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Abstract: Vegetation phenology dynamics have attracted worldwide attention due to its direct re-
sponse to global climate change and the great influence on terrestrial carbon budgets and ecosystem
productivity in the past several decades. However, most studies have focused on phenology in-
vestigation on natural vegetation, and only a few have explored phenology variation of cropland.
In this study, taking the typical cropland in the Shandong province of China as the target, we ana-
lyzed the temporal pattern of the Normalized Difference Vegetation Index (NDVI) and phenology
metrics (growing season start (SOS) and end (EOS)) derived from the Global Inventory Monitoring
and Modeling System (GIMMS) 3-generation version 1 (1982–2015) and the Vegetation Index and
Phenology (VIP) version 4 (1981–2016), and then investigated the influence of climate factors and Net
Primary Production (NPP, only for EOS) on SOS/EOS. Results show a consistent seasonal profile and
interannual variation trend of NDVI for the two products. Annual average NDVI has significantly
increased since 1980s, and hugely augmentations of NDVI were detected from March to June for both
NDVI products (p < 0.01), which indicates a consistent greening tendency of the study region. SOSs
from both products are correlated well with the ground-observed wheat elongation and spike date
and have significantly advanced since the 1980s, with almost the same changing rate (0.65/0.64 days
yr-1, p < 0.01). EOS also exhibits an earlier but weak advancing trend. Due to the significant ad-
vance of SOS, the growing season duration has significantly lengthened. Spring precipitation has
a relatively stronger influence on SOS than temperature and shortwave radiation, while a greater
correlation coefficient was diagnosed between EOS and autumn temperature/shortwave radiation
than precipitation/NDVI. Autumn NPP exhibits a nonlinear effect on EOS, which is first earlier and
then later with the increase of autumn NPP. Overall, we highlight the similar capacity of the two
NDVI products in characterizing the temporal patterns of cropland phenology.

Keywords: vegetation phenology; variation trend; cropland; Global Inventory Modeling and Mapping
Studies; Vegetation Index and Phenology

1. Introduction

Plant phenology, the study of annually recurring plant growth and reproductive
events timing, and their endogenous and exogenous drivers [1], is influenced by changes
in environmental factors, such as temperature, precipitation, sunlight [2,3]. Therefore, it
is always an important factor to indicate global climate change [4,5]. Phenological shifts
can not only greatly influence terrestrial carbon budgets and ecosystem productivity by
altering the duration of photosynthesis [6], but also regulate climate change by modulating
the land–atmospheric carbon, water, and energy exchange and land surface albedo [7,8].
In the past several decades, vegetation phenology dynamics have attracted worldwide
attention due to climate change research. However, most studies have focused on the
phenological changes of natural vegetation, and only a few have explored the phenological
trends of agricultural varieties [9]. As the cultivated land accounts for approximately
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12% of the global land area, phenological changes in crops could also largely affect global
terrestrial mass and energy exchange [10]. Additionally, most of the published studies on
agriculture phenology were conducted on site scale based on discrete ground data [11]. A
comprehensive analysis of the effects of environmental factors on cropland phenology at
a regional scale is still needed. Figuring out to what extent climate affects the cropland
phenology would be helpful for agriculture management and plant breeding, even in the
situation of hugely human impacts.

