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Abstract: Recently, researchers have realized a number of achievements involving deep-learning-
based neural networks for the tasks of segmentation and detection based on 2D images, 3D point
clouds, etc. Using 2D and 3D information fusion for the advantages of compensation and accuracy
improvement has become a hot research topic. However, there are no critical reviews focusing on the
fusion strategies of 2D and 3D information integration based on various data for segmentation and
detection, which are the basic tasks of computer vision. To boost the development of this research
domain, the existing representative fusion strategies are collected, introduced, categorized, and
summarized in this paper. In addition, the general structures of different kinds of fusion strategies
were firstly abstracted and categorized, which may inspire researchers. Moreover, according to
the methods included in this paper, the 2D information and 3D information of different methods
come from various kinds of data. Furthermore, suitable datasets are introduced and comparatively
summarized to support the relative research. Last but not least, we put forward some open challenges
and promising directions for future research.

Keywords: fusion strategy; deep learning; segmentation; detection

1. Introduction

Thanks to the rapid development of deep learning [1,2] and various sensors, the
techniques of the real-world scene sensing, analysis, and management are improved
constantly, which potentially boosts the development of autonomous driving [3], robotic [4],
remote sensing [5], medical science [6,7], the internet of things [8], etc. Therefore, the task
of segmentation [9,10] and detection [11,12], the basic tasks of scene understanding, have
achieved great improvements recently. However, the disadvantages of the methods based
on a single kind of data have emerged gradually. For example, the image includes abundant
2D texture information but fails to represent the geometric information. Even though the
3D information can be acquired by post-processing the data collected by some mature
visual-based perceptions, such as the mono- [13] and stereo camera [14], the quality of the
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geometric information are not reliable enough and the sensors always struggle with the
light and weather conditions. Therefore, various 3D scanners have emerged to acquire more
reliable geometric information. For example, LiDAR [15,16] is known as the long range of
detecting, accuracy, and the robustness to different light and weather conditions. However,
the point cloud struggles with the lack of fine texture due to the irregularity and the sparsity.
To make the full use of the complementary feature of 2D and 3D data, information fusion
is worth more research. The main challenges of 2D and 3D information fusion based on
deep learning techniques are the complex correspondence between different data and their
feature maps, and the suitable fusion strategy.

Since the development of the sensor technologies, a range of methodologies have
emerged to make full use of the data collected by different sensors. Therefore, several
papers have been presented to review the methods that achieve multi-modal data fusion.
Zhang et al. [17] published a review in 2016 introducing some methodologies that integrate
the optical imagery and LiDAR point cloud for various applications, such as registra-
tion, orthophotographs, pan-sharpening, classification, recognition, etc. Wang et al. [18]
have reviewed and discussed some strategies of integrating data acquired by the radar,
LiDAR, camera, ultrasonic, GPS, IMU, and V2X for automatic driving. Moreover, De-
beunne et al. [19] reviewed a series of hybridized solutions of visual-LiDAR SLAM for
performance improvement. With the rapid development of deep learning techniques, there
are two reviews aiming to introduce the current situation of the method that achieve 2D
and 3D information fusion based on deep learning. Fayyad et al. [20] review the deep-
learning-based multi-sensor fusion methods for the autonomous vehicle. Not only the
environmental perception but also the localization system, such as GNSS, INS, IMU, RGB
camera, thermal camera, LiDAR, and radar, are integrated for the object detection and
tracking. Additionally, Cui et al. [21] have reviewed the camera-LiDAR fusion methods
for depth completion, object detection, semantic segmentation, object tracking, and online
cross-sensor calibration based on deep learning techniques in the complex and dynamic
driving environment.

Compared with the previous reviews, the contributions of this paper are summarized
in the following lines:

(1) This is the first comprehensive review of deep-learning-based fusion strategies that
integrate the 2D and 3D information for segmentation and detection.

(2) Providing a novel taxonomy for the fusion strategies categorization.
(3) Including the suitable datasets as comprehensively as possible, which covers the

RGBD datasets, fine-grained 3D model dataset, and the dataset including the regis-
tered point cloud and images.

(4) Including the most up-to-date (2004–2021) methods and their comparative summaries.
(5) Providing open challenges and promising directions for future research.

This paper aims to introduce up-to-date and representative fusion strategies for 2D
and 3D information fusion based on deep learning. In Section 2, we briefly introduce
the basic terminologies and background of the deep-learning techniques for classification,
detection, and segmentation. In Section 3, the representative datasets and their data details
are introduced with comparative analysis, which may help the researchers to select the
suitable ones. In Section 4, we introduce and comparatively analyze the fusion strategies
for 2D and 3D information integration based on deep learning techniques. Additionally,
we gather and analyze the shared codes of those fusion strategies on GitHub. In Section 5,
we summarize the popular trends and put forward some open challenges and promising
future directions to researchers for reference. In Section 6, a brief conclusion of this paper
is delivered.
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2. Terminology and Background

Some classical networks may become the backbone or play an important role on 2D
and 3D feature learning, respectively, in the existing fusion strategies. Therefore, it is
necessary to figure out how those classical methods work and review their terminologies
and background. Therefore, we will briefly introduce the classical deep learning techniques
in this section.

2.1. Deep Learning Based on Image
2.1.1. CNN-Based Image Classification

With the constant development of deep learning techniques, the neural network has
become one of the most outstanding achievements. Since most of the neural networks
consist of the input layer, hidden layer, and output layer, the convolutional neural net-
work (CNN) utilizes the convolution as the feature learning operator in a hidden layer.
Even though the CNN-based networks presented in these years have become more and
more complex and manage to obtain more and more accurate results, some classical net-
works are still the backbone or footstone of the recently proposed networks. Therefore,
those classical networks are worth being briefly introduced in the following lines. The
LeNet [22] is known as the beginning of the development of CNN networks. It consists
of the convolutional layers, pooling layers, and fully connected layers, which are all ba-
sic modules of following networks. Thanks to the successful application of GPU, ReLU,
dropout, max pooling, and LRN, the AlexNet [23] achieves the top-five best performance
in ILSVRC-2012. The GoogLeNet [24] had the best and the VGG [25] the second-best
performance in ILSVRC-2014; both of them play important roles for the following proposed
methods. The GoogLeNet is known for the multi-scale feature learning by multi-scale con-
volution operations. The VGG modifies the AlexNet and utilizes the combination of 3 × 3
convolution and 2 × 2 maxpooling to broaden the receptive fields and increase the number
of channels layer by layer. Although the VGG did not win the first, its basic structure
becomes one of the most important backbones of the feature extractor. For example, the
fully convolution network (FCN) [26] takes the backbone of VGG as the feature extractor to
become one of the most important networks for the task of segmentation. In ILSVRC-2015,
ResNet [27] was first because of its residual blocks, which successfully overcame the degra-
dation problem and enlarged the depth of the network. The residual blocks ensure that
each layer will learn new features that are different from the input feature map.

2.1.2. Detection

Compared with classification, which only needs to extract the global feature of the
holistic input, the task of detection needs not only the class information but also the spatial lo-
cation and the size of the bounding box. Moreover, the object detection methods can be grouped
into the region-proposal-based methods and the regression/classification-based methods.

1. Region-proposal-based Method

The pipeline of the region-proposal-based method is generating the region proposals
of the objects first, then refining the proposals as the bounding boxes, finally predicting the
category of each bounding box.

Fast RCNN [28] first takes the selective search to generate series of regions of interest
(RoI) for each images. It then learns the ROI-wise features to achieve the categorizing and
bounding box regression at the same time. However, the computation of generating the
regional proposals is complex. To break the bottleneck of efficiency, the region proposal
network (RPN) is introduced in Faster RCNN [29]. The RPN effectively improves the
efficiency by predefining k different sizes of anchor boxes. Based on Faster RCNN, the FCN
is selected as the class score generator of R-FCN [30] for a better performance. In addition,
the feature pyramid (FP) is proposed for the multi-scale feature extraction in FPN [31] by
sacrificing the efficiency and memory consumption. Additionally, the Mask R-CNN [32]
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achieves instant segmentation by adding an additional branch that manages to predict the
pixel-wise semantic masks.

2. Regression/Classification-based Method

Although the region-proposal-based method has achieved an outstanding accomplish-
ment, the precision still highly depends on the quality of the region proposals since the
task of the object detection can be regarded as a regression or classification problem. The
one-step networks that map the feature to the classified bounding box directly are proposed.
The AttentionNet [33] includes an iterative approximation method which scans the image
from the top-left to the bottom-right for bounding box regression. Moreover, YOLO [34]
becomes one of the most famous detection network. YOLO predicts the bounding boxes,
confidence scores, and class probabilities for each grid cell of image by an end-to-end
network. However, it fails to detect all of the objects with multiple aspect ratios and scales.
The SSD [35] manages to detect the objects in different aspect ratios and scales using a set
of default boxes and a multi-scale feature learning structure. With the aid of BN, multi-
scale feature learning, jointly training, and Darknet-19 feature extractor, YOLO v2 [36] is
more accurate than YOLO and faster than SSD. YOLO v3 [37] is as accurate as SSD but
three times faster than it by adopting some small changes and updating the Darknet-19
to Darknet-53. Moreover, the YOLO v4 [38] obtains higher accuracy and speed because
the authors designed the CSPDarknet53 as the backbone, utilized the SPP and PAN as
the neck, adopted the YOLO v3 as the header, and used a series of new feature operators.
Shortly after the release of the YOLO v4, the YOLO v5 with two modified CSP modules in
the backbone was put forward. It is light, fast to detect large-scale objects, and flexible for
the application.

2.1.3. Segmentation

Compared with classification and detection, segmentation needs the most elaborate
feature representation. The fine-grained semantic-feature-extraction process is key to
pixel-level labeling.

1. Post Processing

To achieve the semantic segmentation, DeepLab (2014) [39] utilizes the fully connected
pairwise CRF [40] proposed by Krhenbühl and Koltun as post-processing to refine the
segmentation result. Thanks to this method, both the short- and long-range interaction
between the pixels are taken into account, no matter how far they are apart with each other.

2. Hierarchical Feature Fusion Strategy

To take the advantages of CNNs to learn the hierarchical feature, some networks fuse
and take full use of the features from each level of the sequential layer for global and local
feature fusion. The existing fusion strategies can be grouped as the early fusion strategy
and the late fusion strategy. The early fusion strategy transforms the local feature maps
from early stages to the same size with the global feature maps from the later stages, and
vice versa for the late fusion strategy.

(1) Early fusion strategy

ParseNet [41] first extracts the global feature by the previous layer with the global pool
operation. Secondly, it further unpools the global feature vector into the same size with the
feature map of the next layer. Finally, it fuses the feature maps from the different layers
by the concatenation operation. Furthermore, SharpMask [42] puts forward a progressive
refinement module that transforms and integrates the feature maps from the previous and
next layer. These two networks provide a brand-new idea of fusing hierarchical features.
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(2) Late-fusion strategy

The late-fusion strategy transforms the feature maps from the later stage to the same
spatial size with the feature maps from the earlier stages. The fully convolutional network
(FCN) [26] progressively recovers the resolution of feature maps using the deconvolu-
tion [43,44], which consists of the convolution and upsampling operation. At the same time,
it gradually fuses the recovered feature maps and the feature maps from the former layers
by the skip structure. This hierarchical feature fusion strategy not only integrates the
global and local features but also takes the advantages of hierarchy. Inspired by the FCN,
SegNet [45] introduces the encoder and decoder. The spatial size of feature maps from each
layer of the encoder and decoder are symmetrical. Therefore, lots of researchers benefit
from the encoder and decoder. For example, U-Net [46] is formed as an elegant shape of
“U”, and the feature maps in the same spatial size from the encoder and decoder are fused
by the skip concatenation.

3. Dilated Convolutions

Since the convolution has achieved great success, some researchers aim to improve it.
The main challenge of the hierarchical feature fusion is how to overcome the resolution loss
due to the pooling operation. Dilated convolution is one of the most popular solutions, which
expands the receptive fields of convolution. The 2018 version of DeepLab [47] and the real-time
ENet [48] all make good use of the dilated convolution with different dilation rates.

2.2. Deep Learning on Point Cloud

Since the point cloud is one of the most popular real 3D data, the methods of process-
ing point clouds based on the deep learning techniques spring up. However, the irregularity
and sparsity become the main challenges. Recently, deep-learning-based technologies have
experienced a rapid development. Therefore, we will introduce some classification, detec-
tion, and segmentation methods according to a taxonomy, which has been summarized
by [49–51], in the following paragraphs.

2.2.1. Classification

1. Multi-View-based Method

It is reasonable for the researchers to project the point cloud into the multi-view images
and then apply the mature 2D networks for global feature extraction. MVCNN [52] is a
pioneer, which encodes each voxel with the global features maxpooled from the multi-view
images. Then, the mutual relationship between the view groups is further considered
by Yang et al. [53] for more discriminative 3D features. With the advantage that the
graph represents the relationship between the nodes better, the View-GCN [54] utilizes the
directed graph to model the relationship between multi-view images for local and non-local
message passing. However, this kind of method is limited by the 2D representation, which
may cause the geometric information loss.

2. Voxel-based Method

To better use the geometric information, researchers transform the unordered point
cloud into the ordered intermediate data. Then, it is possible to generalize the mature 2D
CNN works in 3D. At first, the VoxNet [55] takes the volumetric occupancy grid generated
by point cloud as the input. However, the computation and memory grow cubically when
the resolution of voxel grows. Therefore, OctNet [56] and 3dcontextnet [57] adopt the
octree as a 3D grid index to reduce the computational and memory costs.

3. Point-based Method

Although the voxel retains the geometric information to a certain extent, the resolution
of the voxel may cause information loss. To address this problem, point-based methods
are proposed to process the points directly. The existing methods utilize different fea-
ture extractors, such as point-wise MLP, point convolution, and graph-based convolution.
PointNet [58] is one of the most important networks, which utilizes the point-wise MLP
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and the maxpool to extract the global feature. Additionally, the T-Net is introduced to
achieve the permutation invariance. Moreover, the 3D continuous point convolution is
proposed. The PointConv [59] introduces a point convolution based on the Monte Carlo
estimation, which consists of the weighted function and density function. Furthermore,
the SpiderCNN [60] defines the SpiderConv with the step function for coarse geometric
information extraction and the Taylor expansion for fine-grained intrinsic local feature
learning. With the development of the graph convolution, the graph-based method be-
comes emergent because it manages to represent the inter-relationship between points.
Simonovsky et al. [61] first proposed the edge-conditioned convolution (ECC), which pro-
cesses the graph whose vertexes represent each point and directed edge connects each
vertex with its neighbors. The DGCNN [62] employs a novel EdgeConv to learn the pe-
ripheral feature. So, it learns not only the point-wise feature but also the local feature for
each point and achieves permutation invariance at the same time.

2.2.2. Detection

Similar to the 2D detection methods, the 3D detection techniques can be categorized
into the proposal-based and proposal-free method. The proposal-based methods generate
a series of proposals first and then prune them into the proper size. The proposal-free
methods predict the class possibility and regress the 3D bounding boxes at the same time
by an end-to-end network.

1. Proposal-based Method

The Point RCNN [63] firstly segments the foreground for the proposal generation.
The semantic and local spatial features are then fused for the 3D bounding box regression.
Based on the Point RCNN, the Point RGCN [64] introduces a graph convolution for the
detection process to obtain better bounding box. Moreover, STD [65] pre-defines the
spherical anchors to improve the proposal generation. The semantic score and proposal-
wise features are then extracted for the redundant proposals removal and the bounding
box regression. Additionally, to take advantage of the mature 2D detector, the patch
refinement method [66] back-projects the BEV detection results to the point cloud as 3D
frustums, which will be refined to the bounding boxes by the local refinement network.
Moreover, Qi et al. introduced the VoteNet [67], which generates the Hough votes for 3D
detection. The VoteNet votes for the visual center of object and then aggregates the feature
for bounding box regression.

2. Proposal-free Method

Thanks to the 2D FCN, Li et al. proposed a VeloFCN [68], which transforms the point
cloud feature map into 2D and then utilizes the 2D FCN for further feature extraction.
The VoxNet [55] takes voxels as its input and utilizes the regional proposal network for
object detection. Instead of transforming the point cloud into other intermediate data, the
3DSSD [69] is the first single short 3D detection method that processing the unordered
point cloud directly. This network consists of the fusion sampling strategy, the Feature-FPS
and the candidate generation layer, which helps to exploit the representative points and
achieve the anchor-free regression.

