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Abstract: Usually radar target recognition methods only use a single type of high-resolution radar
signal, e.g., high-resolution range profile (HRRP) or synthetic aperture radar (SAR) images. In fact,
in the SAR imaging procedure, we can simultaneously obtain both the HRRP data and the corre-
sponding SAR image, as the information contained within them is not exactly the same. Although
the information contained in the HRRP data and the SAR image are not exactly the same, both are
important for radar target recognition. Therefore, in this paper, we propose a novel end-to-end two
stream fusion network to make full use of the different characteristics obtained from modeling HRRP
data and SAR images, respectively, for SAR target recognition. The proposed fusion network contains
two separated streams in the feature extraction stage, one of which takes advantage of a variational
auto-encoder (VAE) network to acquire the latent probabilistic distribution characteristic from the
HRRP data, and the other uses a lightweight convolutional neural network, LightNet, to extract
the 2D visual structure characteristics based on SAR images. Following the feature extraction stage,
a fusion module is utilized to integrate the latent probabilistic distribution characteristic and the
structure characteristic for the reflecting target information more comprehensively and sufficiently.
The main contribution of the proposed method consists of two parts: (1) different characteristics
from the HRRP data and the SAR image can be used effectively for SAR target recognition, and
(2) an attention weight vector is used in the fusion module to adaptively integrate the different
characteristics from the two sub-networks. The experimental results of our method on the HRRP
data and SAR images of the MSTAR and civilian vehicle datasets obtained improvements of at least
0.96 and 2.16%, respectively, on recognition rates, compared with current SAR target recognition
methods.

Keywords: target recognition; synthetic aperture radar; high-resolution range profile; fusion network;
variational auto-encoder; convolutional neural network

1. Introduction

Synthetic aperture radar (SAR) target recognition is a development of radar automatic
target recognition (RATR) technology. Because of the all-weather, all-day and long-distance
perception capabilities of SAR, SAR target recognition plays an important role in both
military and civil fields [1–4]. SAR target recognition is urgently required, given the
overwhelming amount of SAR data available, and the SAR target recognition has been a
wide concern at home and abroad.

As a type of data widely used in RATR [5–10], high-resolution range profile (HRRP)
data can be simultaneously obtained with the corresponding SAR image in the procedure
of SAR imaging. HRRP data obtained from SAR echoes have been widely used for target
recognition [11,12]. Figure 1 shows the relationship between HRRP data and the SAR image
based on the classical range–Doppler algorithm (RDA) [13]. HRRP data is a 1D distribution
of the radar cross section and can be obtained by the modulo operation after the range
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compression of the received SAR echoes. HRRP target recognition receives widespread
attention in the RATR community due to its relatively few complexities in signal acquisi-
tion [1–4]. A SAR image is the 2D image of the target derived by coherently processing
high-range resolution radar echoes and conducting translational motion compensation by
means of range cell migration correction (RCMC). The SAR images are easier and more
intuitive to understand, being interpretable for human visual perception, as each pixel
value reflects the surface microwave reflection intensity.

Figure 1. The data acquisition of HRRP data and real-valued SAR images from received SAR echoes.

Feature extraction is an important part of target recognition. The quality of the ex-
tracted features directly affects the performance of the target recognition. The development
of HRRP data and SAR images in RATR has both gone through a process from the extrac-
tion of manual features to the extraction of depth features [1–4,14,15], which also leads
to better RATR recognition performance. However, most of the existing RATR methods
based on HRRP data and SAR images only use a single type of data. According to Figure 1,
due to the different generation mechanisms, the information contained in the HRRP data
and the SAR images is not exactly the same. Since the HRRP data and the SAR images can
only represent the original SAR echoes from one aspect, using the above two data sources
together can lead us to obtain a more complete information representation of the original
SAR echoes. Modeling a complete interpretation using only unimodal data is theoretically
insufficient. Therefore, to reveal more complete information, we underwent to formulate
a novel framework to fuse the characteristics obtained from modeling HRRP data and
the SAR image for radar target recognition. To the best of our knowledge, this is the first
time that HRRP data and SAR images have been comprehensively utilized for radar target
recognition.

In this paper, we propose an end-to-end two-stream fusion network. The first stream
takes the HRRP data as the input, and draws support from the VAE, a deep probabilistic
model, to effectively extract the latent probabilistic distribution features. The other stream
takes the SAR image as its input. In this stream, a light weight CNN, LightNet, is utilized
to extract 2D visual structure features. A fusion module with an attention mechanism
is exploited to integrate the different characteristics extracted from two different signal
types into a global space, to obtain a single, compact, comprehensive representation
for radar target recognition that reflects target information more comprehensively and
sufficiently. In the fusion module, the attention weight vector learned automatically is
used to adaptively integrate the different characteristics, controlling the contribution of
each feature to the overall output feature on a per-dimension basis, remarkably improving
recognition performance. Finally, the fused feature is fed into a softmax layer to predict the
classification results. More specifically, the main contributions of the proposed two-stream
deep fusion network for target recognition are as follows:

1. Considering that both the SAR image and the corresponding HRRP data, in which
the information contained are not exactly the same, can be simultaneously obtained
in the procedure of SAR imaging, we apply two different sub-networks, VAE and
LightNet, in the proposed deep fusion network to mine the different characteristics
from the average profiles of the HRRP data and the SAR image, respectively. Through
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joint utilization of these two types of characteristics, the target representation is
more comprehensive and sufficient, which is beneficial for the target recognition task.
Moreover, the proposed network is a unified framework which can be end-to-end
joint optimized.

2. For the integration process on the latent feature of VAE and the structure feature
of LightNet, a novel fusion module is developed in the proposed fusion network.
The proposed fusion module takes advantage of the latent feature and the structure
feature to automatically learn an attention weight. Then, the learned attention weight
is used to adaptively integrate the latent feature and the structure feature. Compared
with original concatenation operator, the proposed fusion module can achieve better
recognition performance.

The rest of this paper is arranged as follows. Section 2 gives the related works of
RATR based on HRRP data and SAR images. Section 3 introduces the novel two-stream
fusion network. In Section 4, experiments based on the measured radar dataset and their
corresponding analysis are presented to verify the target recognition performance of the
proposed two-stream fusion method. Finally, the conclusions are presented in Section 5.

2. Related Work
2.1. Radar Target Recognition

Traditional radar target recognition methods are mostly based on manual feature
extraction. These hand-crafted features are inappropriate if there is not sufficient prior
knowledge on their application. Meanwhile, these features are mainly lower-level rep-
resentations, e.g., textural features and local physical structural features, which cannot
represent higher-level, abstract information.

Recently, deep learning has made progress by leaps and bounds in computer vision
tasks due to its powerful representation capacity.