Compared with ground-manual records, remote sensing data confer excellent ad-
vantages for regional-scale phenology analysis because of their spatiotemporal continuity
and landscape and community viewpoints [12]. For phenology analysis under the back-
ground of global change, the time span of datasets is a critical factor to successfully capture
more detailed temporal profiles, and thus long-sequence remote sensing data are needed.
Vegetation index data generated from the Advanced Very High-Resolution Radiometer
(AVHRR) instruments are usually the first choice, as it has been collected by the National
Oceanic and Atmospheric Administration (NOAA) satellites to monitor the earth surface
since 1979. For this reason, the Normalized Differential Vegetation Index (NDVI) time
series (over 30 years) derived from reflectance observed by channels 1 and 2 of AVHRR
as part of the Global Inventory Modeling and Mapping Studies (GIMMS) project is often
employed to investigate land surface dynamics at global and regional scales [3,13,14]. This
dataset contributed to important findings on global land surface changes, especially prior
to 2000 when other remote sensing data sources were relatively scarce. However, after the
more advanced Moderate Resolution Imaging Spectroradiometer (MODIS) was launched
in 1999 onboard the Terra satellite, MODIS-derived NDVI data became a primary tool to
track changes in the landscape over time. On the one hand, MODIS data collection uses
on-orbit calibration. Thus, data quality is significantly improved compared to previous
satellite sensor data. On the other hand, the visible light and near-infrared range of MODIS
is narrower, which gives it greater advantages to describe vegetation information with
less interference. More importantly, MODIS has a finer spatial resolution (0.25–1 km) than
AVHRR (1.1 km), which enables it to carry out more elaborate land surface studies over
small regions. One disadvantage of MODIS compared to AVHRR is the relatively short
time span. Therefore, many studies have attempted to generate a longer, high-quality
time series by connecting the two sensors using quasi-physically based approaches [15] or
statistical correlation analysis [16].

The NDVI data included in the Vegetation Index and Phenology (VIP) global datasets
is a good product of these efforts that uses surface reflectance data from the AVHRR N07,
N09, N11, and N14 datasets (1981–1999) and MODIS surface reflectance data (2000–2016).
The systematic gaps between the two sensors are filled by standardizing AVHRR to the
same level as MODIS. In comparison, GIMMS NDVI data are comprised of data from the
AVHRR/2 instrument (1981–2000) and the AVHRR/3 instrument (2000–2015). VIP data
have a finer spatial and temporal resolution, while GIMMS data possess the advantage
of consistent sensors and band combinations. Some studies have compared VIP and
GIMMS, but there is still a lack of detailed analysis of their performances in depicting
vegetation dynamics of cropland, especially for phenology analysis [17]. Therefore, it is
necessary to compare the performances of the two long-sequence datasets in phenology
analysis for global change research. In this study, taking typical cropland of China as the
target, we analyzed the difference of the two NDVI data sources in describing seasonal
and interannual profiles and extracting phenology metrics and their variation trends by
comparing with ground observations. Finally, we investigated the climate and biotic factors
influencing the land surface phenology dynamics of cropland by means of gridded climate
datasets.
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2. Materials and Methods
2.1. Study Region

This study focused on Shandong Province in China. The central part of the province
is mountainous, and the eastern part is hilly. The average elevation is approximately 90 m.
Shandong is in a temperate climate zone with 4 distinct seasons. Summers are hot and
rainy, whereas winters are cold and dry. The average temperature range in January is
−5 to 1 ◦C and 24 to 28 ◦C in July. Annual precipitation ranges from 550 to 950 mm, the
vast majority of which occurs in summer due to the influence of the monsoon. The study
area is a famous wheat-corn rotation agricultural base in China. Cropland pixels were
identified according to the International Geosphere-Biosphere Program global land cover
classification system in the study region (Figure 1) [18]. Built-up and natural vegetation
areas were not considered in this study.
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Figure 1. Cropland and phenological stations distribution in Shandong Province of China. The distribution of cropland is
identified according to the International Geosphere-Biosphere Program global land cover classification system.