2.2.3. Segmentation

The aforementioned classification methods have successfully extracted the global
features of the point clouds; some of them can be modified for segmentation by recovering
the resolution of feature maps or fusing the global and local features, such as PointNet,
PointConv, PointSpider, etc. Similar to the 2D segmentation methods, the 3D segmentation
networks benefit from the hierarchical feature learning.
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1. Semantic Segmentation
(1) Multi-view-based Method

The DeePr3SS [70] first projects the point cloud to the multi-view images for semantic
segmentation. Then, the pixel-wise scores of each view are fused for 3D segmentation.
Moreover, an end-to-end network named SqueezeNet [71] achieves the fast segmentation
and projects the point cloud as spherical representation.

(2) Voxel-based Method

The volumetric representation also plays a crucial role in 3D segmentation. Huang et al.
first utilized a fully 3D-CNN to segment the occupancy voxels. To achieve better segmen-
tation, the SEGCloud [72] applies the deterministic trilinear interpolation for resolution
recovery and the CRF as the post-processing to enforce the spatial consistency of the seg-
mentation result. Thanks to the good performance of 3D-CNN, the fully convolutional point
network (FCPN) [73] first achieves hierarchical feature extraction using the 3D convolution
and weighted average pooling, which manages to learn both the global and local features.

(3) Point-based Method

PointNet not only achieves an outstanding performance on object classification but
also concatenates the global feature and point-wise features for semantic segmentation.
Although PointNet [58] manages to extract the point-wise feature, it fails to learn the
local feature of each point with its neighbors. To address this problem, PointNet++ [74]
hierarchically researches the regions of neighbors for each point for local feature learning,
which helps to improve the accuracy of segmentation. Moreover, CNN also plays an
important role in the point-based segmentation methods. For example, PointCNN [75]
introduces an X-convolution transformation which maintains the permutation invariance
of points by calculating the relative distance between each point and each of its neighbors.
Moreover, the graph is utilized to model the point cloud. The DGCNN [76] generates a
graph whose nodes represent each point first and then takes the graph as input for both
classification and segmentation. SPG [77] defines a novel supergraph. Its node is named
superpoint and represents a group of points, and its directed edge is called superedge; these
are encoded with attributes for the representation of geometric and context information.

2. Instance Segmentation

Even though the semantic segmentation has already achieved elaborate point-wise
prediction, it fails to distinguish each instance. In particular, the instances belonging to the
same semantic class may be confounded as one object when they are placed close to each
other. To meet the need of accurate 3D understanding of the real environment, the instance
segmentation methods are worthy of further research.

(1) Proposal-based Method

The generative shape proposal network (GSPN) [78] first generates the 3D proposals
by the region-based PointNet (R-PointNet) and then removes the redundant proposals
by reinforcing the geometric understanding. Based on the instance-level proposals, the
point-wise semantic mask are predicted for the final instance segmentation. Moreover, the
one-stage and end-to-end 3D-BoNet [79] without predefined anchors directly generates the
3D bounding box and binary semantic mask for each instance with the aid of a multi-criteria
loss function.

(2) Proposal-free Method

To avoid the dependency of proposals generation, lots of proposal-free methods are
gradually being proposed. The similarity group proposal network (SGPN) and associa-
tively segmenting instances and semantic (ASIS) module are two important networks that
represent different ideas of proposal-free instance segmentation. The SGPN [80] directly
groups the points into instance based on the semantic feature map, the pair-wise feature
similarity matrix, and the heuristic and non-maximal suppression method. The ASIS [81]
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achieves semantic and instance segmentation at the same time and makes the semantic and
instance features support each other.

3. Dataset

Since the benchmark dataset is one of the most important parts of the methods based
on deep learning techniques, we aim to comprehensively introduce the existing dataset,
which may be suitable for segmentation and detection based on fusion of the 2D and 3D
information. Although there are some popular datasets that have been widely used, we still
want to introduce more suitable datasets as comprehensively as possible because both the
quality and quantity of data will influence the performance of networks. Even though there
are some widely used dataset, such as SUN RGBD, S3DIS, and KITTI, some newly proposed
datasets in better quality and quantity are worthy of more attention. Moreover, different
datasets focus on different types of data and scenes. For example, the indoor scene includes
the living space, workplace, study place, shopping mall, etc., and the outdoor scenes may be
collected on highway roads, urban scenes, rural scenes, etc. To the best of our knowledge, there
is no dataset possessing all types of scenes without any bias on the categories. Therefore, to
ensure the researchers can choose the dataset easily based on their requirements, we introduce
the existing datasets, which consist of both 2D and 3D data, as much as possible in this section.
The datasets can be grouped as the RGBD dataset and the 3D dataset registered with 2D data.
The details of each dataset are shown in the following paragraphs.

3.1. RGBD Dataset

Thanks to the development of structure light sensors, more RGBD datasets are pro-
posed for deep-learning research. Since structure light sensors perform better in indoor
scenes, most of the RGBD datasets have been collected in indoor scenarios. The RGBD
image is a well-performing form of representing both the 2D appearance and 3D geometric
information, in which the RGB and depth values are pixel-wise aligned. A single RGBD
image cannot reflect the holistic scenes due to the limit of visual perception field; however,
there are some exceptions. For example, the SUN3D represents the holistic scenes by point
cloud generated by the registered RGBD sequences. Moreover, the DIODE is collected in
both indoor and outdoor scenes, and the depth values of an RGBD image are acquired by
the LiDAR scanner. The existing meaningful RGBD datasets will be briefly introduced in
the following lines.

3.1.1. Indoor Dataset

1. Dataset Proposed by Lai et al. [82] for 2D Object Detection

This is a large-scale, hierarchical multi-view RGB-D object dataset, which is acquired
by the RGB-D camera. Additionally, a Point Grey Research Grasshopper camera provided
the RGB images with higher resolution, which were calibrated with the RGB-D images
by the Camera Calibration Toolbox for Matlab. This dataset included about 250,000 multi-
view RGB-D images of 300 common everyday objects organized into 51 categories by the
hierarchical category structure WorldNet. The data are labeled with the ground truth
bounding box by the annotation method via the 3D reconstruction method proposed by
this article, so it reduces the workload effectively.

2. Dataset Proposed by Koppula et al. [83] for 3D Semantic Segmentation

This 3D indoor point clouds dataset was collected by the Kinect, and the point cloud
was generated by multi-view RGB-D images. This dataset included 52 3D scenes of homes and
offices, which were composed of about 550 views and 2495 segments labeled into 27 categories.

3. Berkeley Dataset Proposed by Janoch et al. [84] for Object Detection

Considering the success of the Kinect depth sensor, this dataset aimed to “put the
Kinect to work” for computer vision. This dataset was continually updated by crowdsourc-
ing. The initial version named B3DO provided 849 RGBD images of 75 different scenes in
the workspace. Moreover, the images were taken from variable viewpoints and distances
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from the objects, which were frequently partially occluded and possessed a great diversity
of appearance. The objects were labeled with a bounding box into 50 categories by the
Amazon Mechanical Turk workers.

4. The MPII Multi-Kinect Dataset Proposed by Susanto et al. [85] for 3D Object Detection

The MPII consisted of 2240 pairs of RGB and depth images and 3D point cloud from
the registered multi-view RGBD images acquired by the Kinect in 33 different scenes of
kitchens. Each object of this dataset was annotated with the bounding box and grouped
into nine classes of common issues.

5. NYU [86] and NYU v2 [87] Proposed by Silberman et al. for Semantic Segmentation
and Scene Classification

NYU was the first indoor dataset which consists of RGB-D-I (RGB, depth, intensity)
images acquired by the Microsoft Kinect and the dense manual annotation, which is
suitable for semantic segmentation and scene classification. A total of 108,671 frames were
collected in 64 different scenes, 2347 of which were manually labeled. The category of scenes
included bathroom, bedroom, bookstore, cafe, kitchen, living room, and office. Additionally,
there were 12 kinds of common objects organized by Worldnet, which consisted of bed, blind,
bookshelf, cabinet, ceiling, floor, picture, sofa, table, television, wall, window, and background.

NYU Depth Dataset v2 extended the quantity and refined the semantic labels of
original NYU. It contained 1449 registered RGB-D images captured from 464 diverse real-
world indoor scenes across 26 scene classes taken from three cities with detailed per-pixel
labeling of categories and physical relationships. There were 35,046 objects in the scenes
and the images were manually selected from 435,103 video frames captured by the Kinect.

6. Dataset Proposed by Zhang et al. [88] for 2D Object Detection

This RGB-D dataset contained 900 objects in complex environments, including a
notebook PC, drink box, basket, bucket, and bicycle in the scenes, which were captured
from 33, 36, 36, 67, and 92 scenes, respectively. The images were all casually captured by
the Kinect with different scales, textures, and rotations with hand-cropping or aligning.

7. SUN3D Proposed by Xiao et al. [89] for both 2D and 3D Object Detection and Segmentation

SUN3D is a large-scale RGB-D video database with both 2D and 3D semantic anno-
tation and bounding box labeling. This dataset contains RGB-D images and point clouds
generated by the RGB-D images. Traditionally, the previous datasets, such as Berkeley
3-D Object and NYU Depth, only provided the view-based scene. However, SUN3D first
provides the 3D holistic large-scale place-centric point clouds reconstructed by the SfM
and the constrains of object correspondences. Additionally, the annotation is propagated
from the frames to the holistic scene. The original 415 sequences in 254 different scenes are
captured by the ASUS Xtion PRO LIVE sensor in 41 buildings. The scenes are grouped into
10 classes and the objects were organized into 12 categories.

8. Synthetic RGB-D Scenes Dataset [90] Generated by CAD Models with Fine-Grained
Texture for Segmentation, Which Proposed by Lai et al.

Since obtaining a real-world dataset with the pixel-wise ground truth label is expensive
and time consuming, this paper explores how to generate a synthetic dataset using Trimble
3D Warehouse, which is one of the largest online-sourced CAD model repository provided
by the hobbyists and professionals.

The original dataset named the RGB-D Scenes Dataset includes eight scenes of kitchen
and office environments with common tabletop objects. There are three to twelve objects in
each scene and the objects placing on the same plane and close or occlude each other. The
latest RGB-D Scenes Dataset v2 extents the original one to 14 scenes indoor scenes with the
tabletop objects and large furniture pieces recorded from a lounge, coffee room, meeting
area, and office. There are nine kinds of synthetic objects placed in the automatic generated
virtual scenes. To ensure practicability, this dataset simulates the sensor noise by adding
Gaussian noise. Additionally, the sampled objects are scaled between 0.85 to 1 unit of the
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largest length and rotated randomly to enlarge the diversity. The dataset also provides the
voxel representation encoded with the grayscale intensity, RGB value, binary occupancy,
and surface normal vector.

9. SUN RGB-D Proposed by Song et al. [91] for Scene Classification, 2D and 3D Object
Detection, Semantic Segmentation

SUN RGB-D is an RGB-D large-scale indoor scenes understanding benchmark suit
captured by the Intel RealSense, Asus Xtion, Kinect v1, and Kinect v2. This dataset provides
10335 RGB-D images and 800 kinds of objects captured from 47 kinds of scenes with dense
2D and 3D annotation. There are 3D point clouds generated by the RGB-D images, which
are registered by the SIFT- and RANSAC-initialized ICP and aligned with the gravity
direction. The main contribution of this dataset is the high-quality annotation. The authors
hired workers to label the objects and room layers, and also to design a series of mechanisms
to ensure the quality. There are four evaluation metrics included, which are suitable for
scene categorization, semantic segmentation, object detection, object orientation, room
layout estimation, total scenes understanding, and cross sensor task. The second important
contribution is that the scale of this dataset is the largest so far because it calibrates the data
from NYU depth v2, Berkley B3DO, and SUN3D.

10. ViDRILO Proposed by Martinez-Gomez et al. [92] for Scene Classification, Object Detec-
tion, Semantic Segmentation, Localization, 3D Reconstruction, and Data Compression.

The dataset ViDRILO is captured by the Microsoft Kinect device loaded on the Power-
bot robot in two buildings with similar structure but diverse objects and room layouts.
All rooms need artificial lighting, so both light and dark rooms are included. There are
5 RGBD sequences captured in 10 kinds of scenes, which were generated to 307,200 3D
colored point cloud based on the mutual relationship between sequences. There are 15
types of objects, which include bench, extinguisher, computer, table, chair, board, printer,
bookshelf, urinal, sink, hand drier, screen, trash, phone, and fridge.

11. SceneNN Proposed by Hua et al. [93] for Segmentation (Intrinsic Decomposition) and
Shape Complement

Due to the lack of comprehensive and fine-grained annotation of the RGB-D dataset
at that time, SceneNN provides the triangle meshes reconstructed by the RGB-D images
captured in 100 indoor scenes. Moreover, both the 2D and 3D annotations include bounding
box, per-pixel and per-vertex labeling, fine-grained information, axis-aligned bounding
box, oriented bounding box, and object poses. To enrich the texture information, the author
assigned each vertex of mesh with image.

12. SceneNet Proposed by Handa et al. [94] for Semantic Segmentation; SceneNet RGB-D
Proposed by McCormac et al. [95] for Semantic Segmentation, Instance Segmentation, Object
Detection, Optical Flow, Depth Estimation, Camera Pose Estimation, and 3D Reconstruction

SceneNet consists of an open-source repository of synthetic indoor scenes and online
3D CAD model repositories. The scene repository is formed by the author, but the object
models are acquired from online repositories hosted by robotvault.bitbucket.org. The
complexity of each scene is controlled by the algorithm, which helps to increase the
diversity. To make sure the effectiveness of applying the algorithm to real-world scenes
trained by synthetic data, the simulated Kinect noise is added for better image rendering.

Theoretically, SceneNet RGB-D can provide large virtual scene configurations with
detailed annotation to overcome the scale limitation of the previous real-world datasets.
ScenesNet RGB-D provides 5 M RGB-D images captured in the synthetic layouts. There-
fore, this dataset is suitable to pre-train the data-driven computer vision techniques for
performance improvement.
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13. Multiview RGB-D Dataset proposed by Georgakis et al. [96] for 2D and 3D object detection

This dataset focuses on small-scale objects and provides densely sampled multi-view
RGB-D images captured from nine kitchen scenes focusing on hand-held household objects
with both 2D and 3D bounding boxes. The data are collected by the hand-held Kinect
sensor and the subset of objects in the BigBird dataset.

14. Matterport3D proposed by Chang et al. [97] for 2D and 3D semantic segmentation

The Matterport Dataset is a large and diverse RGBD dataset that includes 194,400 RGBD
images and 10,800 panoramic images acquired by the Matterport camera in 90 building-
scale scenes. To the best of our knowledge, this is the only dataset including the building-
level scene, which is more suitable for indoor navigation because it includes not only good
quality, high diversity, and a large quantity of data, but also the precise global alignment
between every room and floor in each building.

3.1.2. Hybrid Data

There are two datasets including both the indoor and outdoor RGBD images.

1. Stanford dataset proposed by Tombari et al. [98] for segmentation

This dataset is built up for the machine learning techniques which consists of indoor
object data from the 3D Scanning Repository, Aim@Shape Watertight, a self-collected
indoor dataset, and an outdoor dataset named New York City (NYC) acquired by the
Kinect. The categories of the indoor data include packets, biscuits, juice bottles, coffee cans,
boxes of salt of different brands and color, an armadillo, Asian dragon, Thai statue, bunny,
happy Buddha, and dragon. The NYC dataset includes the outdoor building facades,
vegetation, and vehicles.

2. DIODE proposed by Vasiljevic et al. [99] for semantic and object detection

DIODE is the first large real-world dataset captured in both indoor and outdoor scenes
using the framework of RGB camera and FaroFocusS350 scanner. There are high-quality
RGBD panoramas, point clouds, and the accurate surface normals in the dataset. The
diversity of the scans reflects on the differences of each scene and their composition. The
categories of the indoor scenes include: homes, offices, lecture halls, communal spaces; the
outdoor scenes include: city streets, parking lots, parks, forest, and riverbanks.

