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Abstract: It is of great significance for the validation of remotely sensed evapotranspiration (ET)
products to solve the spatial-scale mismatch between site observations and remote sensing estima-
tions. To overcome this challenge, this paper proposes a comprehensive framework for obtaining the
ground truth ET at the satellite pixel scale (1× 1 km resolution in MODIS satellite imagery). The main
idea of this framework is to first quantitatively evaluate the spatial heterogeneity of the land surface,
then combine the eddy covariance (EC)-observed ET (ET_EC) to be able to compare and optimize
the upscaling methods (among five data-driven and three mechanism-driven methods) through
direct validation and cross-validation, and finally use the optimal method to obtain the ground truth
ET at the satellite pixel scale. The results showed that the ET_EC was superior over homogeneous
underlying surfaces with a root mean square error (RMSE) of 0.34 mm/d. Over moderately and
highly heterogeneous underlying surfaces, the Gaussian process regression (GPR) method performed
better (the RMSEs were 0.51 mm/d and 0.60 mm/d, respectively). Finally, an integrated method
(namely, using the ET_EC for homogeneous surfaces and the GPR method for moderately and highly
heterogeneous underlying surfaces) was proposed to obtain the ground truth ET over fifteen typical
underlying surfaces in the Heihe River Basin. Furthermore, the uncertainty of ground truth ET was
quantitatively evaluated. The results showed that the ground truth ET at the satellite pixel scale is
relatively reliable with an uncertainty of 0.02–0.41 mm/d. The upscaling framework proposed in
this paper can be used to obtain the ground truth ET at the satellite pixel scale and its uncertainty,
and it has great potential to be applied in more regions around the globe for remotely sensed ET
products’ validation.

Keywords: upscaling methods; ground truth at the satellite pixel scale; eddy covariance system; un-
certainty

1. Introduction

The evapotranspiration (ET) of the land surface is a significant part of the global
hydrologic cycle and plays an important role among climate systems, energy balance
processes, and carbon cycles [1]. Accurate monitoring and estimations of ET are critical
not only for water resource management but also for modeling regional and global climate
and hydrological cycles [2]. Remote sensing technology is effective for monitoring ET [3],
and a variety of remotely sensed ET products have been produced and available, such as
the Moderate Resolution Imaging Spectroradiometer (MODIS) Global Evapotranspiration
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Project (MOD16) [4], Global Land Evaporation Amsterdam Model (GLEAM) [5], Global
LAnd Surface Satellite (GLASS) [6], ETMonitor [7], and Breathing Earth System Simulator
(BESS) [8] products. However, remotely sensed ET products have various sources of
uncertainties [9,10], resulting in different accuracies, with mean absolute percentage errors
(MAPEs) at instantaneous (15–30%), daily (14–44%), monthly (10–36%), and annual scales
(5–21%) [11–14]. Thus, it is significant to validate remotely sensed ET products before being
used in practical applications.

The most popular method for remotely sensed ET validation is directly using site
observation data derived from eddy covariance (EC) and large aperture scintillometer
(LAS) [15,16]. In contrast to the single point observations obtained for the leaf area index
(LAI), land surface temperature (LST), and soil moisture, the EC and LAS measurements
represent the footprint scale. Their spatial representations (flux source area) vary with
wind speed/direction, atmospheric stability, surface roughness, and instrument height. In
addition, due to the ubiquity of land surface spatial heterogeneity, the problem of spatial-
scale mismatches between site observation values and remote sensing estimation values
inevitably arises. The introduction of the flux footprint and source area helps solve the
problem of spatial-scale mismatches to some extent [9]. However, the fact that the given
source area cannot always completely cover one or several satellite pixels will bring some
uncertainty to the validation results. Therefore, it is necessary to study how to upscale ET
from the footprint scale to the satellite pixel scale through upscaling methods to reduce the
uncertainty caused by spatial-scale mismatches.

Upscaling is defined as the process of transforming data or information from a fine
scale to a coarse scale in the spatial dimension or from a short scale to a long scale in
the temporal dimension [17]. Upscaling is the most effective and most commonly used
approach for obtaining ground truth data at the satellite pixel scale. Current studies on
upscaling ET can be divided into these studies using data-driven methods and those
using mechanism-driven methods. Among them, data-driven methods can be divided
into probability-based methods, regression model-based methods, and machine learning-
based methods, while mechanism-driven methods can be divided into the fusion of prior
information-based methods and process model-based methods [17–22].

Probability-based methods include the arithmetic average [18], area-weighted (AW)
average [23–25], and footprint-weighted [18] methods. Based on the multi-site measure-
ment datasets and a high-resolution landcover map in the downstream of the Heihe River
Basin (HRB) in 2014, Xu et al. [25] used the AW method to upscale the sensible heat (H) flux
from multi-site to the LAS scale. Regression model-based methods include the multiple
linear regression, ordinary least squares, Bayesian linear regression (BLR), and ridge regres-
sion methods [26–29]. Based on the flux observation matrix and a high-resolution landcover
map in the midstream of the HRB in 2012, Xu et al. [24] upscaled the H flux from multi-site
to the LAS scale using footprint analysis and multiple linear regression, and the results
were validated by LAS observations. Machine learning model-based methods include arti-
ficial neural network (ANN) [30,31], regression tree [20,32], support vector machine [20,33],
random forest (RF) [19,34], Gaussian process regression (GPR) [35], deep belief network
(DBN) [19], etc. Based on observation data obtained from FLUXNET, Bodesheim et al. [34]
trained an RF model on different underlying surfaces, fed the regional grid data into the
trained model, and finally obtained latent heat (LE) and H fluxes with a spatial resolution
of 0.5◦ and a temporal resolution of half an hour over a global range. The fusion of prior
information-based methods includes the kriging framework (kriging interpolation and
its derivatives) [36,37] and Bayesian framework (Bayesian method in information entropy
theory) methods [38,39]. Supported by the flux observation matrix datasets (multiple ECs),
Ge et al. [37] obtained the H flux at the LAS footprint scale upscaled from the EC scale
by using the area-to-area regression kriging estimation equation combined with auxiliary
information. Process model-based methods include physics-based models [18,40] and data
assimilation methods [41,42]. These two methods incorporate site data to determine model
parameters or relationships, and they combine surface flux observation data, meteoro-
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logical data, and remote sensing data to obtain surface water and heat fluxes at a pixel
scale. Based on a dataset from the flux observation matrix of the midstream in the HRB,
Liu et al. [18] fitted a linear regression relationship between the Priestley–Taylor coeffi-
cient and the difference between the surface temperature and air temperature, combined
with auxiliary information, and estimated ET value at the satellite pixel scale using the
Priestley–Taylor equation.