2.2. Remote Sensing Data and Phenology Extraction

Two long-term NDVI datasets were used to extract vegetation phenology and compare
their performances in phenological analysis. The first was the NDVI dataset (1981–2016)
released by Vegetation Index and Phenology Laboratory at the University of Arizona
(https://vip.arizona.edu/viplab_data_explorer.php, accessed on 15 December 2020). This
dataset was created using surface reflectance data from the AVHRR N07, N09, N11, and
N14 datasets (1981–1999) and MODIS Terra MOD09 surface reflectance data (2000–2016).
The systematic gaps in NDVI values between the two sensors were filled through regression
models by standardizing AVHRR to the same level as MODIS [16]. The current release is
version 4 (hereafter called VIP for simplicity), and it has a spatial resolution of 0.05◦ and a
temporal resolution of 7 days. The second product is the NDVI dataset from NOAA’s Global
Inventory Monitoring and Modeling System (GIMMS 3g.v1) (https://data.tpdc.ac.cn/en/
data/9775f2b4-7370-4e5e-a537-3482c9a83d88/, accessed on 15 December 2020). This long
NDVI record is comprised of data from the AVHRR/2 instrument that spans from July 1981
to November 2000 and the AVHRR/3 instrument that continued these measurements from
November 2000 to 2015 [19]. The current version is GIMMS 3g.v1 (hereafter called GIMMS
for simplicity), which corrected drops in lower NDVI values after 2006 due to calibration
and recovered negative NDVI values in winter for snow-covered regions of the Northern
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Hemisphere, compared to version 0. It has a twice-monthly temporal resolution, a spatial
resolution of 1/12 degree, and spans from July 1981 to December 2015. Due to missing
observations in the first half-year, NDVI spring phenology was not available. Therefore,
we removed observations for 1981 from the whole NDVI sequence.

To guarantee the accuracy of phenology metrics extracted from the NDVI data, it was
necessary to reconstruct high-quality NDVI time-series data by dealing with abnormal
values [20]. Some abnormally low points may appear in the non-growing season due to
the influence of snowfall, whereas a few abrupt and extreme low points may also exist in
the middle of the growing season due to rainfall and clouds. For abnormal values in the
non-growing season (defined as November-February according to local records), we used
the average value of the top 50% higher NDVI values to replace the other 50% lower NDVI
observations [21]. Then, the envelope line of the NDVI time series was obtained using a
modified Savitzky–Golay filter [22], which simulates an ideal vegetation growth profile and
removes the impacts of abrupt and extreme low values in the growing season. Finally, we
fitted the reconstructed NDVI time series using a double logistic function, which performs
well to model the vegetation growth process of the whole growing season [23,24]. Growing
season start (SOS) and end (EOS) were obtained according to the locations of the maximum
curvature of the fitted curve Equations (1)–(3).

NDVI(t) = NDVImin + (NDVImax − NDVImin)×
(

1
1 + eI(S−t)

+
1

1 + eD(E−t)
− 1

)
(1)

SOS =
2ln

(√
3−
√

2
)

I
+ S (2)

EOS =
2ln

(√
3−
√

2
)

D
+ E (3)

where NDVI (t) is reconstructed NDVI values at time t; NDVImax and NDVImin are the
maximum and minimum values in the NDVI time series, respectively; I and D represent
the maximum rising and falling slopes (inflection points) on the fitted NDVI curve; S and
E represent corresponding dates of I and D on the fitted NDVI curve. Growing season
length (LOS) was defined as the duration from SOS to EOS. An illustration of phenology
extraction can be found in Ren et al. [21]. To assess the fitted results, the mean squared
error (MSE) between observed and predicted values was calculated for each pixel in each
year [Equation (4)].

MSE =
∑n

i=1
(
ypre − yobs

)2

n
(4)

where ypre and yobs are the predicted and observed NDVI values, respectively; n denotes
the NDVI sequence length. As no specific observation date was provided with the NDVI
values in the GIMMS NDVI product, we simply took the middle date of each half-month
as the ‘real’ date. For some cropland pixels with 2 growing seasons, we only computed the
starting date of the first growing season and the ending date of the second growing season.
Additionally, pixels with an annual amplitude of NDVI less than 0.1 were ignored in this
study. All data processing was conducted using Matlab software (Mathworks, Matlab
R2019a).