Compared with the prior dataset, there are three main contributions. The depth
information and the point cloud are accurate because they are captured by the LiDAR sensor.
This is the first dataset covering a similar quantity of both indoor and outdoor data captured
by same sensor framework. The RGB camera is placed very near to the LiDAR sensor, so the
mutual relationship between the point cloud and the panorama images is known.

3.2. 3D Dataset with 2D Information

Since the development of the techniques for spatial sensing, more and more 3D
datasets are proposed based on the light detection and ranging (LiDAR). The metadata
of LiDAR is a point cloud, which is represented as the unordered points encoded with
their X, Y, and Z coordinates. Therefore, the 3D point-cloud datasets are popular for the 3D
segmentation and detection. Moreover, there are also some other forms of 3D data, such as
CAD and mesh models. Although the LiDAR performs well in both indoor and outdoor
scenes, the total scenes area of the dataset is still limited due to the range of LiDAR. Hence,
the urban-level dataset needs to be acquired by the photogrammetry based on the aerial
images. Moreover, the 2D information collected by the cameras should be registered with
the 3D data.
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3.2.1. Indoor

1. S3DIS proposed by Armeni et al. [100] for semantic segmentation and 3D object recognition

This is one of the most popular indoor datasets for understanding scenes. S3DIS
contains over 215 million colored point clouds acquired by the LiDAR scanner in five
large-scale indoor scenes of three different buildings covering 6000 square meters in total.
The categories of scenes include office areas, educational spaces, exhibition spaces, con-
ference rooms, personal offices, restrooms, open spaces, lobbies, stairways, and hallways.
Additionally, the data are organized into 12 semantic categories: ceiling, floor, wall, beam,
column, window, door, table, chair, sofa, bookcase, board.

2. Joint 2D–3D-Semantic proposed by Armeni et al. [101] for scene classification, seman-
tic segmentation, and 3D object detection

Joint 2D–3D-Semantic expends the original S3DIS with a series of registered 2D, 2.5D,
3D data, and the instance-level annotation across all modalities. Hence, this dataset is
suitable for developing the learning models that seamlessly transcend across domains.
There are more than 70,000 images with RGB, depth, normal, semantic annotation, global
XYZ, and camera metadata. The 3D data include 3D mesh, voxel, and 695,878,620 point
clouds. The RGBD data are captured by the Matterport Camera with a 360-degree rotation
at each scan location.

3. ScanNet proposed by Dai et al. [102] for scene classification, object detection, and
semantic segmentation

ScanNet is a richly annotated real-world RGB-D dataset including 2.5 M images of
1513 scans in 707 diverse spaces. The annotations include the semantic category, estimated
calibration parameters between RGB and depth information, and camera pose. Addition-
ally, 3D surface reconstruction, textured meshes, and aligned CAD models are added to
the dataset.

4. Dataset proposed by Sun et al. [103] for visual place recognition and localization

This dataset provides the camera poses in the real-world coordinate system, which
reflects the correspondences of the images and point clouds. The existing IBL (image-
based localization) research is limited by the SfM (structure from motion) or the SLAM
(simultaneous localization and mapping) and lack of evaluation methodologies and the
dataset with accurate ground truth. Therefore, this dataset provides the point clouds
acquired by the Riegl VZ-400 3D laser scanner. Moreover, the images are captured by two
DSLR (digital single lens reflex) cameras and the query images are collected by seven cell
phones at random positions at different times to simulate real user scenarios.

5. ShapeNet proposed by Chang et al. [104] for geometric analysis

ShapeNet is a comprehensive and richly annotated large-scale dataset which consists
of more than 3,000,000 3D CAD models observed in the real world, and 220,000 mod-
els out of that are organized by WorldNet to 3135 categories. The ShapeNet possesses
information-rich annotation, which includes language-related annotations, geometrics
annotations (rigid alignment, parts and key points, symmetry, object size), functional
annotations (functional parts, affordances), physical annotations (surface material, weight).
Moreover, the whole ShapeNet is divided into two subsets: ShapeNetCore and ShapeNet-
Sem. ShapeNetCore contains 51,300 unique 3D model covering 55 common categories with
manual labelling. ShapeNetSem possesses only 12,000 models but denser annotation which
includes the real-world dimension, material composition, and total volume and weight.
Additionally, the number of categories is increased to 270. However, the main disadvantage
is the strong bias of categories because the dataset contains more rigid man-made artifacts
than natural objects. This is because the creators of CAD models are more interested in
artificial objects and modeling natural objects is more difficult.



Remote Sens. 2021, 13, 4029 13 of 52

6. ScanObjectNN proposed by Uy et al. [105] for object classification

ScanObjectNN is a special 3D object dataset that consists of both real-world and
synthetic data. The main contribution of this dataset is that it helps to analyze the robustness
of the classification algorithm and the gap between the synthetic and real-scene dataset.
This dataset inspires the researchers to consider whether classification method trained in
the synthetic dataset preforms as well as the real-world data. The synthetic data is acquired
from the ModelNet40, which contains complete, well-segmented, and noise-free models.
Moreover, there are 15 kinds of real-world objects selected from 700 scenes in SceneNN
and ScanNet. To explore the robustness of classification methods, a series of perturbations
are added in the well-segmented objects with various degrees of background and partiality.
Training a method by the synthetic data and then testing it by real-world data is effective
for the robustness analysis and the evaluation of the gap between the synthetic and the
real-world dataset.

3.2.2. Outdoor

1. KITTI [106,107] for 3D semantic segmentation, object detection, stereo and optical
flow estimation, and 3D visual odometry/SLAM

KITTI is one of the most popular outdoor datasets acquired by the MLS system
equipped with synchronized cameras, a Velodyne HDL-64E laser scanner, and a localiza-
tion system that consists of GPS, GLONASS, IMU, and RTK. Therefore, both the images
and point cloud are registered and the positions of each sensor are known. There are 389
stereo and optical flow image pairs, 39.2 km of the stereo visual odometry/SLAM sequence,
and more than 200,000 manually labeled 3D object bounding boxes in the dataset. With the
growing needs for semantic segmentation, the labor-intensive point-wise semantic labels
can be gradually achieved by tons of researchers. Ros et al. [108] manually labelled 216
images with eight categories: vegetation, sidewalk, building, fence, road, car, sky, and
pole. Then, Zhang et al. [109] enlarged the semantic annotation to 252 images from eight
sequences and added two more categories (pedestrian and cyclist). Finally, Behley et al. pro-
vided the largest amount and diversity of the semantic annotation in SemanticKITTI [110],
which labeled 23,201 images, 4549 points, and 28 classes.

2. nuScenes proposed by Caesar et al. [111] for 3D object detection and tracking

nuScenes is the first outdoor dataset that consists of the data acquired by cameras,
radar, and LiDAR with a 360-degree field of view. The data collecting platform is a vehicle
equipped with six cameras, five radars, and one LiDAR, and all the sensors are placed
closely to each other. The annotation of 3D bounding boxes are encoded with the semantic
category and eight attributes (visibility, activity, and pose). Compared with the popular
KITTI dataset, the amount of annotation is 7 times, and the images are 100 times as many
as the KITTI. Therefore, both the quantity and diversity outperform.

3. Swiss3DCities proposed by Can et al. [112] for 3D semantic segmentation

Swiss3DCities is a new outdoor urban 3D point clouds dataset generated by pho-
togrammetry based on images acquired by the UAV equipped with high-resolution cameras
in three Swiss cities. The point clouds in this dataset are more uniform and denser than the
point clouds acquired by the ground LiDAR. The total area of the scene is 2.7 square kilo-
meters. After the acquisition of aerial images, the georeferencing is acquired by the GCPs.
The sparse point clouds are then generated based on the georeference and Structure-from-
Motion (SfM). Once the data is aligned and georeferneced, the dense mesh is constructed
for denser point-cloud generation. The final density of the point clouds is about 500 K to
15 M per tile, and each point is encoded with x, y, z, and RGB values.
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4. A2D2 proposed by Geyer et al. [113] for 3D object detection, semantic segmentation,
and instance segmentation

The A2D2 (Audi Autonomous Driving Dataset) is an outdoor dataset that comprises
simultaneously acquired images and 3D point clouds with the manual annotation of
bounding box and semantic and instant labeling. There are six cameras and five LiDAR
scanners equipped on the data-collecting platform, which provide data with a 360-degree
field of view. The parameters of the corresponding relationship between LiDAR to LiDAR
and LiDAR to cameras are provided in the dataset. Moreover, A2D2 provides 41,277
non-sequential frames with semantic labeling and 12,497 frames with both 2D and 3D
bounding box annotation of objects. However, there are still 392,556 sequential frames
without annotation.

5. Toronto-3D proposed by Tan et al. [114] for 3D semantic segmentation

Toronto-3D is a large-scale urban dataset with a colored point clouds dataset acquired
by the mobile laser scanning (MLS) systems and point-wise semantic labels of eight object
classes (road, road marking, natural, building, utility line, pole, car, fence, unclassified).
There are approximately 78.3 million points in the dataset which cover 250 m of road. The
main contribution is that each point is attached with 10 attributes (x, y, z, RGB, intensity,
GPS time, scan angle rank, label).

6. Semantic3D.Net proposed by Hackel et al. [115] for 3D semantic segmentation

The outdoor scenes dataset at that time are mostly acquired by the LiDAR scanners
equipped on the mobile mapping car (such as the Sydney Urban Objects dataset, Paris-
rue-Madame) which provides a lower point density than the typical static scanner.
Semantic3D.net (accessed on 29 September 2021) is the first outdoor dataset consisting of
dense colored point cloud captured by the static terrestrial laser scanner, which is known
for its high measurement resolution and long measurement range. There are over 4 billion
labeled points organized into eight semantic categories. Both various natural and man-
made scenes are included in the dataset to prevent overfitting of the classifier. The detailed
colorization is operated by the post-processing of deploying the high-resolution cube map.
Additionally, the annotations are manually created, which is labor-intensive but effectively
avoids inheriting errors. The point clouds are firstly labeled and then projected to 2D
images. The categories include man-made terrain, natural terrain, high vegetation, low
vegetation (lower than 2 m), buildings (churches, city halls, stations, tenements, etc.),
remaining hardscape, scanning artifacts, cars, and trucks.

7. CSPC-Dataset proposed by Tong et al. [116] for semantic segmentation

CSPC is an outdoor dataset with colored point clouds scanned by the wearable mobile
mapping robot with six kinds of manual point-wise labels (ground, buildings, vehicles,
bridges, vegetation, poles) for semantic segmentation. The author claims that the scenes
are more complete, the density of point is relatively uniform, the diversity and complexity
of objects outperform, and there is a high discrepancy between different scenes. There are
approximately 68 million points in the dataset.

8. All-In-One Drive proposed by Weng et al. [117] for 3D object detection, tracking,
trajectory prediction, semantic and instant segmentation, depth estimation, and long-
range perception

AIODrive is a unique large-scale dataset providing various data, annotations and
environment variations acquired by comprehensive sensors. The sensors include RGB,
stereo and depth cameras, LiDAR, SPAD-LiDAR, radar, IMU, and GPS. The high-density
and long-range point clouds encoded with (x, y, z, I) are obtained by the combination of
LiADRs, SPAD-LiDAR, and a depth camera with a 360-degree horizontal field of view (FoV).
In particular, the SPAD-LiDAR was first used in a public perception dataset. AIODrive
provides the most diverse annotations for multiple mainstream perception tasks, which
includes 2D–3D bounding boxes for object detection, 2D–3D semantic and instant labels

Semantic3D.net
Semantic3D.net
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for segmentation and some annotation above the mainstream (motion data for all agents,
fine-grained object class labels, vehicle control signals, city map, and road structure).
Additionally, there are some environment variations generated by the simulator to improve
the robustness of perception systems in rare driving scenarios, such as highly crowded
scenes, high-speed driving, diverse weather and lighting, car accidents, vehicles running
through a red light, speeding and changing lanes aggressively, and children and adults
jogging and running.

9. Argoverse proposed by Chang et al. [118] for D objects detection, tracking, and
trajectory prediction

Argoverse is a large-scale dataset that supports various autonomous driving percep-
tion tasks and focuses on 3D tracking and motion forecasting. There are synchronized
multiple data, including 360-degree images acquired by seven high-resolution ring cameras
and two front-facing stereo cameras, point clouds collected by two roof-mounted VLP-32
LiDAR and 6-DOF localization of each timestamp calculated by the combination of the
GPS-based and sensor-based localization. Argoverse also contains the vector map of lane
centerlines, a rasterized map of the ground height, drivable area, and region of interest
(ROI). The annotation includes the manually annotated 3D vehicles bounding boxes and
their fleet logs and 3D trajectories. There are three main advantages of this dataset. Firstly,
this is the first publicly available dataset that provides the semantic vector map of both the
road infrastructure and traffic rules. Secondly, the amount of the 3D trajectory annotation is
ten times more than the KITTI. Lastly, the dataset includes diverse scenarios, for example:
managing an intersection, slowing for a merging vehicle, accelerating after a turn, stopping
for a pedestrian on the road, etc.

10. ApolloScape proposed by Huang et al. [119] for 3D object detection, semantic and
instance segmentation, and 3D reconstruction

According to the tasks of autonomous driving, we understand the environments
based on 3D semantic HD map, D perceptual system, the on-the-fly self-localization system
and the path of each target. Compared with the existing dataset, such as SOTA, KITTI,
Cityscape, and so on, ApolloScape dataset is an outdoor large-scale point-clouds dataset
with larger, denser, and richer labeling, which includes semantic and instant labeling for
point clouds, stereo driving videos and point clouds, accurate 6 DoF camera pose, and
per-pixel lane mark labeling. Moreover, there are about 70 K 2D and 3D instance-level
labeled cars.

11. Virtual KITTI proposed by Gaidon et al. [120] for 3D object detection, tracking, and
semantic and instance segmentation

The existing scene benchmarks are limited by the high cost of data acquisition and
accurate labels. This article proves that the deep learning methods pre-trained on the
mixture of real and virtual data behave similarly with the method only trained by the
real-world data. Therefore, the author proposes an efficient real-to-virtual world cloning
method, which enlarges the KITTI dataset with the synthetic data called Virtual KITTI.

Firstly, the original scenes in KITTI are decomposed into different visual components.
Unity is then used to create the virtual scenes that are closed to the KITTI. To enlarge
the diversity of scenes, secondary roads and some background objects such as trees and
buildings are manually placed into the virtual scenes. Additionally, the direction and
brightness of light sources are manually controlled to create more light conditions. In
addition, the texture of objects is generated by the unlit shaders in Unity. Consequently,
the per-pixel and instance-level ground-truth semantic labels and the 2D and 3D bounding
box are also automatically generated.
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12. Dataset proposed by Fang et al. [121] for 3D object classification, detection, seman-
tic segmentation

This dataset is a simulation dataset generated by the data from the real environment
and traffic flow for autonomous driving vehicles, which provides dense point clouds,
registered color images, and semantic annotation. Thanks to the novel LIDAR simulation
framework of this article, this simulation dataset is efficient. This dataset outperforms
compared with the state-of-the-art simulation dataset and can gradually approach the
effectiveness of the real-scenes dataset by increasing the quantity. Additionally, using the
simulation data to pre-train the model and the real-world data for fine tuning has already
been proved more efficient than using the same amount of real-world data only. The
real-world data of this dataset are acquired by the Riegl VMX-1HA and pre-segmented by
PointNet++ for efficiency, then the wrong parts of the segmentation results are manually
corrected. Based on the annotation, the clean static background is obtained by removing
the movable obstacles. To generate the synthetic scenes that are similar to the real traffic
scenario, a data-driven method consisting of a probability map for the obstacle placement
and model selection strategy are proposed.

3.3. Comparative Analysis

In the following lines, we are going to make a comparative analysis of the aforementioned
datasets and other popular datasets. According to the tabular forms that include a series of
comparison results, it may be easy for researchers to figure out which dataset is suitable.

3.3.1. Indoor

We categorized the indoor datasets as object-level and scene-level datasets. The object-
level datasets only include the individual objects, which is suitable for the task of object
classification and part segmentation. The existing datasets are all composed of multiple
resources, such as online open-sourced 3D repositories, self-collected data, existing datasets,
etc. With the increasing demand for object-level datasets for the tasks of classification and
part segmentation based on deep learning techniques, the quality and quantity of the
dataset has improved rapidly. For example, there are only hundreds of objects included in
the early Stanford repository in 2011, but the latest PartNet possesses almost one million
objects. Moreover, the diversity of categories differs a lot. The common datasets only
include 6 to 55 categories. However, the ShapeNet includes a remarkable 3135 classes and
its subset ShapeNetSem has 270 classes. The comparative summary of indoor object-level
datasets is shown in Table 1.