In summary, although some progress has been made in the study of ET upscaling,
the current research on upscaling ET still faces the following challenges. First, the afore-
mentioned upscaling methods focus mainly on multiple EC observation towers, such as
flux observation matrices and global- or watershed-scale observation networks [19,20].
However, most site observations are based on a single EC system, lysimeter, scintillometer,
etc. For example, the FLUXNET only has one EC flux observation tower per site and is
widely utilized in the validation of remotely sensed ET products or ET estimation models
at a regional or global scale [12]. Second, most upscaling methods do not fully address the
effect of the spatial heterogeneity of the land surface hydrothermal conditions (LSHCs)
on the upscaled results [43]. However, land surface heterogeneity is ubiquitous and is the
key to scaling effects and upscaling methods. Therefore, upscaling methods considering
spatial heterogeneity can be more universal than other methods that do not consider spa-
tial heterogeneity. Moreover, the ground truth values at the pixel scale obtained by the
upscaling method are not “true values” in the absolute sense, and the uncertainty mainly
arises from ET observational errors, upscaling method errors, and auxiliary information
errors [44], all of which directly affect the accuracy and reliability of the validation results
of remote sensing products [43,45]. Therefore, the uncertainties arising in the upscaled
results need to be quantitatively analyzed. In addition, considering that different upscaling
methods have different advantages, disadvantages, and applicabilities, it is necessary to
comprehensively compare and optimize different types of upscaling methods. Therefore,
upscaling ET based on a single site while considering the effects of the heterogeneity of
the LSHCs and quantitatively evaluating the uncertainty derived in the upscaled results is
still challenging.

In this paper, we propose a comprehensive framework for acquiring ground truth
ET at the satellite pixel scale to solve the spatial-scale mismatch issue during remotely
sensed ET validation. The objectives of this paper are to (1) compare the performances of
eight upscaling methods (including five data-driven and three mechanism-driven methods)
combined with EC-observed ET (ET_EC) and discuss the different performances of these
methods; (2) acquire the ground truth ET data at the satellite pixel scale on fifteen typical
surface types in the HRB; and (3) analyze the uncertainties of the ground truth ET at the
satellite pixel scale.

2. Study Area and Datasets
2.1. Study Area

The study area is located in the HRB (37.7◦–42.7◦N, 97.1◦–102.0◦E), which is the
second-largest endorheic basin in the arid and semiarid regions of Northwest China
and has a typical continental arid climate, with an area of approximately 143,000 km2

(Figure 1). The HRB includes the upstream, midstream, and downstream areas with differ-
ent kinds of underlying surfaces, and the air temperature and precipitation show obvious
zonal characteristics with the change in elevation from the upstream to downstream re-
gions. The landscape zonality of the HRB is also obvious; more specifically, it forms a
“snow/ice/frozen soil–forest–grassland–oasis–desert/Gobi–tail-end lake” pattern of di-
verse natural landscapes, using water as a link from the upstream to the midstream and
downstream regions [46]. These unique characteristics make the HRB an ideal region for
upscaling research based on the different climate and land surface types.
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Figure 1. The spatial location of the HRB and the locations of the Arou superstation (1), Guantan station (2), and Dashalong 
(3) station in the upstream; the Daman superstation (4), Wetland (5), Bajitan Gobi (6), Huazhaizi Desert Steppe (7), Yingke 
(8), Shenshawo (9), and Linze (10) stations in the midstream; the Sidaoqiao superstation (11), the Populus euphratica (12), 
Mixed Forest (13), Barren Land (14), and Desert (15) stations in the downstream; and the filled ovals represent the flux 
source areas of the EC (at all stations) and LAS (at superstations) (corresponding to approximately 90% of the source area 
contribution), and the squares represent the corresponding 1 × 1 or 2 × 1 MODIS pixels. 

Table 1. Specifications of the stations in the HRB used in this study. 

Region No. Station Longitude (°) Latitude (°) Elevation (m) Landscape 
The Corre-
sponding 

MODIS Pixels 

Time Period 
of Data Used 

Upstream 

1 
Arou super-

station 100.4643 38.0473 3033 
Subalpine 
meadow 2 × 1 

2013.1–
2016.12 

2 
Guantan 

(GT) 100.2503 38.5336 2835 
Qinghai 
spruce 2 × 1 

2010.1–
2011.12 
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Dashalong 

(DSL) 98.9406 38.8399 3739 
Marsh alpine 

meadow 1 × 1 
2013.8–
2016.12 

Midstream 4 
Daman su-
perstation 100.3722 38.8555 1556 Maize 2 × 1 

2012.6–
2016.12 

Figure 1. The spatial location of the HRB and the locations of the Arou superstation (1), Guantan station (2), and Dashalong
(3) station in the upstream; the Daman superstation (4), Wetland (5), Bajitan Gobi (6), Huazhaizi Desert Steppe (7), Yingke
(8), Shenshawo (9), and Linze (10) stations in the midstream; the Sidaoqiao superstation (11), the Populus euphratica (12),
Mixed Forest (13), Barren Land (14), and Desert (15) stations in the downstream; and the filled ovals represent the flux
source areas of the EC (at all stations) and LAS (at superstations) (corresponding to approximately 90% of the source area
contribution), and the squares represent the corresponding 1 × 1 or 2 × 1 MODIS pixels.

