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Abstract: Increasing efforts are being devoted to understanding fire patterns and changes high-
lighting the need for a consistent database about the location and extension of burned areas (BA).
Satellite-derived BA mapping accuracy in the Brazilian savannas is limited by the underestimation of
burn scars from small, fragmented fires and high cloudiness. Moreover, systematic mapping of BA
is challenged by the need for human intervention in training sample acquisition, which precludes
the development of automatic-generated products over large areas and long periods. Here, we
developed a multi-sensor, active fire-supervised, one-class BA mapping algorithm to address several
of these limitations. Our main objective is to generate a long-term, detailed BA atlas suitable to
improve fire regime characterization and validation of coarse resolution products. We use composite
images derived from the Landsat satellite to generate end-of-season maps of fire-affected areas for
the entire Cerrado. Validation exercises and intercomparison with BA maps from a semi-automatic
algorithm and visual photo interpretation were conducted for the year 2015. Our results improve the
BA mapping by reducing omission errors, especially where there is high cloud frequency, few active
fires are detected, and burned areas are small and fragmented. Finally, our approach represents at
least a 45% increase in BA mapped in the Cerrado, in comparison to the annual extent detected by the
current coarse global product from MODIS satellite (MCD64), and thus, it is capable of supporting
improved regional emissions estimates.

Keywords: Landsat; VIIRS; machine learning; one-class classification; Cerrado; burned area

1. Introduction

The high global variability of fire occurrence makes it difficult to have a consistent
fire record over space and time. Several studies indicate that fire acts as a determining
factor for the ecology of the Brazilian savannas (Cerrado) [1,2]. However, in recent years,
wildfires have been more frequent, modifying the fire regime of this biome as a result of
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anthropic action [3]. Fire records are essential to understand trends and patterns of fire
regimes. However, this is challenging for a continental biome like the Cerrado, with large
extent, low accessibility areas, and inconsistent or scarce field fire records. In this context,
remote sensing data, together with automatic classification techniques, are the only feasible,
cost-effective, and timely source of information for systematic monitoring of fire occurrence
for a broad range of spatial scales [4–6]. Earth observation satellite data allow analysis
of large and remote areas affected by fire that are otherwise unevenly sampled by in situ
field campaigns. Moreover, satellite information enables the generation of continuous,
homogeneous, and long-term burned area (BA) databases. Over the last decades, the region
has benefited from several approaches at different scales (global, regional, and local) that
jointly address the complexity of automatically retrieving BA information from satellite
imagery. Burnt area maps over the Cerrado have been mostly produced using spatially
coarse data from the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor
on board TERRA and AQUA satellites. Those maps have been systematically available
since 2001 at global (e.g., MCD64-500 m [7], Fire CCI-250 m [8]) and regional (e.g., AQM-1
km [5]) scales. Although not operationally, other automatic BA classifiers were successfully
applied to the region with diverse broad spatial coverage using other sensors, such as
the Project for On-Board Autonomy-Vegetation (PROBA-V) [6] and the Visible Infrared
Imaging Radiometer Suite (VIIRS) [9,10]. Validation and intercomparison exercises over the
region reveal that estimates of BA using those coarse products present similar inter-annual
variability but differ markedly in terms of total extent [5]. The regions with high frequency
of medium and small fire scars present a challenge to those broad spatial resolution BA
products [5–11]. Such limitations are a major drawback for regional applications, including
fire and environmental management and formulation of public policies [12–15].

Several studies have pointed out the need for higher spatial resolution and longer-
term BA records, to provide detailed information about small and fragmented burns and
to advance the study of past, present, and future BA changes in tropical savannas [16–19].
In addition, this kind of information may be useful for benchmarking and validating
coarse-resolution BA global/continental products in an effective and low-cost manner,
by comparison with in situ measurements and airborne surveys [4,20–23]. A long-term
dataset offers the opportunity to evaluate the temporal stability of the BA products, which
refers to accuracy variability over time [21]. The series of Landsat satellites provides the
longest temporal record of space-based observations across large areas, with higher spatial
detail (30 m) and spectral resolution. These satellites offer a unique record of data for fire
regime characterization and its change over time, dating back to the early 1970s [23]. The
relatively high spatial resolution of Landsat-derived BA products is counterbalanced by
the 16-day frequency of satellite overpasses. This limited frequency of image acquisition
is often coupled with the presence of cloud cover and smoke aerosols, hampering the
observation of burned areas. The ephemeral character of the radiative signal is a major
limitation for burned area monitoring in tropical savannas [4,5,19,24–26]. In contrast with
temperate and boreal regions, where it is possible to wait until the end of the fire season to
map scars from previous months, in tropical savannas, the combustion residues are easily
scattered by the wind, and the charcoal spectral signal quickly fades out [27]. Thus, the
combined effect of cloudiness and the revisiting cycle of Landsat sensors contributes to
omission errors in Landsat-derived BA products [25]. In addition, the varying number of
cloud-free images available from different years complicates interannual BA comparison.