Table 1. Comparative summary of existing indoor object-level dataset (Seg: segmentation; Rec: recognition; Cla: classifica-
tion; Comp: completion).

Name Object Class Data Data Type Source Task

[98] Stanford
- 6

3D Model Real-world
Stanford 3D Scanning Repository

Semantic Seg400 20 Shape Watertight Database
31 6 RGBD Kinect

[104]
ShapeNet 3 M 3135

CAD Model Real-world Online Open-source Semantic SegShapeNetCore 51.3 K 55
ShapeNetSem 12 K 270

[122] ShapeNet
Core55

16.9 K
16 Point Cloud

Real-world Online Open-source
Semantic Seg

55 Parts Part Seg
- Voxel Model 3D Rec

[123] PartNet 573.6 K 24 Point Cloud Real-world Online Open-source Herarchical
Seg

[124] ModelNet 48 K 40
RGBD,

CAD Model,
Voxel

Synth-etic

3D Warehouse
ClaYobi3D

SUN Database Shape Comp
Princeton Shape
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The scene-level datasets represent the holistic scene by the multi-view RGBD images,
point cloud, or 3D model. However, the scale of holistic scenes differs a lot between
different datasets. For example, the popular SUN 3D and SUN RGB-D datasets display the
room-scale scenes. However, the S3DIS and its augmented version 2D-3D-S and Matterport
dataset include the holistic floor-scale scenes. Moreover, the Matterport dataset is the only
building-scale dataset, and every floor of same building is aligned. Table 2 shows the
comparative summary of indoor scene-level datasets.

Table 2. Comparative summary of indoor scene-level datasets (Seg: segmentation; Rec: recognition; Cla: classification;
Comp: completion).

Name Size (m2) Amount Object Class Data Data Type Sensor Task

[82] - - 250 K 300 51 RGBD Real-world Kinect,
Camera Semantic Seg

[83] - - - 2.5 K 27 RGBD Real-world SLAM,
Kinect Semantic Seg

[86] - - - - 127 RGBDI Real-world Kinect Semantic Seg,
Scene Cla

[84] Berkley B3DO - 849 - 50 RGBD Real-world Kinect Object Det

[125] - - 111 - 6 RGBD Real-world Kinect
XtionPRO Unknow Seg

[85] - - 2.2 K - 9
RGBD

Real-world Kinect Object Det- Point Cloud

[87] NYU v2 - 1.4 K 35.0 K - RGBD Real-world Kinect Instance Seg

[88] - - - 900 5 RGBD Real-world Kinect Object Det

[89] SUN3D -
415 - 12

RGBD,
Camera Pose Real-world Xtion PRO Semantic Seg

- Camera Pose

[90] RGBD Scenes v.2 - - - 10

RGBD

Synthetic Trimble 3D
Warehouse

Semantic SegPoint Cloud
Voxel Model
CAD Model

[91] SUN RGB-D -
10.3 K

- 800
RGBD

Real-world
Intel Real-Sense,

Asus Xtion,
Kinect

Object Det
Point Cloud

[92] ViDRILO - 22.5 K - 10
RGBD

Real-world Kinect Scene Cla0.3 M Point Cloud

[93] SceneNN 2124 - 1.5 K -
RGBD

Real-world Kinect,
XtionPRO

Semantic Seg,
Shape Comp,

3D Rec
3D Mesh

Camera Pose

[94] SceneNet - - 3.7 K - RGBD Synthetic 3D CAD
Model Repositories Semantic Seg

3D Secene

[95] SceneNet RGBD -
5 M

- 255
RGBD

Synthetic 3D CAD
Model Repositories

Semantic Seg,
Object Det- 3D Secene

Camera Pose

[96] - - 7.5 K
118 11

RGBD
Real-world

Kinect,
Big Bird Da-taset Object Det96.6 M Point Cloud

[99] DIODE -
11.5 K

- -
RGBD

Real-world FARO Focus S350 Semantic Seg170 M Point Cloud
- Normal

[100] S3DIS 6020
-

- 12
RGBD Image

Real-world Matterport Camera Semantic Seg965 M Colored Point Cloud
- Mutual Relationship

[101] 2D-3D-S 6020

70.5 K

- 13

RGB Image

Real-world

Matterport
Camera,

Structured-light
Sensors

Semantic Seg

695 M Colored Point Cloud

-

3D Mesh
Normal

Camera Pose
Mutual Relationship

[102] ScanNet 34453

2.5 M

36.2 K 19

RGBD
3D Mesh

Camera Pose
CAD Model

Real-world Kinect Semantic Seg,
3D Rec-

[103] - 5000
682

- -
RGB Image

Real-world Riegl,
DSLR Cameras

Image Localization67 M Point Cloud
- Mutual Relationship
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Table 2. Cont.

Name Size (m2) Amount Object Class Data Data Type Sensor Task

[126] Robust-PointSet - - 12.3 K 40 CAD Model Synthetic ModelNet40 Robustness
Evaluation

[105] Scan-ObjectNN - - 2.9 K 15 CAD Model Synthetic ModelNet40 Semantic Seg,
Object Det

[97] Matterport 219 K

0.2 M

50.8 K 40

RGBD

Real-world

Panorama
Camera,

SceneNN,
ScanNet

Semantic Seg,
Scene Cla- Point Cloud

3D Mesh

3.3.2. Outdoor

The outdoor datasets can be grouped based on their scale as object-level, road-level
and urban-level. Since the outdoor scenes are extremely large compared with the indoor
scenes, the combination of camera and LiDAR is more suitable for the outdoor data
collection. Moreover, almost all of the object-level and road-level datasets are acquired
by the mobile laser scanning (MLS) system, which is usually a vehicle equipped with a
series of sensors, such as camera, LiDAR, radar, GPS/IMU, etc. There are two popular
object-level datasets—New York City and Sydney Urban Objects dataset—which can be
utilized for the part segmentation and classification. However, the New York City dataset
only includes point-cloud data without labeling. Therefore, the Sydney Urban Objects
dataset is more suitable for the deep-learning-based task of classification. Table 3 shows a
comparative summary of outdoor object-level datasets.

Table 3. Comparative summary of outdoor object-level dataset.

Name Point Object Class Data Data Type Sensor Task

[98] New York City - 15 3 Point Cloud Real-world Lidar sensor (MLS) Semantic Seg

[127] Sydney Urban
Objects Dataset 2.3 M 588 26 Point Cloud Real-world Velodyne (MLS) Cla

Since the outdoor datasets are almost collected by the MLS due to the extremely
large scale of the outdoor scenes, the outdoor datasets are usually composed by the static
and dynamic objects on and near the road. So, the scale of the scenes can be measured
by the length of the road where the data is collected. However, Semantic3D.Net is an
exception that is collected by static LiDAR, which manages to obtain the point cloud in a
higher density. KITTI is one of the most popular outdoor dataset, which has experienced
a long range of development. The raw data is collected in 2012, but the full annotation
is completed in 2020. During that time, more and more outdoor datasets are gradually
proposed, which achieve a constant improvement of quality, quantity, and diversity. For
example, the AIODrive contains the highest diversity of data, annotation, and driving
scenario. Moreover, some virtual datasets are proposed to enlarge the labor-exhausted
real-world dataset, such as VirtualKITTI and two dataset proposed by Wang et al. and
Fang et al. The comparative summary of outdoor road-level datasets is shown in Table 4.

Due to the extremely large scale of the whole urban area, collecting an urban-level
dataset by traditional MLS or static LiDAR is impossible. Therefore, there are some urban-
level datasets collected by aerial LiDAR scanning (ALS) or unmanned aerial vehicle (UAV)
photogrammetry. From 2013 to 2021, the latest SensatUrban dataset obtained the largest
quantity of data with detailed manual annotation for the task of segmentation, which will
effectively help to boost the development of smart cities. Table 5 includes the comparative
summary of outdoor road-level datasets.
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Table 4. Comparative summary of outdoor road-level datasets (Seg: segmentation; Rec: recognition; Cla: classification).

Name Size (km) Amount Object Class Data Data Type Sensor/
Data Source Task

[106,107] KITTI 39.2 12 K
1799 M 200 K 2 RGB Image,

Point Cloud Real-world Velodyne
Camera

3D & 2D Det
SLAM

[108] KITTI (Ros) - 216 - 11 Labeled Image
Real-world KITTI

2D Seg
[109] KITTI (Zhang) - 252 - 10 Labeled Image
[110] Semantic-KITTI - 4549 M - 28 Point Cloud 3D Seg

[120] Virtual KITTI - 17 K - 13 RGB Image Synthetic

2D Seg,
2D Det,
Track,

Optical Flow

[128] Paris-Rue-
Madame 0.16 20 M 642 17 Point Cloud Real-world Velodyne

Riegl 3D Seg

[129] IQmulus 10 300 M - 50 Colored Point
Cloud Real-world Stereopolis II 3D Seg

[115] Semantic3D.net 4 B - 8 Point Cloud Real-world TLS 3D Seg

[130] Paris-Lille-3D 1.94 143 M - 50 Point Cloud Real-world Velodyne 3D Seg

[121] - - 100 K - 5 Point Cloud Synth-etic Riegl
3D Model

3D Seg,3D
Det,3D Cla

[131] - - 20 K - 300 CAD models Synth-etic Stanford-Cars
CompCars

3D Object Pose
Estimation

[118] Argoverse 290
107 K

10.6 K 17
RGB Image

Real-world
VLP-32,GPS,

Stereo Camera
GPS/IMU

3D Det,
Object Track- Point Cloud

[119] Apollo-Scape -

144 K
120 K - 35

RGBD Image,
Point Cloud

Real-world
Riegl

VMX-CS6
Camera

GPS/IMU

3D & 2D Seg,
3D & 2D Det,
3D Localize,

3D Rec- Sensor Pose

[111] nuScenes 242

400 K
1.4 M

- 23

Point Cloud,
Map

Real-world

LiDAR
Scanner

Radar Scanner
Camera

GPS/IMU

3D & 2D Det,
Track

- Radar Signal,
Sensor Pose

[113] A2D2 -

41,277

- 38

RGB Image

Real-world
LiDAR
Scanner
Camera

3D & 2D Seg,
3D & 2D Det,

Depth
Estimation,

Optical Flow

- Point Cloud,
Mutual Relationship

[114] Toronto-3D 1

78.3 M

- 8

Colored Point
Cloud

Real-world

Teledyne
Optech

Maverick
Camera
GNSS

3D Seg
- HD Map

[116] CSPC - 68 M - 6 Colored Point
Cloud

Velodyne
Lady Bug 5
GPS/IMU

3D Seg

[117] AIODrive -

250 K

26 M

RGBD Image

Real-world

LiDAR
Scanner

Spad-LiDAR
Scanner

Radar Scanner
RGBD Camera

GPS/IMU

3D Seg, 3D
Det, Track,
Trajectory
Prediction,

Depth Estimation

- Point Cloud,
Sensor Pose

[132] PC-Urban - 4.3 B - 25 Point Cloud Real-world Ouster LiDAR
Scanner 3D Seg
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Table 5. Comparative summary of outdoor road-level datasets (Seg: segmentation; Rec: recognition; Cla: classification).

Name Size (km2) Amount Class Data Data Type Sensor Task

[133] ISPRS 0.15
-

2 RGB Image,
Point Cloud Real-world ALS 3D Det,

3D Rec1.2 M

[134] DublinCity 2 4471
1.4 B 13 RGB Image,

Point Cloud Real-world

NIKON
D800E,

Leica RCD30
(ALS)

3D Seg,
3D Rec

[112] Swiss3D-Cities 2.7
-

5 RGB Image,
Point Cloud Real-world UAV 3D Seg

226 M

[135] SensatUrban 7.64

-

13 RGB Image,
Point Cloud Real-world

SODA
Camera
(UAV),

RTK GNSS

2D & 3D Seg
2847 M

[136] DALES 330 505 M 8 Point Cloud Real-world Riegl Q1560
(ALS)

3D Seg,
3D Rec

[137] LASDU 1.02 3 M 5 Point Cloud Real-world ALS 3D Seg,
3D Rec

[138] Campus3D 1.58 937 M 24
Colored

Point
Cloud

Real-world UAV 3D Seg,
Instance Seg

[139] Waycom 76 250 K
12 M 4 RGB Image,

Point Cloud Real-world MLS 2D & 3D Det
Track

4. Fusion Strategy

This section aims to review the fusion strategy of 2D and 3D information for two
common tasks of scene understanding: segmentation and object detection. Since the 2D
image contains more appearance information and 3D point cloud, model, or depth contains
more accurate geometric information, it is necessary to study the 2D and 3D information
fusion strategy for the feature complementation. According to our conclusion, we put
forward a novel taxonomy for the existing 2D and 3D fusion strategy categorization. The
categories include the non-feature-based and the feature-based fusion strategy. Moreover,
the non-feature-based fusion strategy can be further divided into the data-based, result-
based, and data–result-based strategy. In addition, the feature-based strategy can be
further grouped into the one-stage, multi-stage, and cross-level fusion strategy. In the
following paragraphs, we will introduce the details of the existing fusion strategies and
their representative methods.

4.1. Segmentation
4.1.1. Data-based Fusion Strategy

The data-based fusion strategy aims to transform the 2D and 3D data into the same
kind of data that contains both 2D and 3D information for data integration. However,
the main challenge is that 2D and 3D data are organized by different data structures. For
example, the images are an ordered 2D grid encoded with the optical digital values, but
the point cloud is a set of unordered points encoded with their coordinates. The common
method is colorizing the point cloud by the registered images. However, the sparsity of
point cloud may cause the appearance information loss. Therefore, integrating the 2D and
3D information by intermediate data is a useful strategy. The comparative summary of
some segmentation methods using the data-based fusion strategy is shown in Table 6; they
will be introduced in detail in the following paragraphs.
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Table 6. Comparative summary of segmentation methods using data-based fusion strategy (P: point cloud; Data 2:
intermediate data).

Name Data Data 2 Data
Set Acc Class

Acc AP IoU F1-Score Scene Code

[140] UGrid-
Fused RGB, P UGrid

UView KITTI _ _ 89.5
90.0 _ 93.8

93.1 Outdoor No

[141] _ RGB, P Grid
BEV KITTI 81 49.4 _ 69.8 _ Outdoor No

[142] StdnDSN RGB, P StdnDSN Self-
collected 91.5 _ _ _ _ Outdoor No

[143] _ RGB, P
Spherical

Im-
age

KITTI _ _ 89.63 _ 94.3 Outdoor No

The Bird’s Eye View (BEV) is a compact 2D occupancy representation that is suitable
for projecting the point cloud onto a 2D plane. Hence, the BEV grid is a suitable inter-
mediate data for data fusion. Wulff et al. [140] propose a multi-dimensional occupation
grid representation based on the BEV named UGrid-Fused, which can be imported into
the FCN for semantic segmentation. Each cell in UGrid-Fused contains 15 statistics and
constitutes a 40 m × 20 m area. The occupancy of the grid map includes a binary map,
count map, obstacle map, six height measurement maps, and six reflectivity intensity
maps. This modified BEV helps to calibrate the advantages of image and point clouds.
Moreover, Erkent et al. [141] propose a hybrid approach (shown in Figure 1a) combining
the advantages of Bayesian filtering and DNN for semantic segmentation based on the BEV.
The occupancy of BEV is encoded with the 2D segmentation result generated by SegNet,
dynamic state, statical state, current state probabilities and update probabilities generated
by the point cloud using the Bayesian filter. Then, the BEV will be imported to the VGG-16
for densely semantic segmentation.
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approach combining the advantages of Bayesian filtering and DNN; (b) The spherical coordinate transformation method.