To enhance the observation ability of the land surface processes in the HRB, the Heihe
integrated observatory network was established; this network is characterized by being
multielement, multiscale, and distributed, and it incorporates satellite–airborne–ground-
based observations [46,47]. The Heihe integrated observatory network was developed
from two successive observation experiments: the first part of the network was established
in 2007 during the Watershed Allied Telemetry Experimental Research (WATER) experi-
ment (2007–2011) [48], and the second part was completed in 2013 during the HiWATER
experiment (2012–2015) [49]. There are three superstations and twenty ordinary stations in
the HRB. In 2016, the number of stations was reduced to eleven carrying out refined obser-
vations. These stations cover the primary surface types of the HRB [46,49–51]. The three
superstations were selected for the comparison and optimization of the upscaling methods,
and ordinary stations representing typical surface types in the HRB were also selected
to obtain the ground truth ET at the satellite pixel scale. Among them, the superstations
include flux towers with heights of 30–40 m equipped with multiscale and multielement
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observation systems. Each observation system consists of a lysimeter/thermal dissipation
probe (TDP)–EC–LAS, an in situ soil temperature/moisture profile–cosmic-ray probe–soil
moisture/temperature sensor network, and a multilayer meteorological gradient obser-
vation system. At each ordinary station, there is an EC system and an automatic weather
station (AWS) to monitor the H, LE, and meteorological elements. Specifications of the
superstations and ordinary stations are given in Figure 1 and Table 1. More detailed infor-
mation can be found in [46,49]. Three superstations and eleven ordinary stations from the
Heihe Integrated Observatory Network and one other researcher’s site (Linze station [52])
were selected for the study of ground truth ET at the satellite pixel-scale acquisition.

Table 1. Specifications of the stations in the HRB used in this study.

Region No. Station Longitude (◦) Latitude (◦) Elevation (m) Landscape

The Corre-
sponding
MODIS
Pixels

Time
Period of

Data Used

Upstream

1 Arou
superstation 100.4643 38.0473 3033 Subalpine

meadow 2 × 1 2013.1–
2016.12

2 Guantan
(GT) 100.2503 38.5336 2835 Qinghai

spruce 2 × 1 2010.1–
2011.12

3 Dashalong
(DSL) 98.9406 38.8399 3739

Marsh
alpine

meadow
1 × 1 2013.8–

2016.12

Midstream

4 Daman
superstation 100.3722 38.8555 1556 Maize 2 × 1 2012.6–

2016.12

5
Zhangye
wetland

(Wetland)
100.4464 38.9751 1460 Wetland 1 × 1 2012.6–

2016.12

6 Bajitan Gobi
(BJT) 100.3042 38.915 1562 Reaumuria

desert 1 × 1 2012.5–
2015.4

7
Huazhaizi

Desert steppe
(HZZ)

100.3186 38.7652 1731
Kalidium
foliatum
desert

2 × 1 2012.6–
2016.12

8 Yingke (YK) 100.4103 38.8571 1519 Maize 1 × 1 2010.1–
2011.12

9 Shenshawo
(SSW) 100.4933 38.7892 1594 Sandy

desert 1 × 1 2012.6–
2015.4

10 Linze (LZ) 100.1408 39.3281 1252 Maize 1 × 1 2013.1–
2014.12

Downstream

11 Sidaoqiao
superstation 101.1374 42.0012 873 Tamarix 2 × 1 2015.4–

2016.12

12
Populus

euphratica
(P.E)

101.1239 41.9932 876 Populus
euphratica 1 × 1 2013.7–

2016.4

13 Mixed Forest
(HHL) 101.1335 41.9903 874

Populus
euphratica

and Tamarix
1 × 1 2013.7–

2016.12

14 Barren Land
(LD) 101.1326 41.9993 878 Bare land 1 × 1 2013.7–

2016.3

15 Desert 100.9872 42.1137 1054 Reaumuria
desert 1 × 1 2015.4–

2016.12

2.2. Datasets
2.2.1. Station Observation Data

The original EC data were processed with the raw 10 Hz data, and the 30-min average
EC data values were obtained by the EddyPro software (http://www.licor.com/env/
products/eddy_covariance/software.html, accessed on 10 March 2019). To force the energy
balance closure, the Bowen ratio closure method was used. The daily ET was calculated

http://www.licor.com/env/products/eddy_covariance/software.html
http://www.licor.com/env/products/eddy_covariance/software.html
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using the continuous 30-min data, and the nonlinear regression method was used if the
30-min data were missing. In addition, if the absence rate of the 30-min data was greater
than 50% in one day, then the data on this day were not used. More information about EC
data processing and quality control can be found in [53].

For the LAS data, first, the raw LAS data were averaged to 30-min intervals. The
daily LAS-LE was calculated by the energy balance equation (LE = Rn − G0 − H). The net
radiation (Rn) and surface soil heat (G0) were measured by a four-component radiometer
and three soil heat flux plates, respectively. When advection occurs, namely, H was less
than 10 W/m2 in the daytime, and the relationship between LAS-LE and Rn under non-
advection conditions was used to obtain LAS-LE directly from the linear interpolation [18].
Finally, the daily ET was obtained using the continuous 30-min data. Moreover, if the
absence rate of the 30-min data was over 50% in one day, then the day was regarded as a
missing day, and the data were not selected.

The AWS data obtained at each station included the wind speed/direction, air temper-
ature and humidity, precipitation, atmospheric pressure, downward (upward) shortwave
(longwave) radiation, soil heat flux, soil temperature/moisture profile, etc. The process-
ing and quality control steps were necessary and included processing the data to 30-min
averages, rejecting data during processing that were beyond the physical normal values,
and so on. The LST data were obtained from the downward and upward longwave
radiation observed using the AWSs and the surface emissivity observed using the FT-
IR (Fourier-transform infrared spectroscopy) spectrometer [54]. The site measurement
datasets used in this study can be accessed via the National Tibetan Plateau Data Center
(http://data.tpdc.ac.cn/en/, accessed on 10 March 2019).