In HRRP target recognition, owing to the successful application of deep neural net-
works in various tasks, there are several deep neural networks have been developed on
HRRP data. Part of the works focus on selecting suitable networks for HRRP recognition,
such as stacked auto-encoder (SAE) [14], denoising auto-encoder (DAE) [5] and recurrent
neural network (RNN) [16,17]. There are also some works which focus on how to use HRRP
data reasonably, such as using the average profile of HRRP data and sequential HRRP
data [18]. Nevertheless, those above-mentioned neural networks for HRRP recognition
only gain the point estimations of latent features, which lack descriptions of the underlying
probabilistic distribution. Considering the HRRP data do have the statistical distribution
characteristics as [19–24] described, probabilistic statistical models are exploited to reveal
the description of underlying probabilistic distribution, which can use prior information
according to a solid theoretical basis, and an appropriate prior will enhance model perfor-
mance. Meanwhile, probabilistic statistical models possess robustness and flexibility in
modeling [25]. At present, several probabilistic statistical models have been developed to
describe HRRP [23,26–28]. Nevertheless, traditional probabilistic models need to preset the
distribution patterns of data, such as Gaussian distribution and Gamma distribution, which
are relatively simple and have some limitations in their data fitting ability (the ability of
fitting the original data distribution) [29]. In addition, since traditional probabilistic models
are based on shallow architectures with simple linear mapping structures, they are only
good at learning linear features. However, different from traditional probabilistic models,
the VAE [6,30,31] introduces the neural network into probabilistic modelling. As we all
know, neural networks stack nonlinear layers to form a deep structure. This nonlinear
capability in VAE makes the data fitting more accurate, which can reduce the performance
degradation caused by inaccurate data fitting. The deep structure of VAE can mine deep
latent features of data with stronger feature separability. Because there is an explicit latent
feature to represent the distribution characteristics of data in VAE, the latent variable is
often directly used as the representational information of the sample for classification
tasks, including HRRP target recognition [7,32,33], and has achieved good performance.
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At present, VAE is the prevailing generative model. Meanwhile, the generative adversarial
network (GAN) is also well known as a popular generative model. Although the VAE
and the GAN both belong to generative models and they are usually mentioned at the
same time, they are different in many aspects. In VAE, there is an explicit latent feature
to represent the distribution characteristics of the data. Therefore, in the practical appli-
cation of VAE, in addition to the common sample generation, the latent variable of VAE
is often directly used as representational information of the sample for the classification
and recognition tasks. However, restricted by the inherent mechanism of GAN, there is no
explicit feature which can represent the distribution characteristics of data. The application
of GAN focuses on the related fields of sample generation and transfer learning.

In the target recognition of the SAR images, auto-encoder (AE) [1,3] and the RBM [2],
two widely used unsupervised deep neural network structures, are also employed and
have better performance. Among deep neural networks, CNN has become the dominant
deep learning approach, as in the VGG network [34], or ResNet. CNN architectures
are usually comprised of multiple convolutional layers (followed with activation layers),
pooling layers, and one or more fully connected layers. In CNNs, the local connection and
weight share in the convolution operation, and the pool operation can effectively reduce
the parameters and complexity, resulting in the invariance to translation and distortion
which makes the learned features more robust [4]. Another advantage of the CNNs is that
they can utilize convolution kernels to extract 2D visual structure information from the
apparent to the abstract through layer-by-layer learning. This visual structure information
plays a vital important role in image recognition [35–37].

In this paper, VAE and CNN are used as sub-networks for the HRRP data and the
SAR image, respectively.

2.2. Information Fusion

In recent years, with the development of sensor technology, the diversity of informa-
tion forms, the huge quantity of information, the complexity of information relations, and
demand of timeliness, accuracy and reliability in information processing are unprecedented.
Therefore, information fusion technology has been developed rapidly. Information fusion
denotes the process of combining data from different sensors or information sources to
obtain new or precise knowledge on physical quantities, events or situations [38].

According to the abstract level of information, information fusion methods can be
divided into three categories: data-level fusion [39], feature-level fusion [40] and decision-
level fusion [41]. Data-level and decision-level fusion are the two most easily implemented
information fusion methods, but their performance improvements are also limited. Re-
cently, it has also an important research topic to comprehensively and effectively use a
variety of information of radar data, such as multi-temporal [42] and multi-view [43] data,
to achieve better model performance. An inverse synthetic aperture radar (ISAR) target
recognition method based on both range profile (RP) data and ISAR images was proposed,
based on decision-level fusion of the classification results of RP data and ISAR images [44].
Feature-level fusion is the most effective method of information fusion, and it is often
used as an effective means to improve performance in deep learning research. Several
works focusing on image segmentation also use feature level fusion to fuse multi-level
features [45–47]. However, these works fuse the features of the same data at different scales,
while this paper fuses the features extracted from different data through their respective
feature extraction networks.

3. Two-Stream Deep Fusion Network Based on VAE and CNN

The framework of the proposed two-stream deep fusion network for target recognition
is depicted in Figure 2. As shown in Figure 2, the framework is briefly introduced as follows.

1. Data acquisition: as can be seen from Figure 1, the complex-valued high-range
resolution radar echoes can be obtained after range compression of the receiving SAR
echoes. Then, the HRRP data are obtained through the modulo operation. At the
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same time, based on the complex-valued high-range resolution radar echoes, the
complex-valued SAR image is obtained through azimuth focusing processing. Then,
the commonly used real-valued SAR image for target recognition can be obtained by
modulating the complex-valued SAR image.

2. VAE branch: based on the HRRP data, the average profile of the HRRP is obtained
by preprocessing. Then, the average profile is fed into the VAE branch to acquire the
latent probabilistic distribution as a representation of the target information.

3. LightNet branch: the other branch takes the SAR image as input and draws support
from a lightweight convolutional architecture, LightNet, to extract the 2D visual
structure information as another essential representation of the target information.

4. Fusion module: the fusion module is employed to integrate the distribution repre-
sentation and the visual structure representation to reflect more comprehensive and
sufficient information for target recognition. The fusion module merges the VAE
branch and the LightNet branch into a unified framework which can be trained in an
end-to-end manner.

5. Softmax classifier: finally, the integrated feature is fed into a usual softmax classifier
to predict the category of target.

Figure 2. Framework of the proposed two-stream deep fusion network. Here the black solid lines and arrows represent the
acquisition of inputs of the two sub-network branches, the blue solid lines and arrows represent the information flow in
the VAE model, the green solid lines and arrows represent the information flow in the LightNet, the brown solid lines and
arrows represent the information flow in the fusion module, and the red solid lines and arrows represent the final classifier.
µ and σ represent the learned mean and standard deviation from the VAE encoder. The dotted line indicates the calculation
of loss.

In Section 3.1, Section 3.2, Section 3.3, Section 3.4, Section 3.5, Section 3.6 some impor-
tant components, including the acquisition data of the HRRP data and the real-valued SAR
image from high-range resolution echoes, the VAE branch, the LightNet branch, the fusion
module, the loss function and the training procedure, are introduced concretely.