Pixel-based multi-temporal compositing methods are an alternative way to mitigate
these limitations and have been widely used for BA detection with coarser resolution
sensors [5,28–31], since they also contribute to reducing residual atmospheric effects [28].
Since the beginning of the open access Landsat era, in 2008, several studies have exploited
compositing approaches to map the spatial-temporal patterns of environmental variables,
such as deforestation and other land cover changes [32,33]. More specifically, burned
area algorithms making use of temporal composites from the Landsat archive are also
emerging worldwide. For example, [28] proposed an operative tool to obtain U.S. burned
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area maps from Landsat data, using temporal compositing [16,34] and combining weekly
Landsat composite imagery with MODIS active fires, to systematically map burned areas
at 30m resolution. Similarly, [35] applied a composite of Landsat Thematic Mapper (TM)
time series for classifying burnt areas in Australia from 1986 to 2013. A recent study [36]
has used annual composites to produce maps of burned areas over the entire U.S. for
the full-temporal Landsat archive. Other authors [37] developed an annual BA product
using a random forest algorithm and [38] presented a machine learning approach to map
burned areas over Asia, using composites of differential spectral-indices and three different
classifiers, Classification and Regression Tree, Random Forest, and Support Vector Machine
(SVM), both in the Google Earth Engine (GEE) platform [39]. Although a variety of studies
applying Landsat image composites for burned area mapping have been successfully
conducted worldwide, to date, there are few initiatives over the Cerrado region [40,41].

Another notable limitation of most BA mapping algorithms is the need for human
intervention in training sample acquisition [28,40–43], making it a challenge to maintain op-
erational products over large areas and long periods. This limitation may be circumvented
by exploring two specific aspects of the problem: the relationship between active fires
and burned areas and the possibility of envisaging BA mapping under the framework of
one-class classification [44]. Since the observation of an active fire produced by vegetation
burning typically is associated with the subsequent appearance of a burned area at the
same location, active fires may be used to automatically select training samples for burned
area mapping. By framing BA mapping as a one-class classification problem, no other
training samples will be needed. This approach was implemented by [6,11], using the
support vector data description and maximum entropy algorithms, respectively. Other
BA mapping studies have relied on active fires as seeds for seeded region-growing in
two-step classification approaches [45]. A drawback of this procedure is that burned area
patches missing an active fire seed, e.g., due to short duration of the fire, or cloudiness at
the time of overpass, will be omitted in the classification. This problem is avoided in the
active fire-trained, one-class classification approach, which uses active fires not as spatial
seeds but as spectral samplers for burned areas [6,11]. The approach we propose in this
work is characterized by (i) the use of detection of changes based on temporal composites
and (ii) an automated procedure to produce longer time series of fire scars in large areas
without human intervention, namely, (a) the integration of active fire data to collect training
samples and (b) use of a single class classification based on machine learning.

The methodology is based on our previous works [6,10], in which automated BA
algorithms tailored for the PROBA-V and VIIRS sensors were developed and successfully
applied to the Cerrado. The algorithm proposed here is based on samples collected
from VIIRS active fire and the One-Class Support Vector Machine classifier applied to
Landsat 8 OLI (Operational Land Imager) composite images. The results were evaluated
over an area of 13,680,000 ha and compared against two available BA datasets, both
considering change detection between consecutive Landsat images, one based on a semi-
automatic algorithm [41] and the other derived from in situ analysis and visual photo
interpretation [46,47]. Finally, the approach is applicable to generate fine-scale atlas of
end-of-season fire scars for the entire Brazilian savanna in GEE.

2. Materials and Methods
2.1. Study Area

The study area covers four Landsat scenes (path/row: 218/072, 218/073, 219/070,
and 219/071) located in southeastern Brazil and encompassing 13,680,000 ha (Figure 1).
This area comprises conservation units mosaic from Upper Middle São Francisco River
basin and from Serra do Espinhaço, considered of high ecological relevance due to high
vegetation diversity and degree of ecological conservation [48]. The region is characterized
by large extensions of rupestrian fields that challenge satellite-derived burned area classifi-
cation due to the large amount of exposed rocks and sandstone soils, which can generate
spectral confusion with burned areas [49]. Another challenge related to BA classification in
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rupestrian fields is the ephemeral character of the spectral signals of burned areas [50]. The
predominant biome in the study area is the Cerrado, with transition zones from Atlantic
Forest and Caatinga biomes [51]. In the Upper Middle São Francisco region (219/070 and
219/071 scenes), the topography is marked by plateaus and depressions characterized as
flat or moderately undulated relief [51,52]. The Serra do Espinhaço region (218/072 and
218/073 scenes) has a greater variety of reliefs, with strongly undulated, mountainous
or steep, undulated and flat, and moderately undulated regions. This region contains a
1200 km long mountain range (i.e., Serra do Cipó National Park—NP), extending from the
south-central region of Minas Gerais state to Chapada Diamantina, in the state of Bahia [53].
The highest point of this mountain range is at an altitude of 2044 m, located in Landsat
scene 218/073.
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Figure 1. Spatial distribution of the Brazilian Cerrado (black outline in the small image) showing
the four Landsat paths/rows (white squares) used in this study, highlighting the two conservation
units (Serra do Cipó NP in orange and Morro da Pedreira EPA in yellow) selected as study areas for
local evaluation of the algorithm performance. Green polygons indicate the location of the remaining
conservation areas.