2.2.2. Remote Sensing and Atmospheric Forcing Data

To obtain remote sensing data with a high spatiotemporal resolution through the
fusion of multisource remote sensing data obtained in the study area, 286 ETM+ images
(path/row: 133/33, 133/34, 134/33, 134/31) from 2010 to 2016 were fused with the MODIS
data using the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ES-
TARFM) [55]. The ETM+ images and MODIS data were derived from the Land Processes
Distributed Active Archive Center (LP DAAC) (http://glovis.usgs.gov/, accessed on 15
May 2019) and the United States Geological Survey (USGS) (https://landsat.usgs.gov/,
accessed on 15 May 2019), respectively. Before data fusion, these data are preprocessed,
including geometric correction, atmospheric correction, etc. Then, the fused data were
used to calculate the remote sensing land surface parameters (e.g., Rn, LST, normalized
difference vegetation index (NDVI), Albedo, and LAI) [56] and were finally resampled
using the bilinear resampling method from a 100 m to a 30 m resolution. Land use/land
cover data obtained in the study area at a 30 m resolution [57] were used. In addition, to
reduce the influence of the error derived from the remote sensing data on the upscaled
results, according to the current retrieval error of the LST and Rn [58,59], 3 K for LST and
10% for Rn were used as the error thresholds in data filtering.

In this study, atmospheric pressure, air temperature, relative humidity, precipitation,
and other atmospheric forcing data at a spatial resolution of 100 m were generated by
Ma et al. [56]. We used the bilinear resampling method to resample these data to a 30 m
resolution. In addition, the high-resolution ET data (resampled to 30 m) were used in
this paper to evaluate the spatial heterogeneity of the LSHCs in these sites with sparse
vegetation. First, surface parameters for estimating daily ET were obtained through the
fusion algorithm (ESTARFM). Then, the surface parameters were imported into the revised
Surface Energy Balance System (SEBS) model. Finally, the high-resolution ET data at a
spatial resolution of 100 m were obtained [56] and can be downloaded from the National
Tibetan Plateau Data Center (http://data.tpdc.ac.cn/en/, accessed on 7 January 2021).

http://data.tpdc.ac.cn/en/
http://glovis.usgs.gov/
https://landsat.usgs.gov/
http://data.tpdc.ac.cn/en/
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2.2.3. Flux Source Area Data

To better determine the spatial representative range of the observed flux, it is essential
to calculate the flux source areas of the EC and LAS. In this paper, an Eulerian analytical flux
footprint model [60] was used to determine the source area of the EC at a 30 m resolution.
By combining the path-weighting function with the footprint model for the point fluxes,
the source area of the LAS was computed [61] with a 30 m resolution. In addition, the flux
contribution of the chosen total source area was set to 90%. In this paper, we selected the
MODIS pixel corresponding to each station according to the size and location of the flux
source area, as illustrated in Figure 1 and Table 1, and obtained the ground truth ET of
these MODIS pixels.

3. Methodology

A universal framework for obtaining the ground truth ET at the pixel scale should
consider different underlying surface types. The HRB has multiple natural landscapes and
diverse land cover types, which provides an ideal observation area for obtaining the ground
truth ET at the pixel scale. To improve the capability of the framework for obtaining the
ground truth ET at the pixel scale, we selected the stations in the typical underlying surface
in the HRB to test the upscaling method, including three superstations and twelve ordinary
stations. The underlying surface types of the Arou, Daman, and Sidaoqiao superstations
are subalpine meadow, maize, and Tamarix, respectively. The underlying surface types of
the ordinary stations include Qinghai spring (GT) and marsh alpine meadow (DSL) in the
upstream area; wetland (Wetland), Reaumuria desert (BJT), Kalidium foliatum desert (HZZ),
maize (YK and LZ), and sandy desert (SSW) in the midstream; and Populus euphratica (P.E),
Populus euphratica and Tamarix (HHL), bare land (LD), and Reaumuria desert (Desert) in the
downstream (see Table 1). The primary framework of acquiring the ground truth ET at
the satellite pixel scale is to quantitatively evaluate the spatial heterogeneity of the LSHCs
firstly and then to compare the data-driven and mechanism-driven upscaling methods
taking LAS measurements as the reference value. Finally, the optimal upscaling method
is used to obtain the ground truth ET at the satellite pixel scale, and the uncertainty of
ground truth ET is estimated using uncertainty quantification methods. The framework
of this approach is divided into three steps (Figure 2). (1) Based on the flux source area
data, the corresponding MODIS pixels are selected, and the heterogeneity evaluation
scheme is used to quantitatively evaluate the spatial heterogeneity of the LSHCs in these
pixels [62]; the pixels can be divided into the homogeneous, moderately heterogeneous, and
highly heterogeneous underlying surfaces. (2) Based on the quantitative evaluation result
of spatial heterogeneity, a comprehensive validation method is adopted; this validation
method includes a direct validation taking LAS measurements as the reference value and
cross-validation based on the three-cornered hat (TCH) method to compare and analyze
several upscaling methods, including data-driven and mechanism-driven methods as well
as the eddy covariance (EC)-observed ET (ET_EC). (3) Finally, according to the optimal
upscaling method, the ground truth ET at the satellite pixel scale is obtained at these sites
over the typical underlying surface in the HRB, and the uncertainty of the ground truth ET
is evaluated quantitatively to verify the effectiveness and universality of the framework.

3.1. Evaluation Method of Spatial Heterogeneity

Spatial heterogeneity is an important property of natural landscapes on earth, and the
spatial distribution of the LSHCs is complex and ubiquitous. Considering that the degree
of heterogeneity of the LSHCs is diverse and the accuracies and applicability of the various
upscaling methods are also different, it is necessary to analyze the spatial heterogeneity of
the LSHCs before selecting the appropriate upscaling method to acquire the ground truth
ET at the satellite pixel scale. An evaluation scheme was applied to estimate the spatial
heterogeneity of the LSHCs [62] in this study. In this scheme, two heterogeneity evaluation
indicators (the coefficient of variation (CV) and normalized information entropy (S)) are
combined with remotely sensed LAI data to assess the spatial heterogeneity of the LSHCs.
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In addition, the criteria used to define the classification of the degree of heterogeneity is
the following: if S is less than or equal to 0.5, then the underlying surface is defined as a
homogeneous underlying surface; if S is greater than 0.5 and the CV is less than or equal
to 0.3, then the underlying surface is defined as a moderately heterogeneous underlying
surface; and if S is greater than 0.5 and the CV is greater than 0.3, then the underlying
surface is defined as a highly heterogeneous underlying surface [62].
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3.2. Upscaling Methods