At the same time, there are other representations especially designed for data fusion.
Zhou et al. [142] first proposed a standard normalized digital surface model (StdnDSN)
to achieve the fusion of point clouds and very-high-spatial-resolution images (VHSRIs).
The StdnDSN is then segmented by the combination of a grey-level co-occurrence matrix
(GLCM) and multi-resolution segmentation (MRS) and classified into the land-cover objects
by a CNN. The segmentation result is used to generate the votes by the regional majority
voting strategy to accelerate the procedure of classification. Lee et al. [143] introduce a
spherical coordinate transformation method (shown in Figure 1b) for data fusion which
projects the point clouds and images onto the same spherical coordinate based on their
mutual relationship. The intermediate data is a four-channel image in spherical coordinate
encoded with the transformed RGB information and the height information transformed
along the Y axis. Then, the intermediate data will be imported into the modified SegNet
with a novel receptive field expansion structure placed between the encoder and the
decoder to learn a broader range of feature.
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4.1.2. Result-Based Fusion Strategy

Although the existing data-based fusion strategies manage to fuse both 2D and 3D
information, it depends on the quality of data projection and the intermediate data which
may cause the information loss. Therefore, result-based fusion strategies are proposed to
alleviate this problem. Result-based fusion strategies conduct the processes of 2D and 3D
segmentation, respectively, and then integrate the 2D and 3D segmentation results based
on their mutual relationship. The comparative summary of segmentation methods using
the data-based fusion strategy is shown in Table 7, and their details will be introduced in
the following lines.

The conditional random field is a commonly used method for the segmentation result
refinement. Therefore, the mutual relationship between 2D and 3D segmentation results are
encoded by the CRF to achieve the 2D and 3D result fusion and refinement. Gu et al. [144]
put forward an inverse-depth-aware fully convolutional (IDA-FCNN) network for image
feature learning and a line-scanning strategy for geometric feature learning based on the
inverse-depth histogram of point clouds. Then, the result-based fusion for road segmenta-
tion is achieved by a CRF. The pairwise potential in the energy function of CRF penalizes
the different image-based and point-cloud-based segmentation results. Gu et al. [145] also
used the CRF to integrate the 2D and 3D result of road segmentation (shown in Figure 2b).
The point cloud is segmented based on the probability map describing the flatness of each
point. At the same time, an FCN is selected for the camera-based road segmentation. Then,
the 3D segmentation result is projected on the images. Finally, the result of camera-based
and LiDAR-based segmentation are integrated by the CRF fusion strategy whose energy
function contains 2D unary potential, 3D unary potential, and 2D–3D pair-wise potential.
The PanopticFusion [146] archives the holistic scenes understanding based on the RGBD
images. This system first acquires the panoptic labeled images by fusing both the semantic
segmentation result from PSPNet and instant segmentation result from Mask R-CNN. Then,
the panoptic labeled images are integrated with the volumetric map generated by the depth
information. The mutual relationship between panoptic labeled images and volumetric
maps is reconstructed by the SLAM. In addition, the author proposed a fully connected
CRF model consisting of a novel unary potential approximation and a map division for the
map regularization respecting to the panoptic labels.
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However, Zhang et al. [147] propose a CRF-free 3D semantic segmentation result
refinement method (shown in Figure 2a) based on the 2D segmentation result. Firstly, the
images are segmented by the ImageNet-pretrained Deeplabv2-VGG16 (DVLSHR model).
Secondly, the 2D segmentation result is mapped to the 3D point clouds based on the
camera’s internal parameters and the external azimuth elements calculated according
to the collinear conditions. Based on the mapped 2D result, the outline of each class is
segmented. Thirdly, the further refinement of segmenting the physical planes of buildings
based on the 3D features is achieved by optimizing the coarse segmentation result. The
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proposed FC-GHT algorithm takes the advantages of random Hough transformation and
the GHT coarsely segments the physical planes based on the normal vector angle and
the Euclidean distance. Then, the coarsely segmented patches are optimized by the patch
merging and re-judgment of coplanar points.

Table 7. Comparative summary of segmentation methods using result-based fusion strategy (P: point cloud; Data 2:
intermediate data).

Name Raw Data Data 2 Data Set Acc Class Acc AP IoU F1-Score Scene Code

[148] _ RGB,P Mesh CamVid _ 61.1 _ _ _ Outdoor No

[144] IDA-
FCNN RGB,P BEV KITTI _ _ 92.7 _ 96.4 Outdoor No

[147] DVLSHR RGB,P DVLSHR City-Scapes 74.9 _ _ 64.2 _ Outdoor No
[145] LC-CRF RGB,P BEV KITTI _ _ 92.1 _ 97.1 Outdoor No
[146] PanopticFusion RGBD Voxel ScanNet _ 52.9 _ _ _ Indoor No

Moreover, the task of 3D model segmentation also needs the result-based fusion
strategy. The existing methods are time consuming because they often extract the image
and geometric features from every image, so the reduction of the magnitude of images will
help to accelerate the labeling. Riemenschneider et al. [148] aimed to predict the best view
to reduce the view redundancy for SfM/MVS reconstruction. The best view selection and
labeling are achieved based on the proposed semantic cues, view redundancy, and scene
coverage. The semantic cues including a heavy feature rely on the image context, which
takes a longer time to be computed; a lightweight feature relies on geometric information,
which takes a shorter time. The heavy feature (16-dimensional feature vector) consists
of the CIELAB Lab color component, eight responses of the MR8 filter bank, height from
ground plane, depth of dominant plane, and surface normal (optional: dense SIFT). The
lightweight feature includes the area of the mesh surface, 2D projection in a specific camera,
ratio between the former two elements, mesh surface and its projection, and the angle
between the mesh surface and its projection. The lightweight feature is used to view
the redundancy reduction, and then the heavy feature is used for semantic classification.
Finally, the observation importance is introduced to reflect the importance of images which
helps to accelerate the surface-wise classification and mesh labeling.

4.1.3. Feature-Based Fusion Strategy

According to our knowledge, the existing feature-based fusion strategies can be
grouped into three categories: one-stage, multi-stage, and cross-level. The comparative
summary of segmentation methods using the feature-based fusion strategy is shown in
Table 8, and their details will be introduced in the following paragraphs.

1. One-stage Fusion Strategy

The one-stage feature-based fusion strategy only fuses the 2D and 3D information
once in the network. In the following lines, we will introduce the methods processing the
RGBD image or the point cloud registered with the RGB images, respectively.

(1) RGBD images

Some of the methods first extract the 2D appearance feature based on the RGB infor-
mation and then project the 2D feature to 3D as initialization for further 3D feature learning.
Qi et al. [149] propose an end-to-end 2D semantic segmentation method for the fusion of
appearance and geometric information. It combines the CNN and the GNN (graph neural
network). The nodes of the graph represent the points and the edges link each node with
its nearest neighbors in 3D. The image features extracted by the CNN (modified VGG-16
and global pooling) are used to initialize each node of the graph, and then each node will
be iteratively updated by a recurrent function and neighbor information through the edges
from their neighbors. The neighbor information is first computed by feeding the hidden
state to MLP and average operator, then updated by the vanilla RNN or LSTM (similar
performance). With four propagation steps, the accuracy reaches its best.
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Instead of initializing the 3D feature extraction process with 2D features, which may
lead to feature bias, some networks utilize the 2D and 3D features equally. According to the
method put forward by Gupta et al. [150], the region proposals are generated by the multi-
scale combinatorial grouping (MCG) based on the normal gradients, geocentric pose, and
soft edge map. The fine-tuning R-CNN is then utilized for the proposal-wise RGB feature
and depth feature learning. The main contribution of this work is the HHA representation
generated by the depth values. The HHA representation is encoded with the horizontal
disparity, the height above the ground, and the angle between the gravity direction. Since
the range of the values of HHA representation are scaled from 0 to 255, the R-CNN is
effectively generalized to extract the feature of depth. Then, the depth and RGB features are
imported to a SVM for the bounding box generation. Finally, based on the result of object
detection, the instance mask predicting and semantic segmentation are achieved at the
same time. This method is shared with a good quality code at https://github.com/s-gupta/
rcnn-depth (accessed on 29 September 2021). Jaritz et al. [151] propose a novel network
(shown in Figure 3a) achieving depth completion and semantic segmentation by the late
fusion manner. The features are extracted from the depth and RGB images, respectively, by
two different NASNet encoders. Then, a channel-wise concatenation operator followed
by series of convolutions is used for the features fusion. However, the original depth
images are sparse. Therefore, the depth images need to be adjusted to a similar resolution
with the feature map of RGB images for element-wise feature fusion. 3DMV [152] (shown
in Figure 3b) is a joint two-stream network for the 3D semantic segmentation. The 2D
stream uses the modified ENet without proxy loss score layer to extract the 2D feature
based on multi-view images. Additionally, a voxel max-pooling operation is utilized to
integrate the 2D features from multiple views. The 3D stream takes the voxel encoded with
the two-channel binary as input for 3D feature extraction using the 3D convolutions. To
manage the joint 2D–3D feature fusion, the author comes up with a differentiable back-
projection layer to project the 2D features into the 3D volumetric representation based on
the known 6-DoF pose alignments. The 2D and 3D feature vector fusion is achieved by the
concatenation operation. According to the ablation study and the evaluation result, the
fusion strategy of joint 2D–3D features effectively improves the performance compared
with the geometry-only, image-only, and voxel-color-only segmentation. This method is
shared with a good quality code at https://github.com/angeladai/3DMV (accessed on
29 September 2021).
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(2) Point Cloud Registered with RGB Images

Since the great difference of data structure between point cloud and RGB image,
the two-stream network is popular. Moreover, most of them achieve the feature fusion
dependent on not only the fusion operation, such as concatenation and summation, but also
the intermediate data to overcome the gap between point cloud and image. For example,
the BEV represents the point cloud by 2D grid and preserves sorts of geometric information.
The TSF-FCN [153] (shown in Figure 3d) is a network consisting of LiDAR stream and RGB
stream. The LiDAR stream aggregates the multi-scale contextual information based on the
BEV grid whose cells are encoded with the mean height, gap between maximum height
and minimum height, and occupancy. The RGB stream extracts the 2D features based
on the raw front-view images rather than naively projecting them to the fixed bird-view
images. After extracting the features of point clouds and images, respectively, using the
dilated convolution, the feature fusion is achieved by the fusion layer. Finally, the fused
features are imported into the decoder for further feature extraction, resolution recovery,
and pixel-wise semantic labeling. The main contribution of TSF-FCN is the novel fusion
layer and the BEV generation method. The feature fusion layer converts the feature map
of an image from the encoder of the RGB stream to the same coordinate frame with the
LiDAR grid map.

Instead of using the concatenation and summation operation, some researchers utilize
the powerful CRF to fuse the segmentation score map from each branch based on the prior
knowledge and the mutual relationship between image and point cloud. Yang et al. [154]
effectively fused the features of image and point clouds by the BEV representations. More-
over, the authors created a fully connected CRF consisting of a unary potential and a
pair-wise potential, which was optimized by the mean-field approximate algorithm. The
unary potential consists of both the local and the global feature from the encoders of FCN
and PointNet++. To enforce the robustness and maintain the local consistency of color and
height, the pair-wise potential consists of the color bilateral kernel, height bilateral kernel
and spatial kernel for small, isolated obstacle removal. The height bilaterial kernel is taken
from a dense height image generated based on the sparse point clouds by the Markov-based
up-sampling method. Since this method aims to segment the road, the height bilateral
kernel based on the assumption that the road area is a large flat with high consistency of
height helps a lot for the robustness enforcement. Although the BEV performs well, it may
cause geometric information loss. Therefore, the especially designed structure for better
performance of feature fusion is proposed in the SPLATNet [155] (shown in Figure 3c). It
includes a brand-new bilateral convolutional layer (BCL) with the lattice indexing structure
for the hierarchical and spatially aware feature learning and joint 2D–3D reasoning. There
are finer lattices (larger lattice scales) at an early fusion stage and coarse lattices (smaller
lattice scales) when the network goes deeper. Additionally, the end-to-end SPLANet 2D-3D
with a “2D-3D Fusion” module maps the 2D pixels into the 3D space and vice versa for
both the 2D and 3D semantic segmentation. The 2D features from multi-view images are
extracted by the DeepLab, and the 3D features from point clouds are extracted by the
SLATNet 3D architecture. The “2D-3D Fusion” firstly concatenates two feature vectors
of image and point cloud, then further processes the concatenated features by using a
series of 1 × 1 convolutional layers. This method is shared with a good quality code at
https://github.com/NVlabs/splatnet (accessed on 29 September 2021).

However, there is a special method achieving the 2D and 3D feature fusion in a
one-stream end-to-end network. MVPNet [156] (Multi-View PointNet) projects the 2D
feature map extracted by the video stream to the point cloud. Then, 2D feature vectors
are concatenated with the geometry coordinates (X,Y,Z) for each point. Finally, the point
cloud with both geometry and appearance information are input into PointNet++ for the
semantic segmentation.

https://github.com/NVlabs/splatnet
https://github.com/NVlabs/splatnet
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1. Multi-Stage Fusion Strategy

Similar to the networks with a one-stage feature fusion strategy, most of the methods
with a multi-stage feature fusion strategy are two-stream networks which extract the
features of images and point cloud, respectively. However, the multi-stage method fuses
the 2D and 3D feature more than once at different positions of the network. The networks
are more complicated than the one-stage network, but they may make better use of both
2D and 3D features or achieve multi-tasking.

(1) RGBD Images

Li et al. proposed the LSTM-CF [157] with the long short-term memorized context
fusion (LSTM-CF) mode. The long short-term memory layer and a long short-term memo-
rized fusion layer are designed for the global context feature learning. Moreover, instead
of simply concatenating the features and overlooking the strong correlation between depth
and photometric channels, the fusion layer integrates features from the different channels in
a data-driven manner. The feature of HHA and RGB information are extracted, respectively,
by a stack of convolutional layers and a long short-term memory layer, and then integrated
by the concatenation operation. Then, the proposed memorized fusion layer further inte-
grates the 2D and 3D information by a data-driven adaptive fusion manner, which achieves
the bi-directional propagation vertically. Liu et al. [158] propose a two-stream network
based on the DCNN. Additionally, they compare the early fusion and late fusion by a series
of ablation studies. The early fusion method concatenates the feature of the image and
HHA extracted at an early stage. The late-fusion method computes the average or weighted
summation of the score maps of RGB and HHA streams by the CRF. The method using
the late-fusion strategy with weighted sum is slightly better than the others. 3D-SIS [159]
is a detection-based instance segmentation network which jointly learns both the 2D and
3D features (shown in Figure 4b). The pixel-wise 2D features are extracted by series of
convolutions and then back-projected to the holistic scenes generated by 3D reconstruction
based on the pose alignment. The 3D convolutional feature-extraction backbone consists
of the 3D geometry stream and the 3D color stream. Then, the 2D color, 3D color, and 3D
geometric features are integrated by the concatenation operation. Finally, the concatenated
features map serves the detection box generation and classification, respectively, for the
instance segmentation. In addition, the 3D color and geometry featured are secondly fused
for the detection box fine-tuning.
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(2) Point Cloud with 2D Images

Yu et al. [160] propose a fully convolutional network with a two-stream encoder for
the feature extraction and a multi-stage residual fusion module for the feature fusion.
This network takes the BEVs representation generated by the point clouds and images as
input. The two-stream encoder extracts the image and point clouds features by five blocks,
respectively. There are slight differences between the first blocks of two streams, but the
second to fifth layers are all composed of the residual layers and the bottleneck block layers.
Rather than limiting the feature fusion at a single early, middle, or late fusion stage, this
method takes residual learning for the multi-modal feature fusion. The multi-stage residual
fusion module is composed of the residual fusion (ResFuse) module fusing the features
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of different sensors and the multi-stage fusion (MSFuse) integrating the features from
different layers. However, the projection between image, point cloud, and BEV may cause
the information loss or deformation. So, the BiFNet [161] (bidirectional fusion network)
introduces a dense space transformation (DST) module to solve the mutual relationship
between the coordinates of the camera, point cloud, and BEV (shown in Figure 4a). More-
over, the proposed context-based feature fusion (CBF) module integrates the 2D and 3D
feature by the adaptive weighted summation operation, which stimulates the useful feature
and suppresses the useless feature. The weight matrix for summation is learned by the
three-layer perceptron.

2. Cross-Level Fusion Strategy

The one-stage and multi-stage fusion strategies only fuse the 2D and 3D features in
a certain layer of the two-stream network. However, one-stage and multi-stage fusion
strategies fail to take the advantage of the hierarchy of commonly used segmentation
networks. Therefore, a series of cross-level fusion strategies are proposed to integrate the
2D and 3D feature from each layer of hierarchy.