3.1. Acquisition of the HRRP Data and the Real-Valued SAR Image from High-Range Resolution
Echoes

Figure 1 in the Introduction gives the data acquisition procedure of the HRRP data and
real-valued SAR image from received the SAR echoes based on RDA. The received SAR
echoes are obtained from the radar-received signals through the dechirping and matched
filters. The RDA SAR imaging algorithm can be divided into two steps: range focusing
processing and azimuth focusing processing. The range focusing processing includes, in
turn range fast Fourier transformation (FFT), range compression and range IFFT. Then,
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the high-range resolution radar echoes can be obtained. The azimuth focusing processing
includes, in turn, the azimuth FFT, RCMC, azimuth compressing and azimuth IFFT.

Based on the high-range resolution radar echoes, the HRRP data are obtained through
the modulo operation. At the same time, based on the complex-valued high-range resolu-
tion radar echoes, the complex-valued SAR image is obtained through azimuth focusing
processing. The azimuth focusing processing includes, in turn, the azimuth fast Fourier
transformation (FFT), range cell migration correction (RCMC), azimuth compression and
azimuth IFFT. Then, the commonly used real-valued SAR image for target recognition can
be obtained by modulating the complex-valued SAR image. According to the introduction
of the SAR imaging procedure, we can see that the complex SAR image is obtained using
the high-range resolution radar echoes. Furthermore, given the complexity of the SAR
image, the corresponding high-range resolution radar echoes and HRRP data also can be
acquired [48,49].

Considering the mechanism inherent in the modulo operation, the modulo operation
for generating HRRP data and the operation of the module for generating real-valued
SAR images have different information loss characteristics. Therefore, although the HRRP
data and the real-valued SAR images used in the proposed method keep a one-to-one
correspondence, they cannot convert to each other anymore due to the operation of the
module. In other words, the information contained in the HRRP data and the real-valued
SAR images used in the proposed method are not exactly the same. The HRRP data and
the SAR images can only represent the original high-range resolution radar echoes from
one aspect each. Therefore, the features extracted from the HRRP data cannot be derived
from the SAR images with certainty.

3.2. The VAE Branch

Before radar HRRP statistical modeling, there are some issues should be considered
in practical application. The first is the time-shift sensitivity of HRRP. Centroid align-
ment [50] is commonly used as the time-shift compensation technique. We can eliminate
amplitude-scale sensitivity through amplitude-scale normalization, such as L2 normal-
ization. Considering the target-aspect sensitivity [15,32], it has been demonstrated that
the average profile has a smoother and more concise signal form than the single HRRP,
and can better reflect the scattering property of the target in a given aspect-frame. From
the perspective of signal processing, the average profile represents target’s stable physical
structure information in a frame [8,9,51]. One important characteristic of the average profile
is that it can depress the speckle effect of HRRPs. Furthermore, the average profile also
suppresses the impact of the noise spikes and the amplitude fluctuation property.

According to the literature [8,10,51], the definition of the average profile is

xAP =

[
1
M

M

∑
i=1

∣∣∣xP
i1

∣∣∣, 1
M

M

∑
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∣∣∣xP
i2

∣∣∣, . . . ,
1
M

M

∑
i=1

∣∣∣xP
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∣∣∣]T

=
1
M
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where
{

xP
i
}M

i=1 is an HRRP frame, with the ith HRRP sample xP
i =

[
xP

i1, xP
i2, . . . , xP

ir
]T ,

and r is the dimension of HRRP samples.
The VAE holds that the sample space can be generated by the latent variable space,

that is, sampling latent variables from a simpler latent variable space can generate the real
samples within the sample space. The latent variable in VAE can describe the distribution
characteristics of the data. The framework of VAE is illustrated in Figure 3. Given the
observations

{
xAP

n
}N

n=1 with N samples, the VAE exploits an encoder model with input
xAP and outputs the mean, µ, and the standard deviation, σ, of the latent variable, z.
Assuming the encoder model can be represented as fVAE_E with parameter ϕ, which is also
known as an inference model, qϕ

(
z
∣∣xAP ), the encoder of VAE can be formulated as follows:
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µ,σ = fVAE_E

(
xAP; ϕ

)
. (2)

Figure 3. Architecture of the VAE with Gaussian distribution assumption.

Here, the reparametrization trick is adopted to sample from the posterior z ∼ qϕ

(
z
∣∣xAP )

using the following:
z = µ+σ� ε (3)

where ε ∼ N (0 , I), and � represents an element-wise product.
Then, with the latent variable z as the input, the decoder model fVAE_D with parameter

θ outputs the reconstruction sample, x̂AP, which can be formulated as follows:

x̂AP = fVAE_E(z; θ). (4)

The decoder model is also known as a generative process with a probabilistic distribu-
tion: pθ

(
xAP |z

)
.

The goal of the VAE model is to use the arbitrary distribution qϕ

(
z
∣∣xAP ) to approxi-

mate the true posterior distribution pθ

(
z
∣∣xAP ). Formally, as shown in Equation (5), the KL

divergence is used to measure the similarity between qϕ

(
z
∣∣xAP ) and pθ

(
z
∣∣xAP )pθ

(
z
∣∣xAP ),

as follows:

KL
(

qϕ

(
z
∣∣∣xAP

)∥∥∥pθ

(
z
∣∣∣xAP

))
= log pθ

(
xAP

)
− LB

(
θ, ϕ; xAP

)
(5)

where

LB
(

θ, ϕ; xAP
)
= Eqϕ(z|xAP)

(
log pθ

(
xAP |z

))
− KL

(
qϕ

(
z
∣∣∣xAP

)
‖pθ(z)

)
(6)

is the variational evidence lower bound (ELBO) [52,53].
For the given observations, pθ

(
xAP) is a constant. Thus, minimizing the

KL
(
qϕ

(
z
∣∣xAP )∥∥pθ

(
z
∣∣xAP ) ) is equivalent to the ELBO maximization. Therefore, the loss of

VAE on the data xAP can be written as follows:

LVAE
(
θ, ϕ; xAP) = LB

(
θ, ϕ; xAP)

= Eqϕ(z|xAP)

(
log pθ

(
xAP |z

))
− KL

(
qϕ

(
z
∣∣xAP )‖pθ(z)

)
. (7)
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In Equation (7), the first term can be regarded as reconstruction loss, which also can
be written as follows:

Eqϕ(z|xAP)

(
log pθ

(
xAP |z

))
=
∥∥∥xAP − x̂AP

∥∥∥2

2
(8)

This teaches the decoder to reconstruct the data and suffers a cost if the output of
decoder cannot reconstruct the data accurately. Usually, we can use a l2-norm between the
original data xAP and the reconstructed data x̂AP as the reconstruction loss. The second
term is the KL divergence between the encoder’s distribution qϕ

(
z
∣∣xAP ) and the prior pθ(z).