As introduced in Section 1, different upscaling methods have pros and cons in various
aspects that influence their applications. In this paper, eight upscaling methods (including
the two categories of data-driven and mechanism-driven methods, which can be sub-
divided into five subcategories) are selected for comparison and optimization to obtain
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ground truth ET at the satellite pixel scale. Specifically, there are four machine learning-
based methods (e.g., ANN, DBN, GPR, and RF), three process model-based methods (e.g.,
the integrated Priestley–Taylor equation (P-T), the Penman–Monteith equation combined
with shuffled complex evolution (P-M-SCE_UA) method, and Penman–Monteith equation
combined with Ensemble Kalman Filter (P-M-EnKF) method) and one regression model-
based method (e.g., BLR). In addition, the probability-based methods themselves require
multiple observation stations, and the fusion of prior information-based methods usually
requires more station data to provide more useful prior auxiliary information, so they
are not suitable for the upscaling of single-station data and are not selected in this paper.
For P-M-SCE_UA and P-M-EnKF, two data assimilation methods (DA) were used in the
Penman–Monteith equation to improve the model estimates. For the data used in the
upscaling method in this paper, the time periods for data used are shown in Table 1. In this
paper, we divide the above data into a training set, validation set, and testing set, and the
allocation proportion is 60%, 20%, and 20%, respectively.

For the P-T method, in brief, firstly, the Priestley–Taylor coefficient, α, is determined
by using the observation data obtained at a given site; secondly, the relationship between α
and the difference between the land surface temperature and air temperature is created;
finally, the ground truth ET at the satellite pixel scale is calculated by using remote sensing
data and observation data combined with the Priestley–Taylor formula [18]. For the DA
methods (P-M-EnKF and P-M-SCE_UA), in simple terms, the EnKF algorithm and SCE_UA
algorithm are used to calibrate the two parameters (α and β, see Appendix A) and six
parameters (kQ, kA, Q50, D50, gsx, and f , see Appendix A) in the corresponding Penman–
Monteith formula based on the observation data of a given site, respectively, and then,
the ground truth ET at the satellite pixel scale is calculated by combining the remote
sensing data and the observation data of the site with the corresponding Penman–Monteith
formula [63–66]. For the data-driven methods (i.e., ANN, BLR, DBN, GPR, and RF), firstly,
by inputting the EC observation data and related influencing factors (e.g., LST, Rn, and
NDVI) at a single site, these models are trained; secondly, through the debugging and
constant updating of model parameter, the optimal model is determined; and finally,
the corresponding remote sensing data are input to the trained model to estimate the
ground truth ET at the pixel scale and achieve the upscaling of ET [67–71]. In addition, the
LAS measurements were selected as the satellite pixel reference values in the comparison
processes of the upscaling methods. More specific details about the methods used in this
study to obtain ground truth ET at the satellite pixel scale are given in Appendix A.

3.3. Cross-Validation Method

The cross-validation method can validate the relative precision and the rationality
of the spatiotemporal distributions of diverse products and intercompare products. The
TC (triple collocation) method can be used to calculate the relative error between various
products. However, the TC method has a hypothesis that the errors of the three products
involved in the calculation are independent. When the number of datasets is greater than
three groups, assuming that the datasets are independent of each other, the variance may
be negative. At this time, the TCH (three-cornered hat) method can be used to analyze
the relative error between more than three groups of data. This method is effective for
characterizing the relative error of more than three products [44,72]. Therefore, in this
study, in addition to the direct validation with LAS observations, the TCH method is also
used to perform cross-validation for an intercomparison of the eight upscaling methods.
More details about the TCH method are given in Appendix B.

3.4. Sensitivity Analysis Method

The Fourier amplitude sensitivity test (FAST) is a variance-based method that can
quantify the main and interactive effects derived from the input parameters. Saltelli
et al. [73] developed a method called the extended FAST (EFAST) method, which is based on
the classical FAST method. The EFAST method partitions the whole variance in the model
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output and quantifies the contribution of each input parameter to the variance. The EFAST
method combines the optimized efficiency of FAST with the capacity of Sobol’s method
to compute the total effects. The EFAST method can qualitatively rank the importance of
each input parameter by calculating the contribution of each parameter to variation in the
model’s output. In this paper, the EFAST method is mainly used to filter the sensitive factors
that are used as the input parameters for the construction of the data-driven upscaling
methods (i.e., ANN, BLR, DBN, GPR, and RF). More details about the EFAST method are
given in Appendix C.

3.5. Uncertainty Quantification Method

The ground truth ET at the satellite pixel scale obtained by the upscaling method is
not a “true value” in the absolute sense, and it contains uncertainty. It is necessary to use
a method to evaluate the uncertainty quantitatively. The Monte Carlo (MC) method is
widely used for quantifying uncertainty. However, the MC method has a slow convergence
speed and high computational overhead and requires a large number of sampling point
calculations to obtain results with satisfactory accuracy. Therefore, its application in
high-dimensional and multivariable uncertainty quantization problems is limited. The
generalized polynomial chaos (gPC) method is a more efficient method for quantifying
uncertainty [74,75]; it has the advantages of a small calculation load and high precision,
and it has developed into a significant method of uncertainty research. In this method, the
correspondence between the probability density function of a random variable and the gPC
basis function is found, such that the gPC method can be used for uncertainty analysis of
common types of random variables. An important tool for uncertainty quantifications, the
gPC method can be used to quantify the uncertainty of the ground truth ET at the satellite
pixel scale obtained by a given upscaling method. When ET_EC is used to represent the
ground truth ET at the satellite pixel scale over the homogeneous underlying surface, the
method of Beyrich et al. [23] is used to quantify the uncertainty of the ground truth ET.
More details about the uncertainty quantification methods are given in Appendix D.

