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Abstract: Training a deep learning model requires highly variable data to permit reasonable gen-
eralization. If the variability in the data about to be processed is low, the interest in obtaining this
generalization seems limited. Yet, it could prove interesting to specialize the model with respect to a
particular theme. The use of enhanced super-resolution generative adversarial networks (ERSGAN),
a specific type of deep learning architecture, allows the spatial resolution of remote sensing images
to be increased by “hallucinating” non-existent details. In this study, we show that ESRGAN create
better quality images when trained on thematically classified images than when trained on a wide
variety of examples. All things being equal, we further show that the algorithm performs better on
some themes than it does on others. Texture analysis shows that these performances are correlated
with the inverse difference moment and entropy of the images.

Keywords: super-resolution; ESRGAN; generative adversarial networks; Haralick

1. Introduction

Images of high (HR, ~1–5 m per pixel) and very high (VHR, <1 m per pixel) spatial
resolution are of particular importance for several Earth observation (EO) applications,
such as for both visual and automatic information extraction [1–3]. However, currently,
most high-resolution and all very high-resolution images acquired by orbital sensors need
to be purchased at a high price. On the other hand, there is abundant medium-resolution
imagery currently available for free (e.g., the multispectral instrument onboard Sentinel-2
and the operational land imager onboard Landsat-8). Improving the spatial resolution of
medium-resolution imagery to the spatial resolution of high- and very high-resolution
imagery would thus be highly useful in a variety of applications.

Image resolution enhancement is called super-resolution (SR) and is currently a very
active research topic in EO image analysis [4–6] and computer vision in general, as shown
in [7]. However, SR is inherently an ill-posed problem [8]. Multi-frame super-resolution
(MFSR) uses multiple low-resolution (LR) images to constrain the reconstruction of a
high-resolution (HR) image. However, this approach cannot be used when a single image
is available. Single image super-resolution (SISR) is a particular type of SR that involves
increasing the resolution of a low-resolution (LR) image to create a high-resolution (HR)
image. SISR can be achieved by (1) the “external example-based” approach, where the
algorithm learns from dictionaries [9], or by using (2) convolutional neural networks
(CNNs), where the algorithm “learns” the relevant features of the image that would be
useful for improving its resolution [10,11]. SISR can also be achieved by using (3) generative
adversarial neural networks (GANs) [12]. GANs oppose two networks (a generator and
a discriminator), one against the other, in an adversarial way. The generator is trained to
produce new images to trick the discriminator into trying to distinguish whether it is a real
image or a fake image. In this type of network, the generator and the discriminator act
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as adversaries. GANs provide a powerful framework for generating real-looking images
with high quality, as is the case in [13], through enhanced super-resolution generative
adversarial networks (ESRGAN). This architecture is now used in different applications,
such as satellite imagery [14,15] or the improvement of the predictive resolution of some
models [16,17].

In general, training a neural network model requires separating the dataset into the
following three parts: (1) a training dataset; (2) a validation dataset; and (3) a test dataset.
The training dataset is used to adjust the model parameters and biases. The validation
dataset is used to estimate the model’s skill while tuning its hyperparameters, including
the number of epochs, among others. As only the number of epochs will be relevant for
the reader, its definition is given here. One “epoch” is defined as one forward pass and
one backward pass through the entire training dataset. The test dataset is then used to
verify the capability of the model to generalize its predictions based upon new data. If
the model yields good predictions, then its ability to generalize is good. Otherwise, the
model exhibits overfitting and is susceptible to overlearning, i.e., no further improvement
in performance can be achieved and, indeed, further “tinkering” (experimentation or
adjustment) may possibly result in its subsequent deterioration. Indeed, neural network
models can be over-parameterized, yet can still correctly predict labels, even if these were
assigned randomly [7–9]. Overfitting is a known problem in neural network models and
deep learning in general, but different methods can allow us to avoid the problem, such as
data augmentation by flipping or rotating the images [18,19], the use of a dropout layer that
forces the model to work with part of its parameters turned “off” [20], or early stopping of
the training phase [21,22]. Hence, the sample’s variability in the training dataset is key to
minimize the possibility of overfitting.

In the particular case of SISR, is it relevant to try to maximize the variety of examples
if the model is to be applied to a specific theme or topic? In this study, we use the ESRGAN
method to increase the spatial resolution of different types of imagery and address this
question. ESRGAN were chosen because they outperform, in terms of peak signal-to-
noise ratio (PSNR), other SISR methods, such as SRCNN, EDSR, RCAN, EnhanceNet or
SRGAN [13], and are publicly available. We used airborne and satellite images to construct
different datasets of different themes, as follows: (1) “daily life”; (2) agricultural; (3) forests;
(4) urban areas; (5) rocky outcrops; (6) the planet Mars; and (7) a mixture of different
themes. These groups of data have been used for training with different numbers of epochs
(150, 300, 600, 1200, 2400, 4800). We demonstrated that training a model for a specific task
is more interesting than maximizing the variability in the data during training. The results
indicate that the number of epochs is not strictly correlated with the PSNR value; rather,
it depends upon the topic being trained. Furthermore, this work highlights a correlation
between the quality of the results and the textural homogeneity of the image, i.e., the
inverse difference moment (IDM), together with entropy indices that are taken from the
Haralick co-occurrence matrix [23].