2.3. Ground Phenology Records

To assess the accuracy of satellite-derived SOS/EOS in this study, three ground-
measured agriculture phenophases (the elongation/spike date records of wheat and the
maturity date records of corn (773 in total, 1991–2013)) from 20 stations in Shandong
province were employed to compare with SOS and EOS, respectively. They were observed
by agrometeorological professionals and provided by China Meteorological Data Service
Center (http://data.cma.cn/en, accessed on 15 May 2018). The elongation date of wheat
was defined as the day when the internodes at the base of the stem were elongated and

http://data.cma.cn/en
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about 1.5–2.0 cm above the ground; the spike date of wheat was identified as the day
when the tip of the ear was exposed from the flag sheath; and the maturity date of corn
was characterized as the day when more than 80% of the outer bracts of the plants turn
yellow, the filaments dry, and the grains harden [25]. The observation period varied among
different phenophases and stations (Table 1).

Table 1. Basic information of phenology observation stations.

Stations Latitude
(◦N)

Longitude
(◦E) Duration Phenophases

Dezhou 37.43 116.32 1992–2013 Elongation, Spike
Huimin 37.5 117.53 1992–2013 Elongation, Spike
Binxian 37.37 118.02 1992–1993 Elongation, Spike
Laizhou 37.18 119.93 1992–2013 Elongation, Spike
Fushan 37.5 121.25 2003–2013 Elongation, Spike

Wendeng 37.18 122.03 1992–2013 Elongation, Spike
Liaocheng 36.48 115.96 1993–2013 Elongation, Spike

Jiyang 36.98 117.11 1991–2012 Elongation, Spike, Maturity
Jinan 36.68 116.98 1992–1993 Maturity
Taian 36.16 117.15 1991–2013 Spike, Maturity
Zibo 36.83 118 1992–2013 Elongation, Spike, Maturity

Hanting 36.75 119.18 1992–2013 Elongation, Spike, Maturity
Gaomi 36.41 119.75 2002–2012 Elongation, Spike, Maturity

Jiaozhou 36.3 120 1991–2013 Maturity
Laiyang 36.93 120.7 1992–2013 Elongation, Spike, Maturity

Heze 35.25 115.43 1991–2013 Elongation, Spike, Maturity
Jining 35.45 116.58 1992–2013 Elongation, Spike, Maturity
Juxian 35.58 118.83 1991–2013 Elongation, Spike, Maturity
Linyi 35.05 118.35 1992–2013 Elongation, Spike

Caoxian 34.81 115.55 1993–2013 Elongation, Spike

2.4. Statistical Analysis

First, this study compared the seasonal profile of the spatial and multiyear average
NDVI at each observation date and the interannual variation trend of the annually/monthly
spatial average NDVI between VIP and GIMMS. Second, we compared the SOS/EOS and
their variation trends among the two NDVI datasets and the ground-observed phenology
metrics through Pearson correlation coefficients and bias (the average of the absolute
difference). To eliminate the effect of extreme values in phenology extraction, we used
the average SOS/EOS of 3 × 3 pixels around the location of phenological stations. The
variation trends of NDVI, SOS/EOS, and ground observations were all computed with the
linear regression. When conducting the direct comparison between SOS/EOS from the two
NDVI datasets, we upscaled the spatial resolution of SOS/EOS from the VIP and GIMMS
to 0.5◦ × 0.5◦ with arithmetic average method. Third, we took the daily temperature,
precipitation, and shortwave radiation data from the WATCH-Forcing-Data-ERA-Interim
data product (https://rda.ucar.edu/datasets/ds314.2/, accessed on 15 April 2021 [26])
to analyze the separate influence of climate factors on SOS/EOS by means of partial
correlation analysis in each pixel. It had a spatial resolution of 0.5◦ × 0.5◦ and time span of
1981–2014. When conducting partial correlation analysis, the partial correlation coefficient
was calculated between the average SOS/EOS of the two datasets and spring (March–
May)/autumn (September–November) variables (average temperature, total precipitation,
mean shortwave radiation, and average NDVI (only for EOS)) in each pixel, with one as
the independent variable and others as the controlling variables. Meanwhile, the possible
biotic impact of Net Primary Productivity (NPP) on EOS was also investigated through
simple correlation analysis, which was from MODIS data products (MOD08_M3 v6.1,
2001–2014) in Google Earth Engine. Here, the spatially total NPP was used. All statistical
and drawing processes were conducted by combining with Matlab software (Mathworks,
R2019a), R, and ArcGIS 10.5 (Esri Inc., West Redlands, CA, USA).