4. Results and Discussion
4.1. Analysis of the Spatial Heterogeneity of the LSHCs

The spatial heterogeneities of the superstations and the major ordinary stations were
evaluated using this evaluation scheme in 2015 as an example (Figure 3). In addition,
the heterogeneity evaluation scheme is also not applicable to sites with sparse vegetation,
such as the BJT, HZZ, SSW, LD, and Desert stations. According to the S of the high-
resolution ET derived from [56], the S values of the five stations were lower than 0.5 over
the whole year, and thus, the five stations were defined as having homogeneous underlying
surfaces (Figure 3f,g,i,n,o)). For the Arou (Figure 3a) and DSL (Figure 3c) stations, S was
lower than 0.5 over the whole year, and thus, these stations can be defined as having
homogeneous underlying surfaces. For the Wetland station (Figure 3e), S was greater than
0.5, and the CV was less than 0.3 over the whole year; thus, it could be defined as having
moderately heterogeneous underlying surfaces. For the HHL (Figure 3m), Sidaoqiao
(Figure 3k), and P.E (Figure 3l) stations, the days from the beginning of March to the
middle of April could be defined as having moderately heterogeneous underlying surfaces,
and the remaining days could be defined as having highly heterogeneous underlying
surfaces. For the Daman superstation (Figure 3d), the days from 10 June to 10 July and
from 3 September to 15 September were defined as a moderately heterogeneous underlying
surface, and the other days could be defined as a homogeneous underlying surface. For
the GT station (Figure 3b), the days from the middle of June to the end of July could be
defined as a homogeneous underlying surface, and the remaining days could be defined as
a moderately heterogeneous underlying surface. For the LZ station (Figure 3j), the days
from the middle of June to the end of July could be defined as a moderately heterogeneous
underlying surface, and the remaining days could be defined as a homogeneous underlying
surface. For the YK station (Figure 3h), the days from the middle of June to the beginning of
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July and from the beginning of September to the middle of September could be defined as
a moderately heterogeneous underlying surface, and the remaining days could be defined
as a homogeneous underlying surface.
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4.2. Sensitivity Analysis of Input Variables

ET is mainly affected by the available energy (e.g., Rn, Albedo) and water conditions
(e.g., LST) and the vegetation status (e.g., LAI and NDVI) [76,77]. For the ANN, BLR, RF,
DBN, and GPR models, the results could be significantly affected by the input variables.
Thus, the LST, NDVI, Rn, Albedo, and LAI factors were selected for a sensitivity analysis;
then, the important factors were selected for the model construction (ANN, BLR, RF, DBN,
and GPR). Through the sensitivity analysis involving determining the contribution rate of
each variable to the output result, we obtained the important influence input variables and
then performed quality control of input variables to reduce their influence on the model
results. The sensitivity analysis was performed using EFAST on the input variables (LST,
NDVI, Rn, Albedo, and LAI) at three superstations (Figure 4). For the three superstations
in the upstream, midstream, and downstream regions, the ANN, RF, DBN, GPR, and BLR
models were more sensitive (relatively higher total effects index) to Rn, LST, and NDVI
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than to Albedo or LAI. Therefore, Rn, LST, and NDVI were taken as input variables in the
ANN, BLR, RF, DBN, and GPR upscaling methods.
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4.3. Optimization of Upscaling Methods
4.3.1. Comparison with LAS Measurements

Compared with the 100 m scale of EC observations, LAS has a larger observation scale
in kilometers. The scintillometer can observe the average water and heat flux along the
light path of 1–5 km; these measurements can be well-matched with the remote sensing
pixel scales. It can be used as the reference value and has been broadly applied in the
validation of remotely sensed or modeled ET [9,78]. As shown in Figure 1—(1,4,11), the
proportion of the daytime-averaged LAS source areas accounted for approximately 80%
of the 2 × 1 MODIS pixels at the Arou superstation in the upstream region and Daman
superstation in the midstream region in 2015. This proportion was more than 95% at the
Sidaoqiao superstation in the downstream region in 2015. The source area covered the
corresponding MODIS pixels located in the central area. Thus, it could be supposed that
the LAS measurements can represent the measurements at the 2 × 1 MODIS pixel scale in
the Arou, Daman, and Sidaoqiao superstations. As a result, the LAS measurements could
be taken as the reference of the 2 × 1 MODIS pixel for evaluating the upscaled ET derived
from the upscaling methods at three superstations.

Based on the ET observation data and the fused high-resolution remote sensing data
at the Arou superstation from January 2013 to December 2016, the Daman superstation
from June 2012 to December 2016, and the Sidaoqiao superstation from April 2015 to
December 2016, the upscaled ET derived from the eight upscaling methods was com-
pared with the LAS measurements (Figure 5 and Table 2). In addition, the effect of using
ET_EC as ground truth ET at the satellite pixel scale is also evaluated. Over homogeneous
underlying surfaces, ET_EC had the highest accuracy, with the root mean square error
(RMSE), mean relative error (MRE), and correlation coefficient (R) of 0.34 mm/d, 1.57%,
and 0.98, respectively, which were immediately followed by the P-M-EnKF, P-M-SCE_UA,
and P-T mechanism-driven methods with RMSEs (MRE, R) of 0.36 mm/d (−1.68%, 0.98),
0.39 mm/d (1.87%, 0.98), and 0.44 mm/d (2.24%, 0.97), and then, followed by the GPR,
RF, ANN, and DBN data-driven methods, with RMSEs (MRE, R) of 0.46 mm/d (2.59%,
0.96), 0.51 mm/d (2.81%, 0.96), 0.54 mm/d (9.07%, 0.95), and 0.57 mm/d (−10.97%, 0.95),
respectively. The accuracy of the BLR method was relatively lower, with an RMSE (MRE,
R) of 0.62 mm/d (12.45%, 0.94) (Figure 5a,b and Table 2). Over moderately heterogeneous
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underlying surfaces, the GPR, RF data-driven methods, and the P-M-EnKF mechanism-
driven method performed better compared with the other methods with RMSEs (MRE,
R) of 0.51 mm/d (3.23%, 0.97), 0.57 mm/d (3.42%, 0.96), and 0.54 mm/d (3.37%, 0.97),
respectively; then, these were followed by the P-M-SCE_UA, ANN, P-T, and DBN methods
with RMSEs (MRE, R) of 0.60 mm/d (−4.39%, 0.96), 0.64 mm/d (10.95%, 0.96), 0.66 mm/d
(−11.03%, 0.96), and 0.68 mm/d (11.86%, 0.95), respectively. Similarly, the BLR method
performed relatively poorly under these conditions, with an RMSE (MRE, R) of 0.70 mm/d
(−13.44%, 0.95) (Figure 5c,d and Table 2). Over highly heterogeneous underlying surfaces,
the GPR and RF data-driven methods performed better compared with the other methods
with RMSEs (MRE, R) of 0.60 mm/d (4.59%, 0.91) and 0.67 mm/d (−4.94%, 0.87), which
were followed by the ANN method with an RMSE (MRE, R) of 0.71 mm/d (−11.74%, 0.85);
the P-T mechanism-driven method performed worse than the others, with an RMSE (MRE,
R) of 0.89 mm/d (−20.13%, 0.87) (Figure 5e,f and Table 2). Therefore, these results also
indicated that it was necessary and reasonable to optimize the upscaling method based on
a quantitative evaluation result of the spatial heterogeneity of the underlying surfaces.