2. Materials and Methods
2.1. ESRGAN Architecture

The ESRGAN architecture we used is inspired by the SRGAN or super-resolution
generative adversarial network [24]. The architecture is described in [13], and we invite the
reader to refer to it for more details. The models are trained to reconstruct images for which
the resolution has been degraded by a factor of 4 using MATLAB bicubic kernel function.
The use of other convolution methods to degrade the resolution is not recommended, given
that they could generate artefacts. The codes that are used here are those provided by
the authors of [13] on their GitHub (https://github.com/xinntao/ESRGAN) (accessed on
14 July 2021).

https://github.com/xinntao/ESRGAN
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2.2. Datasets

Images that were used in this study originated from different sources. Each theme
contains 650 images. The choice of themes was guided by the following two main criteria:
(1) constructing themes that presented a large variability in environments (forests, regolith,
and urban areas, among others); and (2) data availability. Table 1 lists the datasets used
in this study, and the following section describes the different themes that were used in
this study.

Table 1. Datasets used in this study with their spatial resolution and location when relevant.

Spatial Resolution Location

DIV2K Not relevant Unknown
Airborne imagery 20 cm Québec (Canada)

WorldView imagery 2 m Axel Heiberg Island (Canada)
HiRISE imagery 25–50 cm Mars

“Daily life” (Figure 1). The DIVerse 2K (DIV2K) resolution high-quality images dataset
is commonly used in the literature to train and then to measure the performance of super-
resolution algorithms [25]. The images are common scenes from daily life. This dataset
possesses no spatial resolution that is associated with pixel size of the images.
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Figure 1. Examples (a,b) of daily life images in the DIV2K dataset.

“Airborne imagery” (Figure 2). These images were acquired at 20 cm spatial resolution
and have been kindly provided by XEOS Imaging Inc. (Quebec, QC, Canada). They cover
different areas, randomly chosen, of the province of Quebec (Canada), between 70◦29′02”W
and 71◦53′05”W, and between 40◦12′31”N and 48◦58′26”N. These images were visually
classified into categories according to land use (agricultural, forest and urban).

“WorldView satellite imagery” (Figure 3). The images were acquired by the sensors
onboard the WorldView-2 (WV-2) and WorldView-3 (WV-3) satellites, which have a spatial
resolution of 2 m. The images cover two geographical areas of Axel Heiberg Island
(Nunavut) in the Canadian High Arctic. They include mostly regolith, rocks, and glaciers.
To be compared with the other themes, only the RGB channels were kept, then converted
to 8 bits images.

“HiRISE satellite imagery” (Figure 4). Forty-nine images that were acquired by the
HiRISE (high-resolution imaging experiment) instrument onboard the Mars Reconnais-
sance Orbiter have been downloaded from the University of Arizona (Tucson, AZ, USA)
website (https://hirise.lpl.arizona.edu) (accessed on 15 April 2021). The images cover
a wide range of geomorphological variability that is found on Mars (dunes, craters and
canyons, among others). The spatial resolution of these images ranges between approxi-
mately 25 cm and 50 cm depending on the orbiter’s altitude.

The “mixed” theme is an equiproportional mixture of images that have been randomly
selected from each of the other six themes.

https://hirise.lpl.arizona.edu


Remote Sens. 2021, 13, 4044 4 of 12
Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 12 
 

 

 

Figure 2. Map (a) and examples of airborne imagery. Agriculture (b), forest (c), urban (d). Service 

Layer Credits: Esri, Maxar, GeoEye, Earth star Geographics, CNES/Airbus DS, USDA, USGS, Aer-

oGRID, IGN, and the GIS User Community. 

"WorldView satellite imagery" (Figure 3). The images were acquired by the sensors 

onboard the WorldView-2 (WV-2) and WorldView-3 (WV-3) satellites, which have a spa-

tial resolution of 2 m. The images cover two geographical areas of Axel Heiberg Island 

(Nunavut) in the Canadian High Arctic. They include mostly regolith, rocks, and glaciers. 

To be compared with the other themes, only the RGB channels were kept, then converted 

to 8 bits images. 