(1) RGBD

The network proposed by Yuan et al. [162] extracts the features of the RGB and HHA-
encoded depth images, respectively, by the Deeplab. The features from each layer of
the hierarchy are extracted by the atrous convolutions, and the depth feature learning is
hierarchically inserted into the layer of RGB feature learning. Then, the depth features
and RGB features are fused by an element-wise summation fusion strategy in the fusion
layer to preserve the essential information from both branches. ACNET [163] (shown in
Figure 5a) (attention complementary network) is a ResNet-based triple-branch network
consisting of a RGB branch, a depth branch, a fusion branch, and a novel feature fusion
operator. The author thinks that fusing the feature too early or late may hurt the original
RGB and depth information. Therefore, the features from each layer of both RGB and depth
branch are fused in the fusion layer hierarchically. The main contributions of this network
are not only the fusion layer but also the novel cascaded feature fusion operator based
on the attention complementary module (ACM). The features from both the RGB branch
and depth branch are attention-based weighted summed up and the parameters of weight
are learned by the ACM based on the feature map. Additionally, the undifferentiated
concatenation appears ambiguous to learn the cross-level complementary feature. This
method is shared with a good quality code at https://github.com/anheidelonghu/ACNet
(accessed on 29 September 2021). Chen et al. [164] propose a cross-level distillation stream
for the complementary feature learning. In addition, a channel-wise attention mechanism
is proposed to adaptively select the complementary feature from each modality in each
level. Moreover, TSNet [165] (shown in Figure 5d) is a three-stream self-attention network
with a RGB stream with VGGNet16, a depth stream with ResNet34 and a novel cross-level
distillation stream with self-attention which extracts the complementary feature in the
bottom-up path. The ResNet is specially selected to preserve the edge contour information
of depth image when the network goes deeper. Moreover, the features of different data
in each layer of encoder are fused by the convolution layer and the ASPP (atrous spatial
pyramid pooling).

https://github.com/anheidelonghu/ACNet
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(2) Point Cloud Registered with Images

FloorNet [166] is a triple-stream hybrid network with a PointNet branch, a floorplan
branch, and an image branch to generate pixel-wise floorplan. The PointNet branch
exploits PointNet to extract the features of 3D point clouds. The floorplan branch uses the
FCN with the skip connections to learn the feature of point-density image generated from
the top-down view. The image branch employs the dilated residual network (DRN) for
the semantic features and utilizes the stacked hourglass CNN (HG) for the room layout
features. The main innovation of this network is the mechanism of features fusion and the
propagation method across different branches. The feature fusion process firstly applies the
pooling module to integrate the features of disordered points and every 20 frames of video
sequence. Secondly, the aforementioned features are projected to the cell of the top-down
feature map in floorplan branch, then all the features in the same cell are summed up
for fusion. Moreover, features from floorplan branch are also propagated to PointNet
branch by reversing the pooling operation. This method is shared with a good quality
code at https://github.com/art-programmer/FloorNet (accessed on 29 September 2021).
Caltagirone et al. [167] propose a novel cross fusion strategy (shown in Figure 5b) based on
the FCN. Both the image and point cloud feature vector are propagated and self-adaptive
weighted summed up in each layer across different streams. Kim et al. [168] introduce
a two-stream network whose image stream learns the 2D feature by the modified ENet
and the point cloud stream consists of the 3D convolution layer, max-pooling layer, and
up-sampling layer. The input of the point clouds stream is the voxel generated by the
point clouds and encoded with the roughness and the porous feature. Moreover, the
proposed project module projects the 3D feature to the 2D feature map according to the
camera intrinsic parameters. Then, the image and point cloud feature fusion is achieved
by the summation operation. The network proposed by Chiang et al. [169] takes the
3D mesh as input and extracts the 2D textural appearance, 3D local geometry, and 3D
global context features for the holistic 3D point clouds semantic segmentation. The 2D
appearance feature is learned by the 2D-CNN based on the images rendered by the 3D
mesh and is then projected into the 3D local geometric feature map and 3D global context
feature map for the feature fusion using the concatenation. Then, the two-stream encoder

https://github.com/art-programmer/FloorNet
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is composed of the sub-volume encoder, global scene encoder, segmentation decoder,
and skip-connection for further feature learning and holistic point cloud segmentation.
This method is shared with a good quality code at https://github.com/ken012git/joint_
point_based (accessed on 29 September 2021). However, the aforementioned methods
fuse the 2D and 3D feature, which are simply projected together. The Progressive LiDAR
Adaptation-aided Road Detection (PLARD) [170] (shown in Figure 5c) integrates the
adapted point clouds features with image feature map by the cascaded summation. The
proposed altitude difference-based transformation (ADT) transforms the feature map of
point clouds into the feature map of image based on the scale and offset parameters learned
by the TransNet. The existing representations, such as the range image, voxel, and point
clouds, have their own advantages and disadvantages. The range image is regular and
generally dense, but the data projection may cause the physical dimensions distortion.
The voxel representation is regular but parse, and the computation grows cubicly when
voxel resolution increase. The point cloud is geometrically accurate but disordered. To
integrate the advantages of aforementioned three representations, the three-stream network
RPVNet [171] (range-point-voxel fusion network) is proposed to take the advantages and
alleviate the shortcoming of range image, voxel, and point clouds with the gated fusion
module (GFM) for the self-adaptive features fusion. The self-adaptive mechanism is
popular for filtering the useless features. Moreover, the gated fusion module is proposed
to measure the importance of each feature based on the mature gating mechanism. Even
though the network structure of RPVNet is complicated, the efficiency is guaranteed due
to the RPV interaction mechanism using the hash mapping, the simple MLPs on point
branch without local neighbors searching and taking a relatively lower resolution and
sparse convolution in the voxel branch.

3. Others

There are some methods utilizing machine learning techniques that are worth includ-
ing in this review.

(1) RGBD Images

Nakajima et al. [172] came up with a novel method that incrementally segmented
not only known but also unknown objects using both color and geometric information,
which achieved semi-real-time performance. The method includes the 3D segmentation
map generated by the data-based fusion method and the incremental clustering based on
the feature-based method. The 3D segmentation map is the crucial part of this method
and will be updated incrementally when segmenting unknown objects. The process of
generating 3D segmentation map includes: 3D reconstruction based on dense SLAM;
superpixel segmentation using the modified SLIC based on the distance metric generated
by CIELAB color, normal map and image coordinates; and agglomerative clustering the
superpixel segmentation result. To cluster the superpixel for the object-level segmentation,
an incremental clustering method is proposed by fusing and updating the geometric feature,
deep feature, and entropy extracted by the depth image, RGB image, and 3D segmentation
map. In addition, a weighted affinity is computed based on the similarity of geometric
feature, the similarity of deep feature and entropy of the probability distribution of CNNs
for incremental clustering improvement.

(2) Point Cloud Registered with Images

Multiple feature fusion is proved effective by Martinovic et al. [173] but sacrificing the
efficiency. The descriptor for each 3D point includes the 2D features of image (mean RGB
color, LAB value of mean RGB, spin-image (SI) descriptor) and 3D feature of point clouds
(normal, height above ground plane, inverse height, depth from defined facade plane). The
132-dimensional descriptors of point cloud are clustered by the random forest classifier for
the facade grouping based on the proposed 3D Weak Architectural Rules (3DWR) and the
result is post-processed by CRF.

https://github.com/ken012git/joint_point_based
https://github.com/ken012git/joint_point_based
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Table 8. Comparative summary of segmentation methods using feature-based fusion strategy (P: point cloud; Data 2:
intermediate data).

Name Fusion Strategy Data Data 2 Data Set Acc Class Acc AP IoU F1-Score Scene Code

[150] _ One-stage RGBD _ NYUD2 _ 35.1 32.5 _ _ Indoor Available

[149] _
_ One-stage RGBD Graph

HHA

NYUD
v2

SUN
RGBD

_
_

57
52.5

_
_

43.6
40.2

_
_ Indoor No

[151] _ One-stage RGBD _ Synthia
Cityscapes _ _

_
_
_

70.7
57.8

_
_ Outdoor No

[152] 3DMV One-stage RGBD Voxel ScanNet 71.2 _ _ _ _ Indoor Available

[155] SPLATNet One-stage RGB, P Lattice
Indexing ShapeNet _ _ _ 83.7 _ Indoor Available

[154] _ One-stage RGB, P BEV KITTI _ _ 88.5 _ 91.4 Outdoor No
[153] TSF-FCN One-stage RGB, P BEV KITTI _ _ 95.4 _ 95.42 Outdoor No
[156] MVP-Net One-stage RGB, P _ ScanNet _ _ 64.1 _ Indoor No
[161] BiFNet Multi-stage RGB, P BEV KITTI _ _ 95.8 _ 97.88 Outdoor No

[157] LSTM-CF Multi-stage RGBD HHA

NYUD
v2

SUN
RGBD

_ 49.4
48.1 _ _ _ Indoor No

[158] _ Multi-stage RGBD HHA NYUD
v2 70.3 51.7 _ 41.2 54.2 Indoor No

[159] 3D-SIS Multi-stage RGBD Voxel ScanNet _ 36.2 _ _ _ Indoor No
[160] _ Multi-stage RGB, P BEV KITTI _ — 96.9 _ 95.98 Outdoor No

[162] _ Cross-level RGBD HHA NYUD
v2 _ 49.9 _ 37.4 51.2 Indoor No

[163] ACNET Cross-level RGBD _

SUN
RGBD
NYUD

v2

_
_

_
_

_
_

48.1
48.3 _ Indoor Available

[164] _ Cross-level RGBD HHA NLPR _ _ _ _ 86.2 Outdoor No

[165] TSNet Cross-level RGBD _ NYUD
v2 73.5 59.6 _ _ 46.1 Indoor No

[166] Floor-Net Cross-level RGB, P Voxel Self-
collected _ 57.8 _ _ Outdoor Available

[167] _ Cross-level RGB, P _ KITTI _ _ 96.2 _ 96.25 Outdoor No

[168] _ Cross-level RGB, P Voxel Self-
collected _ _ 74.7 _ Outdoor No

[170] PLARD Cross-level RGB, P ADT KITTI _ _ _ _ 97.77 Outdoor No

[169] _ Cross-level 3D Mesh Voxel,
Mesh ScanNet _ _ _ 63.4 _ Indoor Available

[171] RPV-Net Cross-level RGB, P Voxel
Semantic-

KITTI
_ _ _ 70.3 _ Outdoor No

[172] _ Others RGBD _ NYUD
v2 _ _ _ 46.1 _ Indoor No

[173] _ Others RGB, P _ RueMonge _ 61.4 _ _ _ Outdoor No

4.2. Detection

Since the task of object detection aims to obtain the localization, bounding box, and
the corresponding class, the structure of the network and fusion strategy contains great
differences with the segmentation methods. In our opinions, the fusion strategies for the
object detection can be grouped into data–result-based and feature-based. The category is
defined based on how they achieve the 2D and 3D information fusion.

4.2.1. Data–Result-Based Fusion Strategy

The data–result-based fusion strategy integrates the 2D detection result with 3D raw
data and vice versa. For example, the 2D detection results can be projected to 3D as the
regions of interest for the further refinement based on the 3D geometric feature. The
comparative summary of detection methods using data–result-based fusion strategy is
shown in Table 9; their details will be introduced in the following paragraphs.

To improve the 2D detection, some researchers project the 3D proposals or bounding
boxes onto the 2D images as the regions of interest (RoI). Then, the 2D feature is further
learned for 2D bounding box regression based on the RoIs [3]. Arcos-García et al. [174]
put forward a robust traffic sign detection method utilizing both the point clouds and the
images collected by a vehicle equipped with LiDAR and RGB cameras. Firstly, the point
cloud is pre-processed by removing the points whose distance from trajectory registered by
MMS are further than 15 m and removing the ground by using a ground region growing
method based on the voxelized point clouds. Since the traffic signs are planes made of
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retro-reflective materials, the intensity information is useful for traffic signs segmentation.
The unsupervised classification algorithm based on the gaussian mixture models (GMM)
is selected for the coarse traffic signs segmentation by collecting the components with
the largest mean intensity and then being refined by the DBSCAN algorithm and PCA.
Secondly, they project the 3D clustering result to the proper image based on the cameras
calibration parameters as 2D RoI for the further refinement using the visual information
and the 2D ConvNet. Guan et al. [175] also propose a robust method in which the 3D
traffic signs detection results based on point clouds are projected onto the RGB image
as the 2D ROIs. The supervized Gaussian-Bernoulli deep Bolzmann machine model is
utilized for the final detection. The method proposed by Barea et al. [176] fuses the 2D
proposals generated by the 2D semantic segmentation result and the 2D proposals projected
from the 3D box. Those two kinds of proposals are integrated depending on the overlap
situation and geometric restrictions. With the development of deep learning techniques,
this fusion strategy is generalized to the neural network. Guan et al. [177] introduced a
two-stage convolutional capsule network for the traffic signs detection which exploits both
mobile LiDAR point clouds and images. At the first stage, the traffic signs are detected
by a supervoxel segmentation method based on the pole height, road width, intensity,
geometrical structure, and traffic sign size. Then, the 3D segmentation patches are projected
onto the image planes as 2D region proposals. Finally, the 2D region proposals are further
refined by a novel convolutional capsule network consists of a convolutional CNNs for
low-level feature extraction and a series of capsule layers encoded with the low-level
feature and high-order vectorial capsule representation for more powerful and robust
feature extraction.

Not only the 3D proposals or bounding boxes can be transformed as the 2D RoIs, but
also the 2D proposal or bounding boxes can be projected into 3D as the frustums or 3D RoIs
which will be refined based on 3D geometric feature. Lahoud et al. [178] take the full use of
2D information for 3D searching space reduction. Then, the 3D information is utilized to
estimate the orientation, localization, and prediction of the bounding box of objects. The
Faster R-CNN is used to estimate the initial location of objects based on the images. Then,
the results of 2D detection are projected as the 3D frustums, which helps to improve the
efficiency compared with the traditional approaches with the sliding window. Based on
the interest region of 3D frustums, the orientation estimation is achieved by the Manhattan
frame estimation (MFE). Moreover, the histograms with coordinate information of each
point along each axis are used as the input of MLP for the geometric feature learning and
the 3D bounding box regression. Finally, the LP-MAP (Linear Programed-Maximizing the
Aposteriori) is utilized for label refinement based on the appearance information, geometric
information, and relationship between labels by introducing the local marginal variables as
unary term and binary term. The unary term represents the probability of assigning the
box a label, which includes the geometric features of length, width, height, aspect ratios,
volume, and deep learning features acquired by the Fast RCNN based on the projected 3D
box in the image plane. The binary term indicates the probability of assigning one box a
label when giving the label of another box, which reflects the co-occurrence and the spatial
distribution of class in 3D scenes. According to the method proposed by Du et al. [179],
both 2D and 3D information are used to segment the car in point cloud. Any 2D detection
network can be used to generate the 3D proposal for the car dimensions estimation. Based
on the result of car dimension estimation, the generalized models and score maps are
generated by the 3D CAD dataset. Additionally, the 2D proposals are projected as 3D RoIs.
Then, a model fitting method named 3DPVs is selected for points filtering based on the
generalized models and score maps. Finally, a two-stage refinement CNN takes the filtered
points as the input of the 3D detection. The 2D detection results (2D proposals) of Frustum
PointNets [180] (shown in Figure 6a) are projected as the 3D frustums, which helps to
reduce the research space. The 2D detector of this method is the FPN pretrained by the
ImageNet and COCO and refined by the KITTI 2D. According to the SiFRNet [181] (shown
in Figure 6c) proposed by Zhou et al., the result of 2D detector provides 3D frustum for the
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point cloud. Then, the 2D feature vector and the 3D point coordinates in each frustum are
fused by the concatenation and further learned by the proposed Point-UNet composed of
the T-Net and the Point-SENet. The Frustum ConvNet [182] (shown in Figure 6d) utilizes
the 2D proposals to generate the 3D frustums first. Then, the frustum-wise features of point
clouds derived by the PointNet are reformed and concatenated for FCN to generate the 3D
bounding box and classification result. This method is shared with a good quality code
at https://github.com/zhixinwang/frustum-convnet (accessed on 29 September 2021).
The RoarNet [183] includes both the 2D and 3D part. The 2D part generates the 2D
bounding boxes and estimates their 3D pose for 3D region proposal generation. Based on
the 3D feasible regions, the 3D part takes two simplified PointNet for better 3D proposals
generation and bounding box regression.