The Morro da Pedreira is an Environmental Protection Area (EPA) also contained in
scene 218/073. This region is characterized by the transition from the Atlantic Forest to
the Cerrado biomes, with the presence of different plant physiognomies linked to each
biome type. The Morro da Pedreira EPA was chosen for comparison of the burned area
products (described below), due to the availability of visually mapped burn data and to
the ecological importance of the area [46,47].

The site at Serra do Espinhaço mountain range was selected because its abundant rock
outcrops and terrain shading are prone to spectral confusion with burned areas, and we con-
sidered it important to test the algorithm performance under such challenging conditions.
The other sites are located in areas Cerrado “sensu stricto”, the predominant vegetation
type of the Cerrado biome, and were primarily chosen for their representativeness.
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2.2. Datasets
2.2.1. Algorithm Development Dataset

The burned area algorithm was based on images from the OLI sensor of Landsat
8 satellite Collection 1–Level 1, downloaded from the United States Geological Survey
database [54]. We used data from the near infrared (NIR–band 5 with 0.8 µm), short wave
infrared (SWIR1–band 6 and SWIR2–band 7 with 1.6 and 2.1 µm, respectively), and the
Landsat Quality Band Assessment (QA) band, which contains the cloud and water masks.
The images were evaluated from July to December 2015, based on availability and total
cloud cover. The 24 images evaluated are described in Table 1 for each Landsat scene.
It is important to highlight that we aim to develop burned area maps at the end of fire
season. Thus, the dates of the images used cover more than 90% of fire occurrences in the
Cerrado [5].

Table 1. Landsat scenes (path/row) and dates of the OLI images used in this study. T1 indicates the
pre-fire image obtained for each Landsat scene.

Landsat Scenes Dates

218/072–218/073

30 July 2015 (T1)
15 August 2015
31 August 2015

16 September 2015
02 October 2015

03 November 2015

219/070–219/071

06 August 2015 (T1)
07 September 2015
23 September 2015

09 October 2015
10 November 2015
12 December 2015

We used the daily active fires (AF) dataset derived from the VIIRS sensor on board the
Suomi-National Polar-orbiting Partnership satellite [55] at 375 m of spatial resolution, to
capture small, namely sub-pixel, areas of flaming combustion. These data were obtained
from the Brazilian Institute of Spatial Research (INPE) active fires database [56]. Due to
its higher spatial resolution, the VIIRS active fire product has the ability to detect smaller
events than the corresponding MODIS product and has been preferred for use in hybrid
algorithms [55]. The revisit time from VIIRS is twice a day.

2.2.2. Intercomparison Datasets

An intercomparison of our results was undertaken against two Landsat-8/OLI-derived
burned area available databases, one based on a semi-automatic algorithm (AQM30m) and
the other one derived from in situ analysis and visual photo interpretation (AQMView).
The AQM30m is a semi-automatic, unsupervised system to identify burned areas over the
entire Cerrado, using pairs of close-date images from the Thematic Mapper (TM) and OLI
sensors. It combines the analysis of temporal changes in Normalized Difference Vegetation
Index (NDVI) and Normalized Burn Ratio Long SWIR Variation (NBR2) [41]. The product
was downloaded from [57] for the same location and period described in Table 1. The
AQMView [46,47] is a manually derived burned area map based on in situ verification
and visual photointerpretation of Landsat Enhanced Thematic Mapper Plus (ETM+), TM,
and OLI images by using RGB composites from 5 (1.6 µm), 4 (0.8 µm), and 3 (0.6 µm)
bands for ETM+ and TM and 6 (1.6 µm), 5 (0.8 µm), and 4 (0.6 µm) for OLI. The dataset
encompasses the period of 1984 to 2015 [46,47] over Morro da Pedreira EPA and Serra do
Cipó NP (Landsat path/row 218/073) (Figure 1).
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2.3. Methods
2.3.1. Algorithm Theoretical Basis

The proposed algorithm, hereafter the Landsat Burned Area Algorithm (AQM-LS),
is a multi-sensor approach, which combines time series of surface reflectance from OLI
sensor with temporal and spatial information derived from VIIRS AF data. Here we use
an adaptation of our two previous works, the AQM-PROBA [6] and the AQM-VIIRS
algorithms [10]. Both AQM-PROBA and AQM-VIIRS use the One-Class Support Vector
Machine (OC-SVM) classifier and automated sample selection based on active fires.

The OC-SVM technique is derived from the standard Support Vector Machine algo-
rithm [58,59] and designed to solve single-class classification problems, showing positive
results in BA mapping when compared to other traditional methods [6,47,60–62]. The
advantage of single class classifiers is that they do not require training samples from
unburned areas, typically characterized by a wide variety of spectral signals [6].