The ET_EC represents the ground truth ET at the satellite pixel scale with good
accuracy over homogeneous underlying surfaces, but with an increase in the spatial hetero-
geneity of the underlying surface, the accuracy of ET_EC decreased over moderately and
highly heterogeneous underlying surfaces. This is because in the case of heterogeneous un-
derlying surfaces, the uncertainty of the ET derived from EC at a given station representing
the ground truth ET data at the satellite pixel scale will increase as the spatial heterogeneity
increases, so its accuracy will decrease with an increase in the spatial heterogeneity of the
underlying surface [18]. In addition, some studies have shown that if the pixels where
the site is located are homogeneous and the size of the flux source area is the same or
similar to the satellite pixel scale, the flux observation value can be used to validate these
remote sensing products [78,79]. This is also consistent with the result in this paper. In
addition, the P-M-EnKF and P-M-SCE_UA mechanism-driven methods performed better
than the other mechanism-driven method for homogeneous and moderately heterogeneous
underlying surfaces. The reasons for this result are as follows. For the P-M-EnKF method,
first, EnKF can effectively combine two kinds of information (here, the fitting model and
the observation data), introduce new observation data into the process model, continuously
reduce or filter the noise in the process model, and make the model simulation trajectory
closer to the real state of nature [80]. Second, as an effective data assimilation method,
P-M-EnKF is an optimization method used to estimate target parameters by combining
model simulation with external observations. It is a sequential assimilation algorithm
used to estimate the covariance of the forecasting error by MC’s set prediction method;
this algorithm can effectively decrease the error of the estimation process and enhance the
prediction accuracy. It can directly use the nonlinear model operator and the observation
operator, thus maintaining all of the dynamic characteristics of the model. The advantage
of P-M-EnKF is that it does not require the tangent linear model or the adjoint model of the
prediction operator; it also performs good simulations for dynamic models with strong
nonlinearity and discontinuity, and it has achieved great success in applications of land
and atmospheric data assimilation [80]. For the P-M-SCE-UA method, SCE-UA is a global
optimization algorithm, which combines the advantages of the random search algorithm,
simplex method, cluster analysis, biological competitive evolution, etc. It can effectively
solve the rough, insensitive area and non-convex problems of the reflection surface of the
objective function and avoid the interference of local minimum points. This method can
optimize multiple parameters in the model at the same time and is an effective method for
parameter optimization [66]. In addition, we found that the P-M-EnKF method was slightly
superior to the P-M-SCE_UA method for different heterogeneous underlying surfaces. The
reason could be that although both data assimilation methods obtain optimal parameters
by incorporating observed data, the P-M-SCE_UA method is optimized for six parameters
(kQ, kA, Q50, D50, gsx, and f , see Appendix A). The inaccuracy of some parameters will
make the P-M-SCE_UA method perform worse, while the P-M-EnKF method is optimized
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for two parameters (α and β). At the same time, we found that the accuracy of the P-M-
EnKF and P-M-SCE_UA methods decreased with increased heterogeneity. The reason for
this result is that in these upscaling methods, we used DA to predict and update the ad-
justment parameters (α and β in P-M-EnKF; kQ, kA, Q50, D50, gsx, and f in P-M-SCE_UA)
in the P-M equation, and we assumed that these parameters are suitable for the whole
region. For homogeneous underlying surfaces, such as that of the Arou superstation, these
parameters are well represented in the whole 2 × 1 MODIS region. Therefore, P-M-EnKF
and P-M-SCE_UA methods also have a higher accuracy and perform better than the other
upscaling methods. However, with the increasing heterogeneity of the underlying surface,
the representativeness of these parameters in the region gradually decreases. For example,
from the Daman superstation with moderate heterogeneity in the midstream region to the
Sidaoqiao superstation with high heterogeneity in the downstream region, the accuracy of
the P-M-EnKF and P-M-SCE_UA methods gradually decreased.
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Table 2. Statistics for comparison among the upscaled ET of eight upscaling methods, ET_EC, and LAS measurements.