https://rda.ucar.edu/datasets/ds314.2/
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3. Results
3.1. Comparison of Seasonal Profiles and Interannual Variation Trends of NDVI

The seasonal profiles of multi-year-space average NDVI from VIP and GIMMS showed
a similar temporal pattern (Figure 2a). Two clear vegetation cycles were detected with mid-
June as the approximate dividing point. This is attributed to the biannual cropping system
in the study area. The NDVI amplitude of VIP was much larger than that of GIMMS. NDVI
values from GIMMS were higher in the non-growing season and the first growing season
but lower in the peak of the second growing season than VIP. Trend analyses illustrated
that the annual average NDVI has significantly increased since the 1980s for both NDVI
products (p < 0.01), which indicates a greening tendency of the study region (Figure 2b).
They were also correlated well with each other (p < 0.05), indicating a consistent interannual
variability tendency. Moreover, huge increases in NDVI value were detected from March
to June for both NDVI products (Figure 2c,d). However, an approximate degree of NDVI
growth in October, December, and January was detected only for the GIMMS product.
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Figure 2. Seasonal profiles and variation trends of the spatial average NDVI over the study region.
(a) Seasonal profiles of the multi-year-space average NDVI from VIP (blue) and GIMMS (brown);
(b) interannual changes of the spatial and annual average NDVI from VIP (blue) and GIMMS (brown);
(c) monthly variation trend of NDVI for VIP; (d) monthly variation trend of NDVI for GIMMS. The
error bar in (a) denotes the standard deviation.

3.2. Comparison of Phenology from Different Sources

Both the elongation and spike dates of wheat were used to compare with the SOS
derived from VIP/GIMMS. As illustrated in Figure 3a–d, SOS exhibited a larger bias with
the spike date (VIP: 25.9 days, GIMMS: 29.2 days) than the elongation date (VIP: 13.6 days,
GIMMS: 13.4 days). They were correlated well with the two wheat phenophases (p < 0.01).
In comparison, both EOSs from VIP (34.4 days) and GIMMS (24 days) were obviously
later than the maturity date of corn (Figure 3e,f). No significant correlation was found
for both and ground observations. When compared SOS/EOS between VIP and GIMMS,
we identified that both SOS and EOS from VIP were averagely overestimated by about
16.7 and 12.1 days than that from GIMMS, respectively (Figure 4). However, they were
correlated very well (p < 0.001), indicating a similar capacity to depict spatiotemporal
patterns of the land surface.
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the elongation date of wheat; (c)/(d) SOS derived from VIP/GIMMS vs. the spike date of wheat; (e)/(f) EOS derived from
VIP/GIMMS vs. the maturity date of corn. DOY means the day of the year.

3.3. Comparison of Phenological Trends from Different Sources

SOS retrieved from the two NDVI products has significantly advanced since the
1980s, with almost the same changing rate (0.65/0.64 days yr−1, p < 0.01) (Figure 5a).
EOS derived from VIP also showed a significant advanced trend over time (0.2 days yr−1,
p < 0.1) (Figure 5b). Consequently, LOS from both VIP and GIMMS exhibited a significant
lengthening tendency, with the changing rate of 0.41 and 0.44 days yr−1, respectively
(Figure 5c). However, a different variation trend was identified for the ground-observed
phenophases. Both the elongation and spike date of wheat experienced a significant earlier
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trend (1.16 days yr−1 for the elongation, p < 0.05; 1.06 days yr−1 for the spike, p < 0.1) before
2002 but a significant delaying trend (0.84 days yr−1 for the elongation, p < 0.01; 1.04 days
yr−1 for the spike, p < 0.01) after 2002 (Figure 5d,e). The maturity of corn has significantly
delayed since the 1990s with a changing rate of 0.42 days yr−1 (p < 0.01) (Figure 5f).
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3.4. Influencing Factors Comparisons of SOS/EOS