Following our two previous works [6,10] the main stages of the algorithm are (i) multi-
temporal compositing in the period when active focuses are concentrated, (ii) screening of
samples collected at active hotspots, and (iii) choice of the kernel and classifier parameter
tuning. The multi-temporal compositing criterion was minimization of Normalized Burned
Ratio 2 (NBR2, Equation (1)) [61] meaning that the date with the lowest value of NBR2
was selected at each pixel in the composite image. Screening of the samples automatically
collected at the locations of active fires is done using thresholds defined by data distribution,
with natural breaks segmentation [6]. This step is necessary due to the differences in spatial
resolutions between AF and Landsat images, which can lead to selection of training samples
associated with AF located outside the burn scars. The choice of kernel and parameter
nu and gamma tuning is done by cross validation, as in [26]. These parameters indicate
a greater or lesser permissiveness in mapping the burned area. Finally, tuning of the
classification model is based on the results from the previous stage.

NBR2 = (SWIR2 − SWIR1)/(SWIR2 + SWIR1) (1)

where
SWIR1—band 6 and SWIR2—band 7 with 1.6 and 2.1 µm, respectively.
The main characteristics of the three algorithms are depicted in Table 2. Besides the

spatial and temporal resolution, the main adaptations to the original algorithms are related
to both spectral index and compositing techniques used. Here, we use the Landsat SWIR1
and SWIR2 bands to calculate the NBR2. The choice of this index is based on the work
of [49], which shows greater separability between the classes of burned and unburned areas
in Cerrado regions. Then, we create multi-monthly composites with the minimum NBR2
criterion [63,64] to build post-fire (T2) composites and to calculate the difference between
T2 composite and the pre-fire image (T1) (first image available before the T2 composite),
∆NBR2 = NBR2T2 − NBR2T1. The ∆NBR2 is bounded from −2 to +2, and typically values
∆NBR2 < 0 indicate burning. The ∆NBR2 has been used in several studies as an index to
detect burned areas [41,49,65]. The corresponding date of the minimum NBR2 value for
post fire composites is also retained, as an approximate date of burning.

To generate the training dataset required for the training samples in the AQM-LS
algorithm, five steps were taken: (i) identification of the NBR2T2 and ∆NBR2 composites
that overlapped the AF VIIRS pixels in space and time, (ii) selection of the AF pixels
with dates preceding the date of the pixel selected for the minimum NBR2 composite,
(iii) extraction of NBR2T2 and ∆NBR2 pixel values based on the AF identified in i and ii
followed by (iv) a segmentation procedure using the Jenks natural breaks algorithm [63]
which divides data distribution into three classes. Thus, only active fires located in the
class with the lower NBR2 values and the highest difference value between NBR2 T1 and
T2 are chosen to train the classifier. The OC-SVM parameters used were based on [6] with
gamma = 0.1 and nu = 0.005. The gamma parameter is the inverse of the radius of influence
of samples selected by the model as support vectors, i.e., it controls how far the influence
of a single training example reaches. Nu defines the trade-off between model overfitting
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and generalization, and thus controls the number of support vectors used. (v) Finally,
the classifier returns positive values for classes that are similar to those in the training
sample and negative values otherwise, classifying burned, unburned, and unmapped
areas as recommended by [66]. Thus, the final end-of-season map consists of the three
classes (burned, unburned, and unmapped) and includes the date of each fire scar, obtained
from the layer of the Landsat image dates selected for each pixel in the composite image.
Moreover, AQM-LS provides two additional layers containing the number of images used
and the cloud cover recurrence in each pixel. That information may be used as quality-flags
to identify high and low confidence in the burned and unburned classes.

Table 2. Comparison between previous BA algorithms: AQM-PROBA, AQM-VIIRS, and the algorithm developed in this
work, AQM-LS.

AQM-PROBA AQM-VIIRS AQM-LS

Reference [5] [9] this work

Spatial Resolution (m) 300 375 30

Temporal Resolution (days) 5 1 16

Channels NIR (0.84 µm)
NIR (0.86 µm)
MIR (3.74 µm)
TIR (11.45 µm)

SWIR1 (1.6 µm)
SWIR2 (2.1 µm)

Satellite Temporal coverage 2013–2018 2012–present 1985 *–present

AF data VIIRS 375 m VIIRS 375 m VIIRS 375 m

Spectral index none (V,W) [62] NBR2 [63]

Compositing technique second minimum NIR minimum W minimum NBR2

* Based on Landsat availability over the region.

2.3.2. Intercomparison and Validation Approaches

Any attempt to validate retrieved burned scars from Landsat 30 m imagery is chal-
lenged by the virtual absence of in situ measurements and higher resolution remote sensing
data. This limitation was circumvented here by creating a reference dataset based on
information derived from visual photo interpretation [67]. This reference dataset was based
on selection of 20,000 points with random spatial distribution [68] over the multi-temporal
composites of Landsat RGB 567 bands and NBR2 for burned and unburned classes. A total
of 5000 pixels were randomly distributed over each Landsat scene. AFs were also used to
improve the selection of burned pixels. A total of 811 pixels were classified as burned and
19,189 pixels in the remaining land cover types (namely, green vegetation, crop fields, and
water bodies) as the unburned class (4.1% burned and 95.9% unburned pixels) (Table 3).

