamic scenario with occlusions, our method
could achieve the goal of multi-person pose reconstruction. Towards practical application
when cameras mounted on drones, the physical motion constraint is considered in the
reward design. We have provided a visualization of the difference between our work and
ACTOR in Figure 9. Though our work might look ostensibly similar to ACTOR because of
the Panoptic dataset used in both, our work varies vastly with ACTOR in basic settings and
assumptions. MAO-Pose triangulates poses in a single timestep through multiple agents,
and thus can capture dynamic scenes in real-time. Contrarily, equipped with just a single
agent, ACTOR requires multiple timesteps to triangulate poses for a single frame, which
can only be used in static scenes (that is why the drone demo reported in [7] requires a
person standing still, even keeping static gestures) or post-processing a dynamic scene
pre-captured by dense multi-view cameras.

The experiment on the Panoptic dataset shows that MAO-Pose achieves more accurate
3D pose reconstruction compared with the baseline method ACTOR and is close to Greedy,
which is the optimal solution, theoretically. Our method could achieve the lowest moving
cost with movement constraints in the penalty term demonstrated by the experiment in
frame sequence datasets. Through the ablation studies in different strategies, we also prove
that the police with inter-agent communication module in supervised training method
could achieve a better performance compared with other police settings.

In the future, MAO-Pose should be modified to asynchronous capturing and deployed
to real cameras mounted on flying robots, like UAVs, for remote sensing for dynamic
environment. We acknowledge that working with real drones indeed involves complex
hardware issues, yet our system cannot output parameters intended to directly control
real hardware (and, at its base, it is not designed to achieve this objective). Instead, we
focused on providing valuable waypoints that were more physically viable through our
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policy network, which can later be easily employed by lower-level path planners for real
drones. The Panoptic dataset is comprised of discretized camera locations and the camera
moving speed is ill-defined on it. When deploying to real-world systems, we might need
to incorporate the velocity and/or acceleration into movement constraints. We will also
improve the robustness and security of our system for practical implementation situations,
such as adding a “Top-View” camera to capture and analyze the whole scenario to avoid
the unforeseeable obstacles appearing on the camera way.

This system can be also extended to 3D human pose tracking and active motion
capture. The entertainment and sports industry may benefit from our work since the active
capture system in this paper helps to better understand human 3D information, which
can be applied to filming and sports broadcasting. The photographers may be put at a
disadvantage from this research since the camera can learn to select better capture views
and thus might replace the job of some photographers. Moreover, the system failure may
result in the crash of the cameras and further economic loss. This method does not leverage
biases in the data.

t

Single agent 
(ACTOR Pirinen et al.)

 requires time-freeze 

 Multi-agent 
(Ours) is practical

Wall time
 (real-world time)Obtain views simultaneously and 

step to next time step jointly, which is 
NOT just a natural extension of single 

agent but a correction to the 
impractical time-freeze mode.

time-freeze to keep people static
otherwise wall time flies and people moves

t+1

Figure 9. Illustration of the difference between ACTOR and our system, MAO-Pose.
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