By computing the partial correlation coefficients between SOS/EOS and spring/autumn
temperature, precipitation, shortwave radiations, and annual mean NDVI (only for EOS),
we found spring precipitation was a relatively stronger influence factor on SOS (−0.13 on
average) compared with spring temperature (−0.03 in average) and shortwave radiation
(0.07 in average) (Figure 6a). In comparison, a greater correlation coefficient was diagnosed
between EOS and autumn average temperature (−0.22 on average)/shortwave radiation
(0.26 on average) than that between EOS and autumn precipitation (0.15 on average)/NDVI
(−0.07 in average) (Figure 6b). Increased autumn temperature/shortwave radiation would
advance/delay the leaf senescence process. The positive correlations detected between
EOS and autumn precipitation indicated a postponing effect of precipitation on the autumn
phenology of crops. NDVI did not show obvious impacts on EOS, whereas the autumn NPP
exhibited a nonlinear effect on EOS, namely first earlier and then later with the increase of
autumn NPP (Figure 6c).
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4. Discussion

This study primarily analyzed the temporal patterns of NDVI and phenology metrics
derived from two long-term NDVI datasets (VIP and GIMMS) for cropland in a typical
cultivated region of China. First, a greening trend after the 1980s was observed for both
datasets by calculating their variability over time. This is consistent with substantial land
surface greening trends observed over the past few decades at the global scale, which may
have resulted from enhanced photosynthesis driven by a warming climate and increasing
CO2 concentrations [27–29]. Land-use change may also be an important explanation for
the greening trend in some regions [30–32]. Unlike the present study, a clear inflection
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point of the greening trend was also found in the eastern part of the Tibetan Plateau,
which may be due to the different vegetation types and altitudes [33]. Seasonally, both
datasets showed a comparable number of growing cycles in most regions but with diverse
amplitudes. For VIP, most NDVI values were around 0 in the non-growing season but
close to 1 in the peak of the growing season. By comparison, the value of background
NDVI for GIMMS was always near 0.2, and the higher NDVI was no more than 0.7 in most
of the pixels. Except for the systematic difference of the two sensors in band passes, the
continuity algorithm used for NDVI data generation could also further alter the NDVI
profile magnitude when standardizing AVHRR to MODIS [16]. Nevertheless, the two
datasets were largely consistent in capturing the seasonal and long-term pattern of growth
status of local vegetation.

When used for vegetation phenology extraction, the two datasets showed a very close
MSE in fitting NDVI time series (Figure 7), meaning almost equal fitting performance.
Upon direct comparison, SOS/EOS based on the VIP dataset was found to be a little earlier
by about two weeks than the values based on the GIMMS dataset, which indicates a little
overestimation of SOS/EOS from VIP than GIMMS. However, when compared to the
ground observed records, SOS from the two data sources presented a similar bias and
correlation with them for spring phenology prediction, while EOS from GIMMS data seems
to have a relatively small bias with the ground-observed maturity of corn than that from
VIP. As to the variation trends of SOS/EOS for the two datasets, a consistent spatiotemporal
pattern and interannual variability were observed. That means that both datasets could
effectively describe the spatial and temporal traits of terrestrial ecosystems and reflect the
impacts of regional climate change. The advanced SOS is also in accordance with previous
results from the same data but different methods [3,34] and some ground-based manual
observations [35,36]. However, differently, the elongation and spike date of wheat shows
two segmented and opposite variation trends in this study. As to the variation trend of EOS,
we detected a weak/non-significant advancing trend for GIMMS/VIP, which is different
from the significant delaying trend found for ground observations and in other studies
based on remote sensing data [37]. Consequently, a significant elongation of the growing
season was identified for both, which is mainly resulted from the significant advance of
SOS. Considering the relatively large bias of EOS identification, we think the accuracy of
EOS may not be as high as SOS, which itself is more complicated than the spring phenology
process and is easily affected by more elements, including abiotic and biotic factors [12].
Meanwhile, the mismatch of temporal patterns of phenology metrics from remote sensing
data and ground observations may also be attributed to the noise information from other
crops or natural vegetation included in the coarse remote sensing pixels [38]. Although the
study region is a typical wheat-corn rotation planting area, other crops (such as vegetables,
soybean, cotton, etc.) and natural vegetation are still unavoidable to exist sparsely around
wheat/corn planting fields. In addition, different methods used for land surface phenology
extraction can produce distinct or even opposite results for the same study region and
period, which may also contribute a lot to the mismatch of temporal phenology pattern [39].