Table 9. Comparative summary of detection methods using data–result-based fusion strategy (P: point cloud; Data 2:
intermediate data).

Name Task Data Data 2 Dataset IoU Threshold AP Scene Code

[178] _ 3D Det RGBD Graph SUN RGBD 0.25 45.12 Indoor No

[180] F-PointNet 3D Det RGBD
_ KITTI 0.7 car

0.5 ped.
0.5 cyc.

0.25

71.26
45.44
59.71

54

Outdoor

No
SUN RGBD Indoor

[174] _ 2D Det RGB, P Voxel GTSRB _ 99.71 Outdoor No

[184] IPOD

2D Det
3D BEV

Det
3D Det

RGB, P _ KITTI 0.7
88.96
82.92
72.88

Outdoor No

[175] _ 2D Det RGB, P Voxel Self-collected 93.3 Outdoor No

[176] _ 2D BEV
Det RGB, P — KITTI 0.7 80.64 Outdoor No

[179]

PC-CNN
3D Det

RGB, P BEV KITTI

0.5
0.7

82.09
53.59

Outdoor No
3D BEV

Det
0.5
0.7

83.89
76.86

MC-CNN
3D Det 0.5

0.7
84.65
54.32

3D BEV
Det 0.50.7 87.86

77.91
[177] _ 2D Det RGB, P Voxel Self-collected _ 95.7 Outdoor No

[181] SiFRNet 3D Det RGB, P BEV

SUN RGBD 0.25 58.4 Indoor

NoKITTI

overall
0.7 car
0.5 ped.
0.5 cyc.

66.99
73.95
61.05
65.97

Outdoor

[182] Frustum
ConvNet

3D Det RGB, P
_
_

SUN RGBD 0.25 57.55 Indoor
Available

KITTI
0.7 car
0.5 ped.
0.5 cyc.

76.82
46.49
67.1

Outdoor

[183] RoarNet 3D Det RGB, P _ KITTI 0.7 72.77 Outdoor No

However, there are some special methods that utilize the 2D segmentation result to
improve the process of 3D detection. IPOD [184] (shown in Figure 6b) is a 3D detection
network consisting of the background removing part, point-based proposal generation part,
proposal feature generation module, and box prediction network. The 3D RoI generated
by the images segmentation results are used as the 3D proposals. Vora et al. introduced a
novel PointPainting [185] method that appends the class score of each point with the 2D
segmentation result. According to this method, the point clouds are projected onto the
image plane firstly. Once the point falls on a pixel, the relevant pixel feature vector will
be concatenated with the point’s coordinate. Then, the concatenated feature map can be
imported to any point-cloud-only method for further feature learning.

https://github.com/zhixinwang/frustum-convnet
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4.2.2. Feature-Based Fusion Strategy

Similar to the segmentation network which fuses the 2D and 3D feature, most of the de-
tection network are designed with a two-stream structure. The feature-based fusion strategies
are also divided into three groups: one-stage, multi-stage, and cross-level fusion strategy. The
comparative summary of detection methods using the feature-based fusion strategy is shown
in Table 10, and their details will be introduced in the following paragraphs.

PRN [186] (3D Region Proposal Network) is the first joint object recognition network
(shown in Figure 7a) which jointly learns the 2D color and 3D geometric feature. The
author firstly puts forward the deep sliding shapes with 3D ConvNets for the 3D proposal
feature learning based on the volumetric representation generated by the RGBD images
and utilizes the 2D VGG to extract the color features at the same time. To achieve the
feature fusion, a concatenation operation followed by a fully connected layer is selected
for the voxel-wise feature fusion. Deng et al. [187] aims to predicting the 3D locations,
physical sizes, and orientation simultaneously by the RGBD images (shown in Figure 7b).
The 2D ROI proposal is generated by the MCG algorithm based on the RGB and depth
values. Based on the 2D RoIs, the appearance feature of RGB image and geometric feature
of depth image are extracted, respectively, and then fused by the concatenation. Rather
than directly back projecting the 2D segmented pixel to the 3D space, this method generates
the 3D box proposals derived from the corresponding 2D segment proposals. Then, the 3D
bounding boxes are refined by learning the offsets of a seven-element vector for the 3D
proposals. Furthermore, a multi-task loss is utilized to the jointly train the classification
and the bounding box regression process. This method is shared with a good quality code
at https://github.com/phoenixnn/Amodal3Det (accessed on 29 September 2021).

https://github.com/phoenixnn/Amodal3Det
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(2) Point Cloud Registered with Images

The BEV and voxel are also commonly used in the task of detection which take both
2D and 3D feature into consideration. The following two methods integrate the 2D and 3D
information based on the BEV representation. Wang et al. [188] put forward a novel sparse
non-homogeneous pooling layer for the feature fusion, which is a cross-bridge between the
MSCNN backbone and VoxelNet backbone for the 2D and 3D feature fusion. HDNet [189]
is a single-stage detector which takes both the geometric and semantic features from HD
maps to improve the 3D detection. To achieve the features fusion, the point clouds need
to be transformed into the BEV representation. The features from each layer of HD map
feature learning network are fused with the 3D feature map acquired by the average pool
down-sampling, coping, and bilinear up-sampling operation.

The voxel is useful for the feature fusion as the intermediate data. However, the MVX-
Net [190] (shown in Figure 7c) compares the point-based and voxel-based fusion method. The
result shows that the point-based fusion method performs slightly better than the voxel-based
fusion method. The PointFusion aggregates the dense 2D context information for each 3D
point using the point-wise concatenation operation. The VoxelFusion fuses the 2D feature and
the 3D feature learned by stacked VFE using the voxel-wise concatenation operation.

To solve the problem that BEV and voxel may cause the geometric information loss due
to the projection and the resolution of the grid, the networks achieving the pointwise 2D
and 3D feature fusion based on raw unordered point cloud are worthy of further research.
ImVoteNet [191] (shown in Figure 7d) is a two-stream 3D detection network consisting
of the modified VoteNet, 2D vote generation module, 3D vote generation module, and
novel multi-tower formulation. In the point cloud stream, K seeds are selected from the
point clouds. Then, each seed point is encoded with the concatenated coordinate, 2D
votes and 3D votes. The 2D votes includes the geometric cue, semantic cues and texture
cues based on the 2D detection results generated by Faster R-CNN. The 3D vote contains
the 3D coordinates and local point clouds feature extracted by the PointNet. For better
training and testing, a novel multi-tower formulation that including the image tower, point
tower and joint tower is proposed. The image tower and point tower are only used for the
training process; the joint tower is used for both training and testing process.
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There is a special method which takes the raw point cloud, BEV voxel, and perspec-
tive view images generated by point cloud as inputs. Zhou et al. propose an end-to-end
multi-view fusion (MVF) [192] algorithm which consists of the dynamic voxelization (DV)
and the multi-view feature fusion operation. Compared with the traditional hard voxeliza-
tion method, which may result in information loss, non-deterministic voxel embeddings,
and unnecessary computation, the dynamic voxelization overcomes those drawbacks by
preserving the complete mapping between points. Moreover, the number of voxels and the
number of points inside each voxel are dynamic, so it eliminates the information loss caused
by the stochastic dropout of points. Additionally, this method takes the advantages of raw
unordered points, BEV voxelization, and perspective view representation. The point-wise
feature extracted from the raw points, voxels and perspective view images are concatenated
together for the feature fusion. Although this method only takes the 3D point cloud as input,
it still provides an idea of integrating the feature from multiple forms of data.

2. Multi-stage Fusion Strategy
(1) RGBD Images

Xu et al. [193] introduced a multi-task network trained by a weighted multi-task
loss for the 2D detection. The 2D and 3D features are fused three times in this method.
Firstly, the depth information and the 3D coordinates are generated based on the camera
intrinsic parameters and disparity information estimated by the monocular images. Then,
the front view feature maps encoded with depth information are concatenated with the
original monocular images for data enforcement. After generating the 2D region proposals
based on a series of convolutional layers, the 3D point feature generated by mean pooling
and the 2D features generated by max pooling of the same RoI are integrated by the
concatenation operators for the multi-class classifier, 2D box regression, 3D orientation
regression, 3D orientation regression, and 3D dimension regression. Finally, the final jointly
learned features from 2D stream and 3D stream are fused by the summation operation
for accurate 3D location estimation. This method is shared with a good quality code at
https://github.com/mrharicot/monodepth (accessed on 29 September 2021).

(2) Point Cloud Registered with Images

The following four methods take the BEV as intermediate data for the 2D and 3D
feature fusion. MV3D [194] takes the front view and bird’s eye view representation gener-
ated by the point cloud and the RGB images as input. The 3D proposal part generates the
3D candidate boxes based on the bird’s eye view representation. Then, the 3D proposals
are projected on the front view representation and the image for the region-wise feature
extraction. Finally, the region-based fusion part integrates all the region-wise features by
the proposed hierarchical deep fusion strategy which consists of the element-wise mean
operation. Liang et al. [195] came up with an end-to-end deep sliding network with camera
stream for the image feature learning, BEV stream for the LiDAR feature extraction, and
a proposed novel feature fusion structure with the continuous fusion layer for 3D object
detection. The feature fusion layer consists of the multi-layer perceptrons and the weighted
summation. The image features from each layer of ResNet block are fused into the multi-
scale feature map and then will be further fused with the feature maps from the BEV stream.
AVOD [162] (Aggregate View Object Detection Network) is a two-stream network (shown
in Figure 8a) aiming at oriented 3D bounding box regression and category classification.
There are two stages of feature fusion in the network. The first fusion stage fuses the image
feature and BEV feature via the element-wise mean operation for the better 3D proposal.
The second fusion stage fuses the 2D and 3D features of top K proposals with the same
fusion operation for the final 3D bounding box regression. The SCANet [196] includes
three contributions: introducing the spatial-channel attention (SCA) module for multi-scale
and global context feature fusion by the spatial and channel-wise attention, providing a
ESU (extension spatial upsample) module which achieves the multi-scale features fusion
to recover the lost spatial information, and proposing a novel multi-level feature fusion
scheme with the concatenation and element-wise mean operation for BEV and RGB feature

https://github.com/mrharicot/monodepth
https://github.com/mrharicot/monodepth
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fusion. The feature fusion strategy is used twice. The first point-wise fused feature is
utilized for 3D proposals. Secondly, the ROI-wise feature of the BEV and RGB are fused for
the 3D bounding box refinement.
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Moreover, the following two methods fuse both 2D and 3D information for the
disordered point cloud. PointFusion [197] is a 3D object detection network (shown in
Figure 8b) with a novel feature fusion part to integrate the image features and point clouds
features that extracted by the ResNet and PointNet, respectively. The feature fusion part
includes a vanilla global fusion network and a novel dense fusion network. During the
dense fusion process, the point-wise features and the global feature of point clouds and
the image feature are fused by the concatenation operation and further used to predict
the point-wise offsets of each corner. Moreover, the global fusion network fuses the image
feature and point clouds features using concatenation to achieve the 3D proposal generation.
The multi-task and multi-sensor fusion method created by Liang et al. [198] is an end-to-
end network which takes the advantages of both point-wise and ROI-wise feature fusion.
Additionally, an integrated ground estimation module is used to extract the geometric
information of the ground. Moreover, the depth completion and the pseudo-LiDAR points
generated based on the RGB-D images help for the denser point-wise feature fusion. The
point-wise feature fusion strategy fuses the RGB-D feature and the voxel-based BEV feature
maps by the element-wise concatenation. Then, the point-wise fused feature is utilized for
the 3D proposals generating by using the NMS (non-maximum suppression) and score
threshold. Finally, the proposals are further refined by the ROI-wise fused feature which
concatenates the features of images ROI and BEV ROI projected by 3D detection results.

3. Cross-Level Fusion Strategy

Since the hierarchy is not necessary for detection network, there are few network take
cross-level fusion strategies. However, the EPNet is an exception because it is a multi-task
network which achieves both the semantic segmentation and the object detection. So, it
needs the point-wise feature extraction and the cross-level fusion strategy. EPNet [199]
(shown in Figure 9) introduces a novel LI-Fusion module which is a point-wise fusion
manner enhancing the point clouds feature map with the image feature. The LI-Fusion
includes a point-wise correspondence generation part and a LiDAR-guided fusion part. The
point-wise correspondence generation part projects the point clouds onto the image plane.
The bilinear interpolation is utilized to solve the problem that the projected points may
fall between the adjacent pixels. Based on the correspondence between points and pixels,
the point-wise image feature representation is fused with the point-wise feature vector by
the LiDAR-guided weighted concatenation operation. This method is shared with a good
quality code at https://github.com/happinesslz/EPNet (accessed on 29 September 2021).

https://github.com/happinesslz/EPNet
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Name Task Fusion Strategy Data Data 2 Dataset IoU
Threshold AP Scene Code

[186] PRN 3D Det One-stage RGBD _ SUN
RGBD 0.25 26.9 Indoor No

[187] _ 3D Det One-stage RGBD _ NYUD v2 0.25 40.9 Indoor Available
[188] _ 3D Det One-stage RGB, P Voxel KITTI 0.5 26 Outdoor No
[189] HDNet 3D Det One-stage RGB, P BEV KITTI 0.7 84.7 Outdoor No

[190] MVX-Net 3D Det
3D BEV Det One-stage RGB, P Voxel KITTI 0.7 73.7

84.4 Outdoor No

[192] MVF
3D Det One-stage P PV,BEV

Voxel
Waymo

0.7 car
0.5 ped.

62.9
65.3 Outdoor No

3D BEV Det 0.7 car
0.5 ped.

80.4
74.4

[191] ImVoteNet 3D Det One-stage RGB, P SUN
RGBD 0.25 63.4 Indoor No

[193] _
2D Det

Multi-stage RGB P,FV KITTI 0.7

84.9

Outdoor Available
Orientation 84.6
3D BEV Det 10.5

3D Det 5.7

[194] MV3D
3D Det Multi-stage RGB, P BEV,FV KITTI

0.25
0.5
0.7

91.7
91.2
63.5 Outdoor No

2D Det 0.7 85.4

[195] _ 3D Det Multi-stage RGB, P BEV KITTI 0.7
70.9

Outdoor No2D BEV Det 84.0

[200] AVOD
3D Det Multi-stage RGB, P BEV KITTI

0.7 car
0.5 ped.
0.5 cyc.

73.4
44.8
54.3 Outdoor Available

3D BEV Det
0.7 car
0.5 ped.
0.5 cyc.

83.4
52.5
58.8

[197] PointFusion 3D Det Multi-stage RGB, P _
SUN

RGBD 0.25 45.4 Indoor
No

KITTI
0.7 car
0.5 ped.
0.5 cyc.

64.7
28.3
35.3

Outdoor

[198] _
2D Det

Multi-stage RGB, P BEV
Voxel KITTI 0.7 car

90.2
77.3
85.4

Outdoor No3D Det
3D BEV Det

[196] SCANet 3D Det Multi-stage RGB, P BEV KITTI 0.7 car 67.0 Outdoor No

[199] EPNet
3D Det

Cross-level RGB, P Grid
SUN

RGBD 0.25 81.2 Indoor
Available

3D BEV Det KITTI 0.7 car 88.8 Outdoor
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1. One-stage Fusion Strategy
(1) RGBD Images

4.3. Further Discussion

Since the feature extraction is one of the most important parts of segmentation and
detection, the existing fusion strategies can be also categorized as the feature-based and
non-feature-based fusion strategies. Although the general structure or pipeline differ a
lot between the methods of segmentation and detection, there are still some similarities
between the methods that take the same fusion strategy. We provide a further discussion to
help the researchers to understand those fusion strategies better and help them to choose
the proper one for their own method.