 

Figure 3. Map (a) and examples of satellite imagery from WV-2 (b) and WV-3 (c). Service Layer 

Credits: Esri, Maxar, GeoEye, Earth star Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, 

IGN, and the GIS User Community. 

a 

b c d 

d 

Figure 2. Map (a) and examples of airborne imagery. Agriculture (b), forest (c), urban (d). Service
Layer Credits: Esri, Maxar, GeoEye, Earth star Geographics, CNES/Airbus DS, USDA, USGS,
AeroGRID, IGN, and the GIS User Community.
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Figure 3. Map (a) and examples of satellite imagery from WV-2 (b) and WV-3 (c). Service Layer
Credits: Esri, Maxar, GeoEye, Earth star Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID,
IGN, and the GIS User Community.
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Figure 4. Examples of HiRISE satellite imagery.

All of the images of the various themes have undergone bicubic convolution (by
a factor of 4) to degrade their resolution. The data were separated into a training set
(520 images), a validation set (65 images), and a test set (65 images). The different models
were trained to reconstruct the images at their original resolution for 6 different epoch
numbers (150, 300, 600, 1200, 2400, 4800), i.e., 42 models in total. Training took 19 days on
an NVIDIA Quadro RTX 4000 graphics card. For each reconstruction, the peak signal-to-
noise ratio (PSNR) was calculated to evaluate its quality. The model that was trained on
the greatest variety of images was then used on each of the themes for 4800 epochs to test
whether a) greater benefit was obtained by training a model on a wide array of examples
or b) specializing on a single theme was a better option. The workflow that is depicted in
Figure 5 summarizes the entire methodological approach.
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Figure 5. Methodological flowchart.

3. Results

The results are presented in three sections. The first section provides examples of
image resolution improvements. The second section presents the average PSNR values
that were obtained for each of the themes. The third section provides several textural
indices that highlight correlations between the texture of the images and the quality of
the reconstruction.

3.1. Examples of Upscaling Results

Two themes were selected to illustrate our work. All the images were visually dis-
played with the same “minimum–maximum” histogram stretch available in the ArcMap
software. This manner of proceeding could show differences in coloration, due to differ-
ences in the pixel values recovered by the model. Figure 6 displays the results that were
obtained for 150 epochs and 4800 epochs on a Martian talweg, the line of lowest elevation
in a valley.
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Figure 7. Example of results that were obtained for 150 and 4800 epochs on an image belonging to
the “forest” theme.

3.2. PSNR Obtained for Each Model

The PSNR was calculated for the 65 images of the test set, for each theme and for
each number of epochs (150, 300, 600, 1200, 2400, 4800). The standard deviation was also
calculated to characterize the dispersion of the quality of the results that were obtained.
Each theme was also reconstructed with the model that was trained with 4800 epochs on
the “mixed” theme, which is an equiproportional mixture of images from the other six
themes (Figure 8). This highlights the influence of variability in the examples on the final
quality of the reconstructed images.

3.3. Texture Indices

Since two themes have significantly higher PSNRs than the other five, an image-
texture study was undertaken to try to understand the underlying phenomenon. Four
Haralick texture indices, from the gray level co-occurrence matrix (GLCM), were selected to
determine whether there was a correlation between the ability of the model to reconstruct
the HR images and the intrinsic characteristics of the image’s textures.
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the variability in the samples was relevant.

Figure 9 illustrates values that had been obtained for these four indices for 20 images
that were randomly selected in each theme, except for the “mixed” scenario, which would
not have added any new information. In each panel, the index values of the original images
(y-axis) are plotted against values that were calculated for the degraded images (x-axis).
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4. Discussion

This section is organized into three parts. First, we acknowledge that the use of
ESRGAN for the reconstruction of images (downscaled by a factor of four) does not
correspond to a real-world application. We then discuss the PSNR values that were
obtained for the different themes and epoch numbers to understand how variability among
examples affects the quality of the results. Finally, we show that the image texture indices
are positively correlated with the ability of ESRGAN to improve their resolution.

4.1. Image Resolution Improvement with ESRGAN

As explained in the Methods, the ESRGAN model is trained by “teaching” it to re-
construct an image, the resolution of which has been degraded. This allows the analyst
to quantitatively evaluate the quality of the results by comparing the reconstructed ver-
sion of the image to the original version. However, this approach does not allow the
analyst to judge the real capacity of the model to create a new image that has not been
degraded by bicubic convolution beforehand. Recent research has tried to overcome this
difficulty [8,26,27]. However, these new architectures are beyond the scope of our study
and should be the subject of further work.

4.2. Interest in the Specialization of Examples in Learning

Peak signal-to-noise ratio (PSNR) is a measurement that is frequently used in super-
resolution to express the quality of the image reconstruction. In the study that is presented
here, PSNR provides a good idea of the quality of the results.