Typically, if we let the prior over the latent variables be the centered isotropic multivariate
Gaussian pθ(z) = N (z; 0 , I), the KL divergence in Equation (7) can be computed as
follows:

KL
(

qϕ

(
z
∣∣∣xAP

)
‖pθ(z)

)
=

1
2

J

∑
j=1

(
1 + log

(
σj
)2 −

(
µj
)2 −

(
σj
)2
)

(9)

where µj and σj represent the jth element in the µ and σ, respectively, and J denotes the
dimensionality.

Then, Equation (7) can be rewritten as follows:

LVAE

(
θ, ϕ; xAP

)
=
∥∥∥xAP − x̂AP

∥∥∥2

2
+

1
2

J

∑
j=1

(
1 + log

((
σj
)2
)
−
(
µj
)2 −

(
σj
)2
)

(10)

where ‖·‖2 denotes the l2-norm.
In practice, the encoder model is implemented with a three-layer, fully connected

neural network. The units in the encoder model are 512, 256, and 128 respectively. Moreover,
the decoder model is also implemented with a three-layer, fully connected neural network.
The units in the decoder model are 128, 256 and 512 respectively. The dimensions of the
latent variable z, the mean µ and the standard deviation σ are set to 50.

3.3. The LightNet Branch

Among deep neural networks, CNNs have made remarkable progress due to their
characteristics of local connection and weight sharing. CNNs take advantage of convolution
kernels to extract 2D visual structure information through layer-by-layer processing. Many
excellent convolutional network architectures, such as VGG and ResNet, have come to
dominate many fields. Nevertheless, considering the limited data volume, these above-
mentioned networks still have a larger number of parameters for the task of SAR target
recognition. Therefore, we applied a lightweight CNN, called LightNet, which has very
few parameters and can achieve approximate performance.

The LightNet architecture is mainly comprised of convolution layers and pooling
layers. Following each convolution layer, there is a rectified linear unit (ReLU) as an
activation function and a batch normalization layer which allows the network to use much
higher learning rates and be less careful about initialization [54]. The architecture of the
LightNet is shown in Table 1. In the LightNet, there are only 5 convolutional layers. The
kernel size in the first convolutional layer is 11 × 11, which is a larger kernel size, for
gaining a larger receptive field. In the following three convolutional layers, the kernel
sizes are 5 × 5. Considering that the fully connected layer in the original LightNet, which
is usually used to transform feature maps to a feature vector at the final position in the
network, has many parameters, we use a convolutional layer with a 3 × 3 kernel and no
padding to replace a common fully connected layer to generate a feature vector from the
feature maps. The convolutional layer has fewer parameters than the fully connected layer.
Compared with global pooling, the convolutional layer can not only learn more abstract
features but also adjust the dimensions of the feature vector.
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Table 1. The architecture of the LightNet used in our method.

Input Operator Kernel Size Number of
Channels Strides

128 × 128 × 1 Convolution 11 16 2
62 × 62 × 16 Pooling 2 16 2
31 × 31 × 16 Convolution 5 32 1
27 × 27 × 32 Pooling 2 32 2
14 × 14 × 32 Convolution 5 64 1
10 × 10 × 64 Pooling 2 64 2

5 × 5 × 64 Convolution 5 128 1
3 × 3 × 128 Convolution 3 100 1

The LightNet network considers the SAR image, xI , as an input to extract the 2D visual
structure information, m, as another essential representation of the target information.
Assuming fLNet represents the LightNet with parameter ψLNet, then the LightNet branch
can be formulated as follows:

m = fLNet

(
xI ; ψLNet

)
(11)

3.4. Fusion Module

In the feature extraction stage, a VAE model is employed on the HRRP data to extract
the latent probabilistic distribution information as a feature, and a lightweight LightNet is
used on the SAR image to extract the structure features. In the neural network framework,
the most common feature fusion approaches are the concatenation operation and element-
wise addition. The concatenation operation combines multiple original features according
to the feature dimensions to generate a fused feature, and the dimension of the fused
features is equal to the sum of the original feature dimensions. Although it is simple
to realize, the dimension of the fused feature is relatively high, which brings a greater
pressure on the subsequent classifiers, including the increase in the number of parameters
and the cost of optimizing the parameters. The element-wise addition is also a common
feature fusion method. Based on the element-wise addition, the fusion feature is obtained
by adding the original features, element by element, which keeps the dimension consistent
with the original features and requires smaller parameters on the subsequent classifiers
than the concatenation operation. In essence, element-wise addition assumes that the
importance of different features is the same.

To reflect the target information more comprehensively and sufficiently, a novel fusion
module was exploited to integrate the latent feature obtained from VAE and the structure
feature obtained from LightNet, which can also merge the two streams into a unified
framework with end-to-end joint optimization. The proposed fusion module is a further
extension on the element-wise addition inspired by the gated recurrent unit (GRU) [55]. On
the one hand, we use an attention weight vector, not a single value, to integrate the different
features. More clearly, in the feature fusion, we no longer think that each dimension in a
feature vector shares the same weight, but each dimension of the feature vector has its own
weight coefficient. The influence of features that contribute more to the target task on the
fusion features is increased by considering the differences in the importance of each feature
more carefully. Likewise, the influence of features that contribute less to the target task on
fusion features is weakened. On the other hand, compared with traditional, empirically set
weight values, the attention weight vector is learned automatically according the target
task, which can perform an adaptive adjustment of feature weights with the samples and
categories.
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Figure 4 shows the flowchart of the fusion module. At first, the latent feature, z, and
the structure feature, m, are fed into fully connected layers, respectively, to generate the
features Z̃ ∈ Rd×1 and M̃ ∈ Rd×1:

Z̃ = ReLU(WZ · z)
M̃ = ReLU(WM ·m)

(12)

where features Z̃ and M̃ have the consistent dimension d which was set to 50 for the
experiments. ReLU(·) denotes the ReLU activation operation, and WZ and WM are the
parameters in the fully connected layers, respectively. Here, the fully connected layers
are applied not only to further map two features into a global space, but also to make
the dimension and order contain consistent correspondence for subsequent element-wise
addition, i.e., the relationship between the ith feature in Z̃ and the ith feature in M̃ is a
one-to-one correspondence relationship.

Figure 4. Flowchart of the proposed fusion module.