Table 3. Number of randomly distributed points for each Landsat scene in the burned and un-
burned classes.

Validation Sample Points

Burned Unburned

Path/Row Points % Points %

218/073 187 3.7 4813 96.3
218/072 152 3.0 4848 97.0
219/070 327 6.5 4673 93.5
219/071 145 2.9 4855 97.1

Total 811 4.1 19,189 95.9

Validation was performed through a cross tabulation between the reference dataset
and the burned area maps from AQM-LS and AQM30m, using scalar attributes derived
from the 2 × 2 contingency table [69] (Table 4). Four validation metrics were used to verify
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the validation approach, namely, omission error (OE), commission error (CE), bias (BIAS),
and the critical success index (CSI) (Table 5). The OE indicates the discrimination power of
the classifier through the fraction of observed burned pixels that turn out to be classified as
unburned. The CE reflects the reliability of the classifier through the fraction of classified
burned pixels that turn out to be incorrect. Both OE and CE have a negative orientation.
BIAS greater (less) than one indicates that burned pixels were classified more (less) often
than observed. Unbiased classification exhibits BIAS equal to 1. The CSI is a measurement
of accuracy reflecting the correspondence between the classification and the reference,
considering only the class of interest, i.e., burned area. The CSI varies between 0 (worst)
and 1 (best).

Table 4. Generic contingency table between the reference and burned area (BA) products.

Reference

Burned Unburned

BA Products
Burned A B

Unburned C D

Table 5. Validation metrics, acronyms, and equations derived from the contingency table described
in Table 4.

Validation Metrics Acronym Equation

Omission Error OE C/(A + C)

Commission Error CE B/(A + B)

Bias BIAS (A + B)/(A + C)

Critical Success Index CSI A/(A + B + C)

A quantitative intercomparison of the results from AQM-LS was also undertaken by
using two Landsat-8/OLI-derived burned area databases, one based on a semi-automatic
algorithm (AQM30m) and the other one derived from in situ analysis and visual photo
interpretation (AQMView). The intercomparison with the latter was conducted over the
Morro da Pedreira EPA and with the former was carried out over the 5000 points randomly
distributed over each Landsat scene (Table 3).

Finally, we evaluated the capacity of the AQM-LS algorithm to classify burned areas
associated with active fires omissions. To that end, we evaluated the number of fire
scars containing active fires. The analysis was performed for four classes of scars sizes,
namely, (i) 0–25 ha, (ii) 25–100 ha, (iii) 100–1000 ha, and (iv) > 1000 ha. The choice of these
classifications was based on the work by [6] who performed a similar analysis for the
Cerrado region.

3. Results
3.1. Classification of Burned Area Scars and Accuracy Assessment

We first evaluated the total extent of BA retrieved by the AQM-LS and compared
the results with those from the AQM30m product for the same period (Table 1). Figure 2
shows the comparison of both products for the four Landsat scenes. The BA retrieved by
AQM-LS and AQM30m was in general similar in location (Figure 2a), albeit very divergent
in magnitude. The AQM-LS algorithm identified a total of 447,700 ha of burned area,
corresponding, to 7.5%, 3.9%, 3.1%, and 2.8% of Landsat scene 219/070, 218/073, 218/072,
and 219/071, respectively (Figure 2b). By contrast, the AQM30m detected 30% less BA,
representing 311,000 ha for the same period. The greatest difference between the AQM-LS
and the AQM30m was found in scene 218/073, where the latter product estimated only
half as much burned area. In scenes 218/072, 219/071, and 219/070, these differences are
41%, 34%, and 12%, respectively.
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Figure 2. (a) Fire scars as detected by AQM-LS (red), AQM30m (green) and by both products (black) for the period and
regions depicted in Table 1. Gray polygon shows the four Landsat scenes boundary. (b) Total amount of burned area
(×102 ha) as detected by BA products for each Landsat scene. Numbers in parentheses denote the total amount of burned
area for all Landsat scenes. (c) Validation metrics: (i) Omission errors (OE), (ii) Commission errors (CE), (iii) Critical Success
Index (CSI), and (iv) Bias (BIAS) for AQM-LS (red) and AQM30m (green) products in all Landsat scenes.