Figure 8 depicts the variability in the quality of reconstructions for high-resolution im-
ages; for example, the “Mars” theme attains a maximum PSNR of 39.10 dB for 4800 epochs,
while the “forest” theme reaches 30.11 dB for an equivalent number of epochs. As a func-
tion of the number of epochs, the PSNR shows that the learning capacity of the model is
not equivalent among the different themes. To illustrate the progression in learning as
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the number of epoch increases, we averaged the PSNRs that were obtained at 150 and
300 epochs. The same operation was performed for 2400 and 4800 epochs. This averaging
mitigates the noise surrounding the measurement moving from one group of epochs to the
next. The improvement between the two values is expressed as a percent-age of the first
value. Table 2 summarizes these results.

Table 1 shows that increasing the number of epochs, even by a factor of 32 (=4800/150),
offers improvements to PSNRs (<1%) for three of the seven themes that are treated here
(i.e., agricultural, urban and forestry themes). In contrast, the “Mars” and “mixed” themes
showed strong improvements, reaching 15.72% and 6.86%, respectively. The rock outcrop
and "DIV2K" dataset themes remained below 3%.

The final PSNRs that were obtained for 2400 and 4800 epochs group the different
themes in a similar manner. The “Mars”, “outcrop” and “mixed” themes had good PSNRs,
while the “agriculture”, “urban” and “forest” themes did not reach a value of 31 dB. The
"DIV2K" dataset has a PSNR that is intermediate between the two aforementioned groups.

Interestingly, the use of the widest variety of examples does not generally lead to
better results. With the exception of the Axel Heiberg Island tests, the PSNRs that were
obtained at 4800 epochs are similar to, or lower than, the values that were obtained on a
dedicated training set. The exception of the rocky outcrops, however, should not be taken
as significant, since the improvement is only 1.12% of the value obtained for 4800 epochs
(0.41, in terms of the absolute value). This is all the more negligible, since it is the theme
that offers the greatest standard deviation, with 4.38 or 11.8% of the mean value.

4.3. Texture Indices and Reconstruction of HR Images

All the texture indices that are presented in Figure 9 show that HiRISE and WorldView
data are comparable, as they plot in similar regions of the graphs. Indeed, these datasets
have systematically obtained close values; in the cases of entropy and the inverse difference
moment, they can be clearly distinguished from the other themes. Entropy and the inverse
difference moment, therefore, would appear to be suitable textural indices for explaining
the ability of ESRGAN to best reconstruct HR images. Figure 10 shows the PSNR values as
a function of these indices.
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Figure 10. Mean PSNR values (error bars are SDs) plotted as a function of mean (±SD) texture index
values for the inverse difference moment and entropy.

The inverse difference moment measures the local homogeneity of the image. The
greater the value, the greater the homogeneity is. Entropy measures the degree of disorder
in the image. The lower the value, the greater the order in the texture is. Thus, it is
not surprising that the best performances of ESRGAN are obtained for images with high
homogeneity and low entropy; the reconstruction of the image at its original resolution
is more predictable. The model is less perturbed by statistic variations, the randomness
of which would prevent prediction. This explains why the best PSNRs were obtained
for two similar themes, i.e., Martian and Arctic regolith, which are indeed much more
homogeneous than other themes, despite having unfavourable signal-to-noise ratios.
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Table 2. Average PSNRs were obtained for 150 and 300 epochs, and then for 2400 and 4800 epochs.
The increase in these average PSNRs is expressed as a percentage of the values in the first column.
The colours highlight groups of values of the same order of magnitude.

Averaged PSNR in dB for
150 and 300 Epochs

Averaged PSNR in dB for
2400 and 4800 Epochs

Enhancement
%

Mars theme 32.95 38.13 15.72%
Outcrops theme 35.69 36.68 2.77%
Daily life theme 30.92 31.63 2.29%

Crops theme 30.47 30.59 0.39%
Urban theme 29.16 30.09 0.87%
Forest theme 29.83 30.00 0.57%
Mixed theme 30.91 33.03 6.86%

5. Conclusions

For this study, ESRGAN were used to increase the spatial resolution of the following
different themes: (1) “daily life”; (2) agricultural; (3) forests; (4) urban areas; (5) rocky
outcrops; (6) the planet Mars; and (7) a mixture of different themes. Our aim was to
verify whether it is advantageous to maximize the variability in the examples during the
training phase, or if it is preferable to provide a specialized model. Moreover, training
was performed for six different levels of epochs (150, 300, 600, 1200, 2400, and 4800) to
validate whether it is judicious to always maximize the learning time. Finally, texture
indices were used to explain the variability in the quality of the results that were obtained.
The conclusions of this work are as follows:

• It is more beneficial to create a specialized ESRGAN model for a specific task, rather
than trying to maximize the variability in examples.

• The ability to learn depends upon the subject matter. No recommendations can be
made a priori.

• ESRGAN perform better on images with a high inverse difference moment and low
entropy indices.
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