Then, the latent feature z and the structure feature m are concatenated into a long
feature vector, and a fully connected layer is used on the long feature vector to learn the
attention vector α ∈ Rd×1:

α = sigmoid(Wα · [z, m]) (13)

where sigmoid(·) denotes the sigmoid activation operation, and Wα denotes the parameter.
Drawing support from the sigmoid activation, the value in the attention vector is in
the range [0, 1]. Here, the attention mechanism is derived from the selective attention
behavior of the human brain when processing information. The human brain scans the
total information quickly to get the focus area, and then invests more attention resources in
this area to obtain more detailed information of the target task, while suppressing other
useless information. This method has greatly improved the means of screening high-
value information from a large quantity of information. Similar to the selective attention
mechanism of human beings, the core goal of the attention mechanism we used was to
select the information that as most critical to the current task from a large quantity of
information. Therefore, a fully connected layer with activation was used to simulate the
neurons in the human brain. The input of the fully connected layer was all of the sample
information, i.e., all the features of the sample. By using the fully connected layer to sense
all the information, we could determine the focus area/features, and then invest more
attention on the focus features while suppressing other useless information. That is to
say, we can know where to focus and the degree to which to focus from the output of the
fully connected layer. Therefore, the output of the fully connected layer is called attention
weight vector.
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Finally, the attention vector αwas used as a weight to sum the Z̃ and M̃. Due to the
value of α being in range [0, 1], the value in 1−α is also in range [0, 1]. The attention vector
can be regarded as a weight vector which controls the contribution of the feature Z̃ to the
overall output of the unit. In contrast, considering the weight normalization, the weight of
feature M̃ can be directly obtained by the operation 1−αwithout an extra learning process.
More concretely, the attention vector α is element-wise multiplied with the feature Z̃, and
the vector 1−α is element-wise multiplied with the feature M̃, and then the element-wise
sum operation is used to integrate these two features:

F = α⊗ Z̃ + (1−α)⊗ M̃ (14)

where ⊗ represents the element-wise multiply operation, 1 is a vector whose elements are
all valued one, and F represents the fusion feature.

Assuming f f usion represents the overall fusion module with the parameter ψ f usion,
then the fusion module can be summarized as follows:

F = f f usion

(
z, m; ψ f usion

)
(15)

3.5. Loss Function

Following the feature extraction stage and the fusion module, the fusion feature F
was fed into a softmax layer to predict the classification results {ŷn}

N
n=1, which can be

formulated as follows:
ŷ = f c(F; ψc) (16)

where f c represents a usual softmax classifier with parameter ψc.
The supervised constraint ensures that the prediction label ŷn is closed to the true

label yn via the cross-entropy loss function, as follows:

Llabel(yn, ŷn) = −
K

∑
k=1

yk
n log

(
ŷk

n

)
(17)

where K represents the number of classes.
Therefore, the total loss function of the proposed deep fusion network for target

recognition is a combination of Llabel and LVAE (described in formula (10)) as follows:

Ltotal = Llabel + LVAE (18)

3.6. Training Procedure

Based on the total loss function, Ltotal , the backpropagation algorithm where we used
stochastic gradient descent (SGD), was used for the proposed network for end-to-end
joint optimization. The total training procedure of the proposed network is outlined in
Algorithm 1.
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Algorithm 1. Training Procedure of the Proposed Network

1. Set the architecture of the proposed network, including the number of fully connected layers,
the units in each fully connected layer, the size of convolutional kernels, the strides and the
number of channels, and so on.
2. Initialize the network parameters ϕ, θ, ψLNet, ψ f usion and ψc.
3. while not converged do
4. Randomly sample a mini-batch {Xb}B

b=1 and its corresponding label {yb}
B
b=1 from the whole

dataset.
5. Based on each data Xb in the mini-batch, generate the average profile xb

AP and the SAR
image xb

I .
6. Sample random noise {εn}N1

n=1 from standard Gaussian distribution for re-parameterization.
7. With xb

AP as input, generate the latent distribution representation z using Equations (2) and (3),
and then generate the reconstruction x̂AP based on Equation (4).
8. With xb

I as input, generate the structure information m using Equation (11).
9. Based on Equation (15), generate integrated feature F.
10. Based on integrated feature F, obtain prediction ŷ with Equation (16).
11. Compute the total loss Ltotal .
12. Update network parameters ϕ, θ, ψLNet, ψ f usion and ψc via SGD on the total loss Ltotal .
13. end while

4. Results
4.1. Experimental Data Description

Experiments were carried out based on the HRRP data and SAR images of the moving
and stationary target acquisition and recognition (MSTAR) dataset, which was collected
through a HH polarization mode SAR sensor working in the X-band with 0.3 × 0.3 m
resolution in spotlight mode [56]. The MSTAR dataset, a measured benchmark dataset,
is widely used for evaluating SAR target recognition performance. The MSTAR dataset
includes ten different ground military targets, i.e., BMP2 (tank), BTR70 (armored vehicle),
T72 (tank), BTR60 (armored vehicle), 2S1 (cannon), BRDM (truck), D7 (bulldozer), T62
(tank), ZIL131 (truck) and ZSU234 (cannon). Among them, BMP2 and T72 have variants in
the test stage. The depression angles of the samples for each target category are 15◦ and
17◦, and the aspect angles cover a range from 0◦ to 360◦. Referring to the existing literature,
this paper focuses on two experimental scenarios: three-target data SAR target recognition
and ten-target data SAR target recognition. The specific details of the experimental data
setting on the above-mentioned two experimental scenarios are listed in Tables 2 and 3,
respectively. Optical image examples of the ten different targets are shown in Figure 5, and
the corresponding SAR image examples are listed in Figure 6.

Table 2. Details of Training and Test Samples for the Three-Target Dataset.

Dataset
BMP2 BTR70 T72

C21 9566 9563 C71 132 S7 812

Training samples (17◦) 233 0 0 233 232 0 0
Test samples (15◦) 196 196 195 196 196 191 195



Remote Sens. 2021, 13, 4021 13 of 23

Table 3. Details of Training and Test Samples for the Ten-Target Dataset.

Dataset BMP2 BTR70 T72 BTR60 2S1 BRDM D7 T62 ZIL
131

ZSU
234

Training samples
(17◦)

233
(C21) 233 232

(132) 255 299 298 299 299 299 299

Test samples
(15◦)

196
(C21)

196
(9566)

195
(9563) 196 196

(132)
191
(S7)

195
(812) 195 274 274 274 273 274 274

Figure 5. SAR image examples of ten different targets in the MSTAR dataset.

Figure 6. The average profile examples of the generated HRRP data of the ten different targets in the MSTAR dataset.

For the MSTAR data, we use the complex-valued SAR images provided by the U.S.
Defense Advanced Research Projects Agency and the U.S. Air Force Research Laboratory
to get the high-range resolution radar echoes in reverse without information loss, in
accordance with the reference [11]. And then, based on the high-range resolution radar
echoes, the HRRP data can be generated, as shown in Figure 1. The average profile
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examples of the generated HRRP data of the ten different targets are listed in Figure 6. The
real-valued SAR image was directly obtained by a modulo operation on the complex-valued
SAR images.

4.2. Evaluation Criteria

For the quantitative analysis, we use two widely used criteria, namely, the overall
accuracy and the average accuracy, as the evaluation criteria to evaluate target recognition
performance.

overall accuracy =

NC
∑

i=1
Tri

NC
∑

i=1
Qi

(19)

average accuracy =
1

NC

NC

∑
i=1

Tri
Qi

(20)

where Tri represents the number of test samples recognized correctly in class i, Qi represents
the total number of test samples in class i, and NC represents the number of classes.

The higher the values of the overall accuracy and the average accuracy, the better the
performance of target recognition method.