The statistical analysis of the accuracy assessment for both AQM-LS and AQM30m
products on a pixel basis, derived from the contingency table and considering each of
the four Landsat scenes is presented in Figure 2c. Overall, the AQM-LS product displays
higher CSI values for all the Landsat scenes, in comparison with the AQM30m product.
The AQM-LS product has much lower OE than AQM30m, while both products show very
low CE. The underestimation by AQM30m is reflected in values of BIAS much lower than
one. An example of the contrast between OE of the two BA algorithms is provided in
Figure 3, which shows a fire scar with more than 8000 ha in Serra do Cipó NP. This fire
event occurred between 16 and 20 October 2015 (Landsat scene 218/073) and was mapped
by the AQM-LS product (in red) and confirmed by the presence of VIIRS active fires but
omitted by the AQM30m product (in green). Indeed, the larger discrepancies between the
two products occurred also in the scene 218/073, which is frequently cloudy (Figure 3);
thus, the change detection based on temporal multitemporal composite approach adopted
by AQM-LS performs much better than change detection approaches based on pairs of
images used in the AQM30m product. In this region, cloud recurrence, defined as the
number of times that a pixel is covered by clouds over the study area from 30 July to 3
November, reached the same pixels in every 5 dates. We observed high omission cases
from AQM30m in cloudy areas, but by contrast, AQM-LS omitted few fire scars (Figure 3),
highlighting the effectiveness of the compositing technique to minimize omission errors in
cloudy areas.
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3.2. Intercomparison among Automatic and Manual BA Algorithms

Here, we provide an intercomparison between the automatic (AQM-LS and AQM30m)
and manually derived (AQMView) burned area maps at Morro da Pedreira EPA. In this case,
the AQM-LS classified a similar extent of burned area as AQMView, 13,670 and 15,346 ha,
respectively (Figure 4). This corresponds to approximately six times more burned area than
that mapped by AQM30m (2236 ha). This difference is observed especially in the detection
of small fires, which are omitted by AQM30m in the northeastern and eastern parts of the
study region (Figure 4a).

Around 85% of the BA detected by AQM-LS is coincident with the AQMView map-
ping, while the remaining 15% are distributed along the boundary of the fire scars, mainly
in the extreme south and north of the region. By analyzing fire scars as a function of size,
we observed that AQM-LS, AQM30m, and AQMView all have the highest frequencies of
scars in the smallest size class (0–25 ha) (Figure 4b). For this and the second (25–100 ha)
classes, AQM-LS detected more scars than AQM30m and AQM-View. In the case of big
fires (>100 ha), AQM-LS presents similar values as observed for AQM30m and AQMView.
The AQM30m does not detect any scar in the larger class, reflecting the underestimation of
two large fire scars that occurred in the south of the conservation unit (Figure 4a). Finally,
the total value of the largest scar size recorded from 15 August to 3 November 2015 by each
product corresponds to 8181 ha (AQM-LS), 588 ha (AQM30m), and 9894 ha (AQMView).



Remote Sens. 2021, 13, 4005 11 of 18Remote Sens. 2021, 13, 4005 11 of 18 
 

 

 
Figure 4. (a) Spatial distribution of burned area detected by AQM-LS (red), AQM30m (green),  
AQMView (blue), two products (namely AQM-LS and AQMView, orange), and the three products 
(black) in the Morro da Pedreira EPA (black outline) encompassing the Serra do Cipó NP from 
August 15 to November 3 2015. (b) The corresponding total number of scars detected by BA 
products per scar size classes. 

3.3. Towards a BA Atlas for the Entire Cerrado 
To improve the process of classifying burnt areas, the algorithm was adapted for 

implementation on the digital cloud image processing platform GEE [39] for the entire 
Cerrado, from 2013 to 2020. This implementation is an important step towards the 
application of this method to systematically map burned areas in the entire Cerrado on an 
historical basis. To this end, our final burned area product provides three classes: burned, 
unburned, and unmapped pixels. Pixels that cannot be observed or interpreted either due 
to clouds or to sensor problems are classified as unmapped, to guarantee that only pixels 
with reliable data are included in the burned/unburned final map [70]. Moreover, 
auxiliary information is provided regarding the number of cloud-free pixels, cloud and 
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by AQM-LS was 15,892,187 ha and 10,303,742 ha by AQM30m, meaning that AQM30 
failed to detect 35% of the area detected by AQM-LS. 

Figure 4. (a) Spatial distribution of burned area detected by AQM-LS (red), AQM30m (green),
AQMView (blue), two products (namely AQM-LS and AQMView, orange), and the three products
(black) in the Morro da Pedreira EPA (black outline) encompassing the Serra do Cipó NP from
15 August to 3 November 2015. (b) The corresponding total number of scars detected by BA products
per scar size classes.