4.3.1. Non-Feature-Based Fusion Strategy

The non-feature-based fusion strategy includes the data-based, result-based, and
data–result-based fusion strategy. Those types of strategies can be regarded as the pre-
processing or post-processing of segmentation and detection. So, the 2D and 3D information
are integrated at the input or output stage. According to our analysis of existing methods, the
data-based and result-based fusion strategies are more suitable for the task of segmentation,
and the data–result-based fusion strategy is more suitable for the task of detection. In addition,
we abstract the general pattern of each kind of fusion strategy and depict them in Figure 10.
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1. Data-Based Fusion Strategy

The data-based fusion strategy is a brief strategy which integrates the 2D information
of images and 3D information of point clouds. The RGBD image contains four channels
of values in which the RGB value represents the 2D information and the depth value
represents the 3D information. Inspired by the RGBD images, some intermediate data
are proposed for the 2D and 3D information integration. For example, Erkent et al. pro-
jected the 2D segmentation results and point cloud to the BEV occupancy grid and then
concatenated them into a multi-channel image as the input of the VGG-16 network for
segmentation. Moreover, the spherical images are also introduced as the intermediate data
for data fusion which achieves the accuracy improvement of segmentation.

2. Result-Based Fusion Strategy

The post-processing of segmentation helps a lot to improve the accuracy of segmen-
tation by integrating the different conditions and constraints, in which the conditional
random field (CRF) plays an important role. Inspired by the existing post-processing
methods, the result-based fusion strategy is proposed by integrating the 2D and 3D seg-
mentation result based on their mutual relationship. The common idea is projecting the
2D and 3D segmentation result together for the result refinement. The CRF is widely used
in this strategy. For example, the method proposed by Gu et al. [29] utilizes the CRF to
penalize the inconsistency of 2D and 3D segmentation.

3. Data–Result-Based Fusion Strategy

Since the proposed-based method is important for the task of detection, the data–result-
based fusion strategy is proposed to integrate the 2D and 3D information by projecting the
2D detection or segmentation results as the 3D proposals, frustums or RoIs and vice versa.
The proposals, frustums, or RoIs help to lessen the processing area and lead to bounding
box generation. Therefore, we name this kind of fusion strategy a data–result-based fusion
strategy because the proposal, frustum, or RoIs connect the detection or segmentation
result of one kind of data with another kind of data. Thanks to this strategy, both 2D and
3D data make a contribution for the bounding box generation in the task of detection.

4.3.2. Feature-Based Fusion Strategy

Most of the feature-based fusion strategy extracts the 2D and 3D features, respectively,
first and then integrates their feature maps. Both 2D and 3D branches are composed
of suitable networks for the 2D and 3D feature learning. For example, the classical 2D
convolutional networks are applied on RGB and depth images, such as ResNet, ENet,
NasNet, etc. Moreover, PointNet and PointNet++ are the most popular for the point cloud
branch, according to how many times the feature-based fusion strategy based on deep
learning can be grouped into one-stage, multi-stage, and cross-level based on how they
achieve the feature fusion in the network. The general pattern of different fusion strategies
is shown in Figure 11.
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1. One-Stage Fusion Strategy

The one-stage fusion strategy is a brief strategy when it comes to feature fusion in
network. The feature map from 2D and 3D branches are integrated by the summation,
concatenation or pooling operation once in the network, so the position selection is impor-
tant. For example, the 3DMV integrates the 2D feature of multi-view RGB images with
the voxels encoded with the depth information by maxpooling, the SPLANet adopts the
summation operation to integrate the feature maps of images and point cloud, NVX-Net
and ImVoteNet take the concatenation operation based on the mutual relationship between
image and point cloud. Moreover, the position between encoder and decoder is the most
common selected position for the feature fusion because it ensures the sufficient feature
learning for both data and the fused feature.

2. Multi-Stage Fusion Strategy

Although the one-stage fusion strategy achieves the feature fusion successfully, the
fusion effect is limited by the one-stage fusion operation and the fusion position. To
overcome this problem, the multi-stage fusion strategy is proposed for the better feature
fusion. Before the final stage of bounding box regression or semantic score generation, the
feature from 2D and 3D branches are integrated more than once at different positions in
a network. Moreover, the multi-stage fusion strategy is suitable for multi-task networks
such as instance segmentation and object detection because both of them need to generate
multiple forms of result. The detection method aims to know the location and the bounding
box of objects, and one of the popular instance segmentation methods is obtaining the
instance-wise detection box and instance mask at the same time. For example, the 3D-SIS
network takes two concatenation operations at early and late stages for the bounding
box and instance mask generation, respectively. AVOD takes two pixel-wise mean pool
operations for the proposal generation and bounding box regression in an end-to-end



Remote Sens. 2021, 13, 4029 41 of 52

network. Additionally, the PointFusion selects two concatenation operations at similar
stages for the localization and bounding box offset generation and class recognition.

3. Cross-Level Fusion Strategy

Due to the hierarchy of the semantic segmentation network, cross-level fusion strate-
gies are proposed to take the full use of 2D and 3D features from each layer and take the
advantages of hierarchy. This fusion strategy breaks the bottlenecks when the one-stage
and multi-stage fusion strategies may hurt the feature because of the improper fusion
position. The ACNet and TSNet are triple-stream networks which integrate the features
from RGB and depth streams at fusion stream for feature fusion, further feature learning,
and resolution recovering. Moreover, the self-attention mechanism is used to filter out
the useless information. However, unlike the one-stage and multi-stage fusion strategies,
which are suitable for both segmentation and detection, the cross-level fusion strategy is
barely used in the network for the detection due to the lack of hierarchical structure for the
feature extraction. However, there is an exception named EPNet, which achieves semantic
segmentation and object detection in an end-to-end network.

5. Trend, Open Challenges, and Promising Direction

Since the tasks of segmentation and detection have become important parts of real-
world scenes, understanding the accuracy, reliability, and automation of segmentation and
detection methods needs to be improved. Therefore, a series of deep learning techniques
based on different kinds of data have been booming in recent years due to the high
degree of automation and acceptable accuracy. However, the shortcomings of processing
single kinds of data emerge. For example, the image fails to represent the geometric
information but contains clear appearance information, point cloud represents the 3D
geometric information precisely but struggles with the lack of appearance information due
to the irregularity and sparsity. Therefore, series of segmentation and detection methods
are constantly promoted to integrate the 2D and 3D information together for the feature
complementation and accuracy improvement. Consequently, we are going to summarize
some general trends, opening challenges, and promising directions in this section based on
the methods reviewed above.

5.1. Trend

1. Since the 3D results are more suitable for applications in the real world, more methods
tend to achieve segmentation and detection in the 3D domain.

2. The feature-based fusion strategy has gained more attention in current research based
on the deep learning techniques because the feature fusion may improve the feature
extraction and take the better use of both 2D and 3D feature in the deep-learning-
based methods. Moreover, the multi-stage and cross-level feature achieved better
fusion and accuracy, which may be the trends of future research also.

3. There is more and more research aiming to create the methods to achieve multiple
tasks at the same time. For example, the combination of detection and segmentation
lead to instance-level segmentation. Moreover, the depth or shape completion may be
needed along with segmentation and detection for more elaborate results.

4. The interpretability of the network has become an area of growing interest and
definitively will become the important research point.

5.2. Open Challenges

Based on the research trends and the methods reviewed above, there are several open
challenges summarized in the following lines:

1. Dependency on Dataset

Since most of the methods are supervised, the quality, quantity, and diversity of the
dataset influences the deep-learning-based methods a lot. However, it is impossible for a
dataset to include every class in the real world and a perfect amount of data. Moreover,
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creating a useful dataset is a labor-exhausted, time-consuming, and expensive task. So,
creating a dataset that includes the registered 2D and 3D data takes more workload than
creating a regular 2D or 3D dataset. Therefore, the dataset may limit the research.

2. Uncertain Correspondence between 2D and 3D Domain

Since the commonly used 2D and 3D data are organized by different data structures
in different coordinates, every fusion strategy needs to project the 2D and 3D data, result,
or feature map into the same coordinate. Traditionally, the correspondence is represented
by six DoF parameters, which is only useful for the naive projection. Even though the
naive projection is suitable for data-based and result-based fusion strategy, the feature-based
fusion strategy may need more elaborate correspondence. For example, the uncertain mutual
relationship between 2D and 3D neighboring regions may affect the feature fusion effect.

3. Open Challenges of fusion strategies
(1) Lack of the Suitable Intermediate Data for Data-based Fusion Strategy

Since the data-based fusion strategy is brief, efficient, and achieves acceptable ac-
curacy in some situation, this kind of fusion strategy is worthy of further research. The
intermediate data is the key point due to the great difference between 2D and 3D data.
However, the popular voxel and BEV representation struggle with information loss and the
balance between the efficiency and resolution. Therefore, a lack of suitable intermediate
data becomes the main bottleneck of the data-based fusion strategy.

(2) Uncertain Relationship of 2D and 3D Results for Result-based Fusion Strategy

The result-based fusion strategy is a kind of post-processing method for the segmenta-
tion result refinement. After projecting the 2D and 3D results to the same coordinates, the
CRF is commonly used for the result refinement based on an energy function which consists
of the 2D unary potential, 3D unary potential, and 2D–3D joint relationship. However, the
quality of both 2D and 3D result are unclear. Therefore, the reliability of this fusion strategy
is also unclear.

(3) Dependency on the quality of RoIs/Frustums/Proposals for Data–result-based Fusion
Strategy

The data–result-based fusion strategy integrates the 2D and 3D information by project-
ing the detection result of one kind of data to another kind of data as RoIs/frustums/proposals
for further feature learning and bounding box regression. However, this kind of fusion
strategy relies on the quality of the first stage of detection.

(4) Choosing Suitable Fusion Operation for Feature-based Fusion Strategy

The feature-based fusion strategy slightly outperforms compared with the non-feature-
based fusion strategy because it helps to take the better use of both 2D and 3D feature and
achieves better fusion for the deep-learning-based methods. After projecting the 2D and 3D
feature maps into the same feature space, a suitable feature vector fusion operation need
to be selected. There are some popular operations, for example: concatenation, pooling,
and summation. However, the fusion operation is often selected based on the intuition
of researchers. Moreover, there is no research study about how different feature fusion
operations affect the performance of the methods.

(5) Unknown Effect of Different Fusion Position

The fusion effect of the one-stage and multi-stage fusion strategy relies on the fusion
position. According to the existing method, there is no evidence showing which fusion
position is the most suitable for the 2D and 3D information integration. The early fusion
achieves a high degree of feature fusion but fails to take the full use of 2D and 3D informa-
tion independently, and the late fusion vice versa. Moreover, the middle fusion balances
the 2D feature, 3D feature, and joint feature learning process. Thanks to the symmetrical
structure of the popular segmentation network, which consists of the encoder and decoder,
it is easy to select the middle stage of network between the encoder and decoder for feature
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fusion. However, the suitable fusion position is still uncertain for the detection network.
So, the unknown effect of different fusion position may confuse researchers.

(6) Combination of Different Fusion Strategies

Both the feature-based and non-feature-based fusion strategy have realized series
of achievements; both of them are suitable for different situations. There is currently no
research that integrates the multiple fusion strategies in one method.

4. Balance the Accuracy and Efficiency

Since the deep-learning-based method integrating both 2D and 3D information has
become a hot research topic, more and more methods are constantly proposed with better
and better accuracy. However, most of them sacrifice the efficiency due to the increasing
number of parameters need to be memorized during the training, which may hurt the
efficiency of the application. Therefore, the balance between accuracy and efficiency
remains an open challenge for almost every deep-learning-based method.

5. The interpretability of the models

Although the existing deep-learning-based method has achieved outstanding accuracy,
a lack of interpretability limits the promotion of existing models. Figuring out how the
deep-learning-based techniques work may effectively help to learn more useful features.

5.3. Promising Direction

According to the open challenges above, the promising directions are further summa-
rized in the following line, which may inspire the researchers in the future.

1. Unsupervised or Weakly supervised Method

Since the supervised deep-learning-based methods rely on the expensive dataset, the
unsupervised and weakly supervised methods are worthy of further research.

2. Adaptive Transform or Adaption Method Before Projection

Rather than naively projecting the 2D and 3D data into the same coordinate based
on the six DoFs of the sensor, a suitable adaptive transform or adaption before projection
may help to improve the performance. For example, only projecting the pixels with
useful features may help to improve the efficiency and robustness. Moreover, appropriate
adaptive transformation of the point cloud may help to ensure the permutation invariance
of the rigid objects.

3. The Promising Directions of Fusion Strategies
(1) Better Intermediate Data

A suitable intermediate data need to be created for the data-based fusion strategy to
alleviate the problem of information loss. For example, the BEV and voxel representation
struggle with the balance of resolution and computation load. Therefore, the hierarchical
intermediate data with the pyramidal structure may help to break through this bottleneck
and may be the promising direction.

(2) Elaborate Correspondence of 2D and 3D Feature Map

Since the neighboring region selection is important for the local feature learning, the
correspondence between the neighboring regions of 2D and 3D feature map may need more
information than the six DoF parameters. For example, the pointwise and Frustum-wise
feature fusion need image and point cloud feature extracted from different neighboring
regions. Therefore, more elaborate correspondence between 2D and 3D neighboring regions
should be discovered for different fusion strategies in the future.

(3) Integration of 2D and 3D Proposals/RoIs/Frustums

The data–result-based fusion strategy relies on the quality of the proposals/RoIs/Frustums.
However, the misdetection may happen because of the low quality of proposals caused by
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the shape missing of the point cloud. Therefore, the shape complement of point cloud may
be a promising direction.

(4) Ablation Study about Different Fusion Operation

A series of ablation studies about different fusion operation of feature-based fusion
strategy are necessary. The suitable situation and the fusion effect of different feature vector
fusion operation need to be figured out. We advise researchers to execute the comparative
analysis of concatenation, summary, max/min/average pooling, and adaptive weighting
in the following research.

(5) Ablation Study about Different Fusion Position

A series of ablation studies about different fusion positions for one-stage and multi-
stage feature-based fusion strategy are necessary. To the best of our knowledge, few
researchers have considered the ablation study about different fusion positions to prove
that the fusion position they choose is relatively perfect for their methods. There is no
evident clue showing which fusion position outperforms the others. Therefore, further
ablation studies about fusion position are needed.

(6) Integrating the Feature-based and Non-feature-based fusion strategy

Both feature-based and non-feature-based fusion strategy achieve the 2D and 3D
information fusion and accuracy improvement successfully. Therefore, integrating multiple
fusion strategies in one network might be a promising direction for accuracy improvement.
For example, the SPLATNet achieves the 2D, 3D, and joint segmentation in one end-to-
end network using the feature-based fusion strategy. Additionally, it utilizes the result-
based method as post-processing to integrate the 2D, 3D, and joint segmentation results.
Therefore, whether the integration of feature-based and result-based fusion strategy works
is worth further verification.

4. More Efficient and Concise Feature Learning Architecture

More research on improving both the accuracy and efficiency is necessary for better
application. The number of parameters and local regions selection should be researched
further to find the cause of the main computation load. Removing the redundant 2D and
3D data may help to simplify the process of feature learning and fusion. Moreover, better
local region selection methods need to be created for both better local feature and more
efficient neighbor researching.

5. The Significance of Layers or Feature Vectors

Analyzing the significance of each layer and feature of the deep-learning-based model
may help to explain their functions. Captum is a useful pytorch toolset to visualize which layer
or feature plays an important role in the model. Therefore, the significance analysis of each
layer and feature may help to increase the interpretability by using toolsets such as Captum.

6. Conclusions

To the best of our knowledge, this is the first review that aims to conclude the fusion
strategies of integrating the 2D and 3D information for the task of segmentation and
detection in both indoor and outdoor scenes based on deep learning techniques. Compared
with existing papers, this paper focuses more on summarizing the similarities between
different methods and put forward a taxonomy of grouping these fusion strategies into
six categories (data-based, result-based, data–result-based, one-stage feature-based, multi-
stage feature-based, and cross-level feature-based), which makes it clearer for researchers
to understand the current research situation. Moreover, we abstract the general pattern
of each fusion strategy possessing good generalization, which may inspire researchers to
create their own methods. Since the methods based on the deep learning techniques rely on
the quality and data quantity of the dataset, we also introduce some representative datasets
in Section 3, which includes the 2.5D RGBD datasets, the datasets with the registered 2D
and 3D data, and the datasets of fine-grained 3D models. In addition, this paper includes
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lots of methods and suitable datasets, being as comprehensive as possible. There are
38 datasets and 61 methods included, and their important details are introduced in this
paper. To help the researcher pick suitable datasets and a fusion strategy for their own
research, we deliver the comparative analysis of datasets and methods in a series of tabular
forms. Furthermore, the fusion of 2D and 3D information has been proven effective for the
accuracy improvement and the advantages complementation.
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