4.3. Three-Target MSTAR Data Experiments

In this section, we discuss the effectiveness of the proposed method on the three-target
MSTAR data. We gave the confusion matrix of the proposed deep fusion network on
three-target MSTAR data in Table 4. The confusion matrix is a widely used performance
evaluation method for target recognition. In a confusion matrix, each row represents the
actual category, while each column is the predicted category, and the elements denote the
probabilities that the targets are recognized as a certain class. In particular, the elements
on the diagonal represent the recognition accuracy. From Table 4, it is easy to see that the
accuracy on BTR70 was 0.9898, the accuracy on T72 was 0.9880, and the accuracy on BMP2
was 0.9642, which shows the proposed method has better recognition performance.

Table 4. Confusion Matrix of the Proposed Method on Three-Target Data.

Type BMP2 BTR70 T72

BMP2 0.9642 0.0034 0.0324
BTR70 0.0102 0.9898 0

T72 0.0103 0.0017 0.9880

In order to further validate the efficiency of the proposed method, we compared the
proposed method with some traditional SAR target recognition methods, i.e., directly
applying the amplitude feature of the original SAR images, principal component analysis
(PCA), the template matching method, dictionary learning and JDSR (DL-JDSR) [57], sparse
representation in the frequency domain (SRC-FT) [58], and Riemannian manifolds [59].
Moreover, the proposed method was compared with other deep learning-based target
recognition methods without data augmentation, as seen in Table 5. The compared deep
learning-based target recognition methods include the original auto-encoder (AE), denois-
ing AE (DAE), linear SVM, the Euclidean distance restricted AE [3] (Euclidean-AE), the
VGG convolutional neural network (VGGNet), A-ConvNets [60], the early feature fusion of
a model-based geometric hashing (MBGH) approach and a CNN approach (MBGH+CNN
with EFF) [61], compact convolutional autoencoder (CCAE) [62], ResNet-18 [63], ResNet-
34 [63] and DenseNet [64]. Figure 7 shows the intuitional accuracy results of the proposed
method and the above-mentioned compared methods. Table 5 lists their detailed accuracies
with the three-target MSTAR data and their overall and average accuracies.
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Table 5. Detailed Accuracies of Different Types on The Three-Target Data via Some SAR Recogni-
tion Methods.

BMP2 BTR70 T72 Overall
Accuracy

Average
Accuracy

proposed method 0.9642 0.9898 0.9880 0.9780 0.9807
original image 0.7325 0.9643 0.9278 0.8491 0.8748

PCA 0.8330 0.9541 0.9106 0.8835 0.8992
Template matching 0.9148 1 0.9244 0.9311 0.9464

DL-JDSR [65] 0.9301 0.9898 0.9312 0.9391 0.9503
AE 0.8756 0.9439 0.8351 0.8681 0.8848

DAE 0.7922 0.9796 0.9519 0.8871 0.9079
Euclidean-AE [3] 0.9421 0.9388 0.9416 0.9414 0.9408

VGGNet 0.8859 1 0.9485 0.9289 0.9448
A-ConvNets 0.9199 0.9898 0.9399 0.9385 0.9498

ResNet-18 0.9642 1 0.9485 0.9626 0.9709
ResNet-34 0.9676 0.9847 0.9622 0.9678 0.9715
DenseNet 0.8756 0.9592 0.8625 0.8821 0.8991

SRC-FT [58] 0.9625 1 0.9519 0.9631 0.9715
Riemannian manifolds [59] 0.9574 0.9847 0.9570 0.9610 0.9664

CCAE [62] 0.9523 1 0.9742 0.9684 0.9755
MBGH+CNN with EFF 0.9387 0.9643 0.9313 0.9389 0.9448

Figure 7. Three-target accuracies obtained by different SAR target recognition methods. (a) overall accuracy;
(b) average accuracy.

From Figure 7 we can clearly see that, compared with the original image method
and the PCA, template matching, DL-JDSR, SRC-FT and Riemannian manifold methods,
our proposed method performs better on both overall accuracy and average accuracy.
The proposed method also yields higher overall and higher average accuracy than the
compared deep learning methods, i.e., AE, DAE, Euclidean-AE, VGGNet, A-ConvNet,
MBGH+CNN with EFF, ResNet-18, ResNet-34 and DenseNet. As shown in Table 5, for
the BMP2 and the T72 types with variants in the test stage, the accuracies of the proposed
method attained 0.9642 and 0.9880, respectively, which outperformed all other compared
target recognition methods. For the BTR70 type, which does not contain variants, the
template matching method and VGGNet could correctly recognize all test samples, at the
same time, the accuracies of the proposed method, DL-JDSR and the A-ConvNet were
also 0.9898, which is very close to 1. In terms of overall accuracy and average accuracy in
Table 5, two comprehensive evaluation criteria, we can see that the proposed method is at
least 0.96% and 0.52% higher, respectively than other compared methods.
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4.4. Ten-Target MSTAR Data Experiments

In this section, we evaluate the target recognition performance of the proposed method
with the ten-target MSTAR data. Similar to the Section III-C, the confusion matrix is shown
at first in Table 6. From the Table 6 we can see that the accuracy of all target types, except
T72, was over 0.97. The best accuracy is shown in ZIL131, where the test samples were
all correctly classified. The accuracies on BTR60, D7 and ZSU234 were close to 1, and the
worst accuracy was over 0.94.

Table 6. Confusion Matrix of the Proposed Method on Ten-Target Data.

Type BMP2 BTR70 T72 BTR60 2S1 BRDM D7 T62 ZIL131 ZSU234

BMP2 0.9710 0.0034 0.0239 0.0017 0 0 0 0 0 0
BTR70 0.0051 0.9949 0 0 0 0 0 0 0 0

T72 0.0275 0.0034 0.9433 0 0.0069 0 0 0.0034 0.0069 0.0086
BTR60 0 0 0.0051 0.9846 0.0103 0 0 0 0 0

2S1 0.0109 0.0036 0.0073 0 0.9745 0 0 0 0.0036 0
BRDM 0.0109 0 0 0.0036 0 0.9818 0 0 0.0036 0

D7 0 0 0 0 0 0 0.9927 0 0.0073 0
T62 0 0 0.0183 0 0 0 0 0.9707 0.0110 0

ZIL131 0 0 0 0 0 0 0 0 1 0
ZSU234 0 0 0 0 0 0 0 0 0.0036 0.9964

We compare the performance of the proposed method with the original image,
PCA, template matching, DL-JDSR, AE, DAE, Euclidean-AE, VGG network, A-ConvNets,
MBGH+CNN with EFF, ResNet-18, ResNet-34 and DenseNet methods in Figure 8
and Table 7.

Figure 8. Ten-target accuracies obtained by different SAR target recognition methods. (a) Overall accuracy; (b) average
accuracy.