3.3. Towards a BA Atlas for the Entire Cerrado

To improve the process of classifying burnt areas, the algorithm was adapted for
implementation on the digital cloud image processing platform GEE [39] for the entire Cer-
rado, from 2013 to 2020. This implementation is an important step towards the application
of this method to systematically map burned areas in the entire Cerrado on an historical
basis. To this end, our final burned area product provides three classes: burned, unburned,
and unmapped pixels. Pixels that cannot be observed or interpreted either due to clouds or
to sensor problems are classified as unmapped, to guarantee that only pixels with reliable
data are included in the burned/unburned final map [70]. Moreover, auxiliary information
is provided regarding the number of cloud-free pixels, cloud and water masks, and the
date of BA detection. Figure 5 shows the comparison between AQM-LS and AQM30m
for the 2015 year for the entire Cerrado. The total extent of BA detected by AQM-LS was
15,892,187 ha and 10,303,742 ha by AQM30m, meaning that AQM30 failed to detect 35% of
the area detected by AQM-LS.
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4. Discussion

The focus of our approach was twofold: (i) to reduce the high omission levels from
current algorithms, which rely on change detection approaches based on pairs of images
and (ii) to allow the generation of long-term records suitable for trend analysis, using an
approach with minimal human intervention. To this end, we used multi-sensor (Landsat
and VIIRS), active fire-supervised, one-class burned area mapping. The methodology
developed here performed very well at mapping burned areas at regional level, without
the need for human supervision in the collection of burning samples. Reliable, automated,
and historical record of burned areas at 30 m resolution and at the biome level has important
applications for fire management [71], emission assessment [72], fire regime studies [73],
and climate and land use/cover changes [74]. In addition to those applications, this kind
of burned area product may serve as a basis for validation of burned area maps derived
from satellite products with coarse spatial resolution.

AQM-LS was able to classify 54% and 45% more BA than the AQM30m and the
annual amount provided by MCD64 [10], respectively. Thus, the smaller area detected
by AQM30m in 2015 is very close to that obtained by MCD64 (10,954,230 ha), which is
known for its underestimation of burned areas in Cerrado [10,75,76]. This low accuracy
is generally attributed to MODIS coarse spatial resolution (500 m), which challenges
the detection of small and highly fragmented fires, in particular, those associated with
agricultural burns [11,40,76]. The comparison of Landsat medium- and MODIS coarse-
resolution BA products at the continental scale of Cerrado not only confirms the very
conservative behavior of MCD64 but also the strong underestimation of savanna fire
emissions, as highlighted by previous studies in Africa [77].

The case study in the Morro da Pedreira EPA shows that AQM-LS detections follow
a pattern close to the ‘reference’ map from AQMView, whereas AQM30m shows a less
realistic burned area mapping (six times less than the former). This huge difference can
have a substantial impact on the fire regime characterization, emissions estimates, and
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validation of coarse resolution products. A manual mapping technique such as that used
in AQMView allows a supervised analysis, as in cases where the burning under cirrus
clouds can be classified, which is a limitation of remote sensing. On the other hand, it
is prone to missing details that may escape to the human eye. The visual detection and
manual delineation of the fire scars in the AQMView dataset was performed by using
a standardized mapping scale of 1:25,000 and a standardized brightness and contrast
parameters for all scenes [46], which could affect the accuracy of the delineation. This was
evident in the analysis by size classes, where the AQM-LS detected more smaller fires
(<25 ha) than the AQM30m and AQMView (Figure 4b).

The need for active fires information as seed points for burned pixel classification on
region growing techniques was circumvented by using the active fire-trained, one-class
classification approach, which uses active fires not as spatial seeds but as spectral samplers
for burned areas. Our results highlight active fires omission, due to short duration of
the fire, or cloudiness at the time of overpass, which has impact on the final burned area
classification [5,6,27,45,78]. In this sense, the use of AF as a training sample for a classifier
would fill this gap, making it possible to map burned areas even with the absence of AF, as
shown in Figure 6. For instance, in veredas areas (Figure 6), the vegetation is characterized
by the predominance of the palm tree Mauritia flexuosa species and peat soils, which leads
to the occurrence of underground fires not detected by satellites [79]. It is also possible to
observe omissions from active fires in areas where burning occurred at a low intensity [49]
and in areas with dense layers of smoke, which reduces the radiometric signal [26].

Remote Sens. 2021, 13, 4005 14 of 18 
 

 

 
Figure 6. Burn scars (in blue) classified by AQM-LS algorithm in the presence of active fires (AF, respectively in red), 
highlighting two cases where burn scars were classified in the absence of AF: (a) burn scar with 852 ha and (b) burn scar 
with 368 ha. RGB 567 image composite from 6 August to 12 December 2015 for the 219/070 scene. 

Despite the promising results obtained, we acknowledge that there are limitations to 
the single class classifier, regarding the exclusion of pixels with high burning severity. 
This is because this classifier has the characteristic of excluding areas considered by the 
SVM as outliers. This limitation was also observed in previous works [6,10] and partially 
controlled with the application of mathematical morphology filters, considering the 
neighborhood of the areas classified as burned. Another limitation is the classifier 
parameters, which can be more permissive or more restrictive, resulting in errors of 
commission or omission. In this study, the choice of value parameters was made through 
cross-validation, which made it possible to adjust these parameters, according to the 
characteristics of the fires in each scene. For processing a large area, such as the entire 
Cerrado biome, the generalization of this index may cause errors in classification for 
regions with different fire regimes. In this context, for the generation of the end-of-season 
fire scar maps for the entire Brazilian savanna in GEE, we trained the model and fitted 
these parameters by partitioning the region into 19 subregions previously developed 
based on biophysical (rainfall patterns, topography, and land cover) [80] and fire [3] 
characteristics. It is worth mentioning that the selection of a single pre-fire (T1) image 
decreases the degree of automation of the BA mapping processing chain. In order to 
circumvent this issue, we made an adaptation in the implementation of AQM-LS in GEE 
concerning the pre-fire information. We considered the differences between successive 
composites instead of evaluating a single pre-fire (T1) image, i.e., we created multi-
monthly composites with the minimum NBR2 criterion to build both post-fire (T2) and 
pre-fire (T1) composites and calculated the difference between T2 and T1 composites. 