Spring precipitation showed a relatively stronger influence on SOS than spring tem-
perature and shortwave radiation, and more water availability would facilitate crops to
grow earlier. Shandong province is a typical well-irrigated agriculture area in China. Nev-
ertheless, spring drought often occurs in this region due to insufficient water storage in the
soil and lack of precipitation [40]. Consequently, water supply serves as a critical factor
limiting local crop growth. In comparison, the temperature did not exert a significant
effect on SOS in our study region, which may be induced by the introduction of new and
different cultivars with stronger tolerance of temperature changes over the study region.
No obvious impacts of the shortwave radiation were found for SOS. This is different
from the dominated temperature control found for spring phenology of wheat at a global
scale [34]. Regarding to the influence of climate factors on EOS, we detected a negative
effect of autumn temperature but a positive effect on autumn precipitation and shortwave
radiation. Higher temperatures would speed up the heat accumulation needed for crops to
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mature and thus shorten the duration of the growth process. More precipitation and light
availability can retard abscisic acid accumulation, enhance the chlorophyll levels, and thus
slow the speed of leaf senescence [13]. In addition, we detected a two opposite-direction
variation of EOS with the increase of NPP. In the first stage, augmented NPP causes an
earlier EOS, as the excess of carbohydrates could lead to a downregulation of the photo-
synthetic genes and accelerate the induction of leaf senescence [41–43]. However, with the
continuous growth of NPP, the excessive carbohydrates accumulation may take a longer
time to be decomposed and consequently, in turn, postpone the growth cessation stage.
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Overall, this study strengthens the relatively spatiotemporal consistency of phenology
metrics retrieved from two long-term NDVI datasets. However, several points still need
to be noted, which may cause some uncertainties to the results of this study. First, our
study region only included the cropland and covered a small part of the agricultural
region in China, and thus some results and conclusions may be somewhat biased. We
expect to investigate larger regions and include other vegetation types in future research.
Second, the mixed-pixel effect may have substantial effects on the results. The two NDVI
datasets used in this study have relative coarser-resolution compared to the complicated
planting strategies in the study region, where other crops (such as cotton, vegetables,
soybeans, etc.) and natural vegetations are often sparsely distributed but possibly and
totally account for a large part of a pixel (even greater than 50% for some special areas).
They commonly have a large difference in the growth process. Therefore, a much finer land
cover classification system and remote sensing data should be taken to conduct a more
elaborate analysis. Third, although two NDVI datasets have a similar temporal pattern
for NDVI and vegetation phenology, the gaps between them may not be ignored and
should be considered when assessing physiological and ecological parameters, such as
plant biomass [44], vegetation productivity [45], grain yields [46], etc. It may lead to greater
errors due to land surface process estimation. Four, except for natural factors, crop growth
progress is unavoidable to be influenced by human decision-making, such as sowing earlier
or later, the choice of varieties, and the introduction of new cultivars [47–49], which need
to be introduced in the following studies.
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