As shown in Figure 8 and Table 7, our proposed method outperforms all the other
compared methods. Especially, for the first nine types, i.e., BMP2, BTR70, T72, BTR60,
2S1, BRDM, D7 and T62, the proposed method yielded the highest accuracy. For the
ZSU234 type, the A-ConvNet method has the highest accuracy and the proposed method
followed closely, with an accuracy of 0.9964. In terms of overall accuracy, we can see that
the proposed method is at least 4% higher than the other compared methods. The proposed
method is about 4% higher in terms of average accuracy.
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Table 7. Detailed Accuracies of Different Types in the Ten-Target Data via Some SAR Recognition Methods.

BMP2 BTR70 T72 BTR60 2S1 BRDM D7 T62 ZIL131 ZSU234 Overall
Accuracy

Average
Accuracy

Proposed method 0.9710 0.9949 0.9433 0.9846 0.9745 0.9818 0.9927 0.9707 1 0.9964 0.9760 0.9810
Original image 0.6899 0.8673 0.7131 0.7897 0.4453 0.9307 0.8905 0.7802 0.9124 0.9562 0.7774 0.7975

PCA 0.7070 0.8520 0.7715 0.8051 0.6971 0.7920 0.9598 0.8645 0.7956 0.9453 0.8030 0.8190
Template
matching 0.8637 0.9235 0.6993 0.9179 0.8577 0.8869 0.9818 0.9670 0.9307 0.9745 0.8758 0.9003

DL-JDSR [65] 0.8876 0.9388 0.8625 0.8821 0.8905 0.9161 0.9854 0.9670 0.9234 0.9818 0.9148 0.9235
AE 0.8245 0.9082 0.6735 0.8718 0.9161 0.9562 0.9708 0.9451 0.9234 0.9891 0.8704 0.8979

DAE 0.7155 0.8980 0.7371 0.7436 0.5657 0.9599 0.9088 0.8498 0.9380 0.9672 0.8089 0.8284
Euclidean AE [3] 0.8790 0.9286 0.7955 0.9179 0.9380 0.9672 0.9891 0.9414 0.9453 0.9964 0.9129 0.9298

VGGNet 0.7683 0.9745 0.8872 0.9270 0.9818 0.9964 0.9780 0.9891 0.9854 0.8883 0.9166 0.9376
A-ConvNets 0.8961 0.9745 0.7887 0.9641 0.9197 0.9818 0.9526 0.9597 0.9891 1 0.9219 0.9426

ResNet-18 0.9216 0.9541 0.8488 0.8923 0.9562 0.9161 0.9051 0.9341 0.8869 0.9562 0.9107 0.9171
ResNet-34 0.8842 0.9286 0.8677 0.7795 0.9343 0.8759 0.9011 0.9234 0.9161 0.9380 0.8932 0.8949
DenseNet 0.9438 0.9745 0.9158 0.8410 0.9453 0.9526 0.9194 0.9745 0.9234 0.9708 0.9360 0.9361

MBGH+CNN
with EFF 0.8518 0.8929 0.9553 0.8307 0.8723 0.9015 0.8864 0.8942 0.9343 0.8942 0.8876 0.8914

4.5. Model Analysis
4.5.1. Ablation Study

In order to gain a better understanding of the network’s behavior and prove that the
fusion of HRRP data and SAR images is beneficial to SAR target recognition, an ablation
study is always adopted to see how each component affects the performance where one
or more certain components of the network are removed or replaced. Therefore, in this
sub-section, several controlled experiments are designed. Except for certain examined
components, the rest of settings remain consistent. The ablation study experiment results
on the three-target MSTAR data are summarized in Table 8. In Table 8, the addition
denotes the element-wise addition of the fusion operation and the concatenation denotes
the concatenation fusion operation, which are usually adopted as a fusion module in multi-
stream network architectures [66,67]. From rows 1 and 2 in Table 8, it can be observed
that recognition accuracy using only the HRRP data through the VAE model was 0.8813
for overall accuracy and 0.8399 for average accuracy. Moreover, the recognition accuracy
using only the SAR images through LightNet was 0.9487 for overall accuracy and 0.9612
for average accuracy. The VAE model and the LightNet can extract different features from
different domains, and both of them gain good recognition performance. Nevertheless,
when comparing rows 1 and 2 with rows 3, 4, 5 and 6, it can be observed that the fusion of
the latent feature of the HRRP data obtained from the VAE and the structure features of the
SAR images obtained from LightNet are beneficial for reflecting target information more
comprehensively and sufficiently to achieve better recognition performance. Furthermore,
as shown in rows 3, 4, 5 and 6, on the basis of fusing VAE and LightNet, the performance
improvements brought by the different fusion modules were different. The decision-
level fusion module had 0.9278 overall accuracy and 0.9357 average accuracy, which
were lower than the accuracy only using LightNet. In fact, simple decision-level fusion
can indeed get robust performance but finds it difficult to obtain the best performance.
The utilization of the element-wise addition module had an 0.9568 overall accuracy and
0.9664 average accuracy; the concatenation module had an 0.9648 overall accuracy and an
0.9715 average accuracy, and the proposed fusion module produced markedly superior
recognition accuracy of 0.9780 for overall accuracy and 0.9807 average accuracy. From
the comparison we can see that the proposed fusion module achieved the best fusion
performance.
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Table 8. Ablation Study.

VAE Stream LightNet
Stream

Fusion Module
Overall

Accuracy
Average
AccuracyDecision

Level Fusion Addition Concatenation Proposed
Fusion Module

√
× × × × × 0.8813 0.8399

×
√

× × × × 0.9487 0.9612√ √ √
× × × 0.9278 0.9357√ √

×
√

× × 0.9568 0.9664√ √
× ×

√
× 0.9648 0.9715√ √

× × ×
√

0.9780 0.9807

4.5.2. Feature Analysis

The quantitative performance analysis has been evaluated through comparisons to
existing methods and detailed ablation studies to reveal the effectiveness of the proposed
method. In this sub-section, we adopt t-SNE [68] to visualize the fusion feature learned by
the proposed method, the features learned through the VAE model and the LightNet, as
well as the amplitude feature of the original SAR images in Figure 9 on the three-target
data. From Figure 9, it can be observed that the features learned by the proposed fusion
network show a better feature distribution, in which each class gathers more closely and
the margin between them is much more distinct when compared with other features.

Figure 9. T-SNE visualization of the learned features for (a) the original amplitude feature, (b) the VAE model, (c) LightNet,
and (d) the proposed fusion network.

4.5.3. FLOPs Analysis

In Table 9, we give the floating point of operations (FLOPs) for the VAE branch, the
LightNet branch, the proposed network and the VGG network for comparison.

Table 9. FLOPs.