Machine learning is being used worldwide to improve burned area detection, 
particularly for Cerrado [6,9,10]. Here, we show that a machine learning approach based 
on multi-temporal composites and automated and regionalized sample selections, as a 
promising and flexible technique that can be applicable to regions with different fire 
patterns and characteristics, also contributes to minimizing the omission errors. It is worth 
noting that the algorithm presented here does not require human intervention and was 
developed using routines in GEE, making it possible to apply the method to other areas. 
Thus, future work is suggested to evaluate the application of the method in other biomes 
and areas with different fire regimes. 

Author Contributions: A.A.P. and R.L. conceived and designed the experiments; A.A.P. and J.A.R. 
performed the experiments; A.A.P., R.L., J.A.R., F.L.M.S., J.N., and D.O. analyzed the data; J.M.C.P., 

Figure 6. Burn scars (in blue) classified by AQM-LS algorithm in the presence of active fires (AF, respectively in red),
highlighting two cases where burn scars were classified in the absence of AF: (a) burn scar with 852 ha and (b) burn scar
with 368 ha. RGB 567 image composite from 6 August to 12 December 2015 for the 219/070 scene.

The differences between AQM-LS and AQM30m are observed in specific conditions,
such as those that include the presence of high frequency clouds and also in rocky field
areas. The results of the AQM-LS demonstrate greater accuracy, evidenced by smaller
errors of omission when compared to the AQM30m. In this context, another relevant
factor highlighted here is the use of change detection based on temporal composites to
quantify the burned areas at the end of the fire season. The proposed algorithm provided
competitive results and proved to be effective to produce more accurate results in the
quantification of burned areas than the change detection based on pairs of images, proposed
by AQM30m. This is because the composites merge the information of interest in a single
image, minimizing the effects of clouds [30,31], as observed in scene 218/073, where the
high concentration of clouds led to a high omission by the AQM30m and, in contrast, a low
omission from the AQM-LS. The multitemporal compositing approach is frequently used in
burned area mapping, especially using coarse spatial resolution data [16,34,49,65], but few
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studies applied this technique to Landsat data, particularly in Cerrado. Thus, our results
provide evidence for the suitability of Landsat multitemporal composites approaches to
enhance BA detection in such a savannah-like ecosystem. Furthermore, AQM-LS shows
improved capacity of BA classification in areas where there is spectral confusion between
the burn signal and rocks.

Despite the promising results obtained, we acknowledge that there are limitations to
the single class classifier, regarding the exclusion of pixels with high burning severity. This
is because this classifier has the characteristic of excluding areas considered by the SVM as
outliers. This limitation was also observed in previous works [6,10] and partially controlled
with the application of mathematical morphology filters, considering the neighborhood of
the areas classified as burned. Another limitation is the classifier parameters, which can
be more permissive or more restrictive, resulting in errors of commission or omission. In
this study, the choice of value parameters was made through cross-validation, which made
it possible to adjust these parameters, according to the characteristics of the fires in each
scene. For processing a large area, such as the entire Cerrado biome, the generalization
of this index may cause errors in classification for regions with different fire regimes. In
this context, for the generation of the end-of-season fire scar maps for the entire Brazilian
savanna in GEE, we trained the model and fitted these parameters by partitioning the
region into 19 subregions previously developed based on biophysical (rainfall patterns,
topography, and land cover) [80] and fire [3] characteristics. It is worth mentioning that
the selection of a single pre-fire (T1) image decreases the degree of automation of the BA
mapping processing chain. In order to circumvent this issue, we made an adaptation in the
implementation of AQM-LS in GEE concerning the pre-fire information. We considered
the differences between successive composites instead of evaluating a single pre-fire (T1)
image, i.e., we created multi-monthly composites with the minimum NBR2 criterion to
build both post-fire (T2) and pre-fire (T1) composites and calculated the difference between
T2 and T1 composites.

Machine learning is being used worldwide to improve burned area detection, par-
ticularly for Cerrado [6,9,10]. Here, we show that a machine learning approach based on
multi-temporal composites and automated and regionalized sample selections, as a promis-
ing and flexible technique that can be applicable to regions with different fire patterns and
characteristics, also contributes to minimizing the omission errors. It is worth noting that
the algorithm presented here does not require human intervention and was developed
using routines in GEE, making it possible to apply the method to other areas. Thus, future
work is suggested to evaluate the application of the method in other biomes and areas with
different fire regimes.
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