VAE
Branch

LightNet
Branch

Proposed
Network

VGG
Network

ResNet-
18

ResNet-
34 DenseNet

FLOPs 3.4 × 105 2.3 × 107 2.33525 × 107 5.14 × 109 1.9 × 109 3.6 × 109 5.7 × 109

By analyzing the calculation principle of the convolutional layer, we get that the
computational complexity of one convolutional layer is Cin,clCout,clKcl

2Mout,cl
2, where

Cin,cl and Cout,cl are the number of channels in the input and output feature map of the
convolutional layer, Kcl is the size of the convolution kernel, and Mout,cl is the size of
the output feature map. For one fully connected layer, the computational complexity
is Nin. f l Nout, f l , where Nin. f l is the number of input nodes of the fully connected layer
and Nout, f l is the number of output nodes. Therefore, according to the architecture and
details of the LightNet branch shown in Table 1, we obtain the FLOPs for the LightNet
branch as 2.3 × 107 by substituting the relevant parameters into the formula of compu-
tational complexity. Similarly, according to the introduction of the VAE and the detail of
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its architecture presented in Section II-B, we can obtain the FLOPs for the VAE branch as
3.4 × 105. In the proposed network, besides the LightNet branch and the VAE branch,
there is a fusion module with 1.25 × 104 FLOPs. Therefore, the total FLOPs of the pro-
posed network are 2.33525 × 107. By substituting the relevant parameters in the VGG
network, ResNet-18, ResNet-34 and DenseNet, we can obtain that the FLOPs for VGG were
5.14 × 109, 1.9 × 109, 3.6 × 109 and 5.7 × 109, respectively.

It can be seen from Table 9 that although the VGG network, ResNet-18, ResNet-34 and
DenseNet have deeper architectures and require more FLOPs, the recognition performance
of these methods on all datasets was lower than that of the proposed method.

4.6. Experiments on Civilian Vehicle Dataset

The civilian vehicles dataset was provided by the U.S. Air Force Research Laboratory.
The sensor collecting the civilian vehicles data is a high-resolution Circular SAR and the
wave band is X-band. The civilian vehicles data includes ten different civilian vehicle
targets, i.e., Toyota Camry, Honda Civic 4dr, 1993 Jeep, 1999 Jeep, Nissan Maxima, Mazda
MPV, Mitsubishi, Nissan Sentra, Toyota Avalon and Toyota Tacoma. The aspect angles
cover from 0◦ to 360◦, and the depression angles of the samples for each target category is
30◦. The HH channel as used for training and the VV channel was used for testing. The
number of training and test samples in each category were 360. Importantly, the provided
data were high-range resolution radar echoes. For the proposed method, the HRRP data
and real-valued SAR images were obtained according to the procedure shown in Figure 1.

We compared the performance of the proposed method with some SAR target recog-
nition methods, including directly applying linear SVM to the original SAR images, PCA
followed by linear SVM, the template matching method, DL-JDSR, AE, DAE, the VGG
network, A-ConvNet, MBGH+CNN with EFF, ResNet-18, ResNet-34 and DenseNet in
Figure 10 and Table 10. Here, due to the number of test samples for each category being
the same, the overall accuracy and the average accuracy are the same, too, as formulated in
Equations (19) and (20). Thereby, only the total accuracy is listed in Table 10. As shown in
Figure 10 and Table 10, our proposed method outperforms all the other compared methods.
Especially for the 1993 Jeep, 1999 Jeep and Toyota Avalon, the proposed method yielded
the highest accuracy. For the other categories, the accuracy of our method was not the
highest, but it was also among the best. And in terms of total accuracy, we can see that the
proposed method was at least 2.1% higher than the other compared methods.

Figure 10. Ten-target accuracy on civilian vehicle data obtained by different SAR target recogni-
tion methods.
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Table 10. Detailed Accuracies of Different Types on Civilian Vehicle Data via Some SAR Recognition Methods.

Toyota
Camery

Honda
Civic
4dr

1993
Jeep

1999
Jeep

Nissan
Maxima

Mazda
MPV

Mitsu-
Bishi

Nissan
Sentra

Toyota
Avalon

Toyota
Tacoma

Total
Accuracy

Proposed
method 0.8694 0.9472 1 0.9306 0.9639 0.9528 0.9111 0.9889 1 0.9667 0.9530

Original image 0.9666 0.9306 0.9861 0.6528 0.7833 1 0.9 0.6111 1 1 0.8830
PCA 0.9444 0.9389 0.9556 0.6944 0.8278 1 0.9583 0.7306 1 1 0.9050

Template
matching 0.9083 0.9194 0.9389 0.8722 0.9167 0.9444 0.8639 0.8333 0.9444 0.9861 0.9128

DL-JDSR 0.8833 0.9806 0.9750 0.9111 0.9639 0.8222 0.9583 0.9444 0.85 1 0.9289
AE 0.9944 0.9639 0.9389 0.8722 0.8778 0.9694 0.9639 0.6333 1 1 0.9213

DAE 0.9889 0.9722 0.9917 0.85 0.8833 0.9722 0.9278 0.6833 0.9972 1 0.9267
VGGNet 0.8278 0.7694 0.9611 0.7 0.9361 0.9139 0.8417 0.9194 0.9750 0.9250 0.8769

A-ConvNets 0.8694 0.9306 0.9972 0.8444 0.9917 0.9528 0.7306 0.9972 1 0.9917 0.9305
ResNet-18 0.9452 0.9345 0.9764 0.8857 0.9248 0.9934 0.7756 0.7911 1 0.9847 0.9211
ResNet-34 0.9437 0.9647 0.9713 0.6793 0.9537 0.9769 0.8985 0.8865 0.9691 1 0.9247
DenseNet 0.9608 0.9762 0.9842 0.9136 0.9157 0.9845 0.8223 0.7567 1 1 0.9314

MBGH+CNN
with EFF 0.8757 0.9827 0.9801 0.8348 0.9214 0.9187 0.8467 0.8709 0.9422 0.9341 0.9017

5. Conclusions

In this paper, considering that both SAR images and the corresponding HRRP data, in
which the information contained is not exactly the same, can be simultaneously obtained
in the procedure of SAR imaging, we formulated a novel end-to-end two stream fusion
network framework to fuse the characteristics obtained from modeling HRRP data and SAR
images for radar target recognition. The proposed fusion network contains two separated
streams in the feature extraction stage, one of which takes advantage of a VAE network to
acquire latent probabilistic distribution from the HRRP data and the other using LightNet
to extract 2D visual structure information based on the SAR images. The proposed fusion
module was utilized to integrate the above-mentioned two types of different characteristics
to reflect target information more comprehensively and sufficiently, and it could also merge
the two streams into a unified framework with end-to-end joint training. The experimental
results based on the MSTAR dataset and the civilian vehicle dataset show that the proposed
two-stream fusion method has greater performance advantages than some conventional
target recognition methods and other deep learning-based target recognition methods,
showing the superiority of the proposed method.

Although the proposed target recognition method offers a significant improvement
in performance, there is also a limit in speed. Since the proposed method contains two
branches, the running time of the proposed method on one test sample is a little higher
than that of a single branch. In the future, we will further explore the increase in speed
draw support through parallel computing and algorithm optimization.
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