Methods/Observation

Homogeneous Underlying
Surfaces (N = 1116)

Moderately Heterogeneous
Underlying Surfaces (N = 168)

Highly Heterogeneous
Underlying Surfaces (N = 281)

R RMSE
(mm d−1)

MRE
(%) R RMSE

(mm d−1)
MRE
(%) R RMSE

(mm d−1)
MRE
(%)

ET_EC 0.98 0.34 1.57 0.96 0.61 10.29 0.84 0.77 −13.26
ANN 0.95 0.54 9.07 0.96 0.64 10.95 0.85 0.71 −11.74

RF 0.96 0.51 2.81 0.96 0.57 3.42 0.87 0.67 −4.94
GPR 0.96 0.46 2.59 0.97 0.51 3.23 0.91 0.60 4.59
DBN 0.95 0.57 −10.97 0.95 0.68 11.86 0.88 0.73 12.76
BLR 0.94 0.62 12.45 0.95 0.70 −13.44 0.87 0.78 13.86
P-T 0.97 0.44 2.24 0.96 0.66 −11.03 0.87 0.89 −20.13

P-M-EnKF 0.98 0.36 −1.68 0.97 0.54 3.37 0.86 0.80 −14.73
P-M-SCE_UA 0.98 0.39 1.87 0.96 0.60 −4.39 0.90 0.82 −15.17

It can be found that compared with other data-driven methods, the GPR and RF
methods have a better performance over moderately and highly heterogeneous underlying
surfaces. For the GPR method, this can be mainly attributed to the advantage of the GPR
model over other models; this advantage lies in its clear probability formula, which pro-
vides probabilistic predictions and can also deduce model parameters, such as parameters
that adjust the shape or noise level of the kernel. First, compared to the additive model,
the GPR method contains a more flexible nonadditive covariance function. Second, with
the support of the kernel trick, infinite basis function expansion can be used. In addition,
GPR can perform Bayesian inference in another dimension of space, namely, the latent
function space [69]. Additionally, the RF method performs relatively well. This is mainly
because, as an integrated learning method, the RF contains a lot of regression trees, which
can determine complex relationships presented in the data and use the adaptive nature
of decision rules to explain the nonlinear relationship between predictors and response
variables. In addition, the RF uses bagging technology to introduce randomness to the
regression tree and averages a large number of unrelated individual trees to decrease the
generalization error. On the one hand, these factors can minimize the risk of the model fit,
with greater stability. On the other hand, these factors also make the model fit more robust
in the face of slight changes in the input data [70]. In addition, data-driven methods (e.g.,
GPR) calculate the global (whole area) characteristics in the application; i.e., they consider
the features of the overall pixel extraction in the area, and they can also better capture the
LSHCs because they break the land surface into very fragmented structures for learning
and training. Therefore, even with an increase in the heterogeneity, although the accuracy
of data-driven methods also decreases, their accuracy is still slightly better than that of
mechanism-driven methods (e.g., P-M-EnKF, P-M-SCE_UA methods). In other words,
with the increase in surface heterogeneity, the two data-driven methods (GPR and RF)
have more obvious advantages than the mechanism-driven methods. The DBN method is
relatively poor in performance. Although DBN is a deep learning method, its capability
is higher for complicated functions when there is a large amount of data available for the
model training. Therefore, for small data volumes, DBN does not perform as well as other
algorithms, even simple algorithms [68].

To compare the accuracy of the five data-driven methods, we evaluated these models
with repeated ten-fold cross-validation (ten repeats) using the EC observation data in
three superstations. The workflow partitions the original sample into ten disjoint subsets,
uses nine of those subsets in the training process, and then makes predictions about the
remaining subset (Figure 6). Over the homogeneous underlying surface, the R (RMSE)
values were 0.96, 0.95, 0.95, 0.96, and 0.97 (0.49, 0.55, 0.51, 0.45, and 0.47 mm/d) for the
ANN, BLR, DBN, GPR, and RF models, respectively. Over the moderately heterogeneous
underlying surface, the R (RMSE) values were 0.94, 0.92, 0.93, 0.95, and 0.94 (0.54, 0.60,
0.56, 0.49, and 0.52 mm/d) for the ANN, BLR, DBN, GPR, and RF models, respectively.
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Over the highly heterogeneous underlying surface, the R (RMSE) values were 0.94, 0.94,
0.94, 0.95, and 0.95 (0.63, 0.68, 0.65, 0.57, and 0.60 mm/d) for the ANN, BLR, DBN, GPR,
and RF models, respectively. Overall, the performance of the GRP method is the best
in the five methods, followed by the RF method, which is consistent with the results in
Figure 5 and Table 2.
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To quantify the effects of the observed LAS, input variables (LST, Rn, and NDVI),
and the heterogeneity of LSHCs (NDVI and the heterogeneity of LSHCs are expressed
by CVLAI) on the upscaled ET obtained using eight methods at three superstations, an
analysis of the residual errors (upscaled ET—LAS observed ET) was performed (Figure 7).
The residual error was distributed over the entire range, and there was a relatively large
error in the observed ET between approximately 2 and 4 mm/d, except for in the BLR and
DBN methods. The residual errors of P-M-EnKF and P-M-SCE_UA were smaller than those
of the other methods over homogeneous underlying surfaces. The retrieval accuracy of Rn
and LST was obtained by comparing these with ground observation values. In addition,
when the retrieval accuracy of Rn and LST was relatively high (Rn < 13 W/m2, LST < 1.8 K),
the effect of the retrieval error on the results was not significant. When the retrieval errors
of Rn and LST were greater than 13 W/m2 and 1.8 K, respectively, the retrieval errors had
an obvious influence on the results; in other words, the errors in the upscaled ET increased
with increased retrieval errors. In addition, overall, the impact of the Rn retrieval error
was slightly greater than that of the LST inversion error. This finding may result from
the fact that Rn is more sensitive than the LST to changes in ET; this can also be seen in
the sensitivity analysis shown in Figure 4. As described in Section 4.1, CVLAI can reflect
the degree of heterogeneity of the LSHCs. Figure 7 shows that with an increasing CVLAI ,
the degree of heterogeneity increases. The upscaled ET’s error appeared to have a slight
increase, and especially when the CVLAI was greater than 0.4, the error of the upscaled
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results became more obvious with an increasing degree of heterogeneity. This result is also
consistent with the results of [18,19]. Therefore, for the upscaling methods, in addition to
the significant influence of the input variables on the upscaled results, the influence of the
heterogeneity of the LSHCs on the upscaled results should not be ignored.
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4.3.2. Cross-Validation with the Three-Cornered Hat Method

A cross-validation method, the three-cornered hat (TCH) method, was used for an
intercomparison of the different upscaling methods at three superstations in the period
from 2012 to 2016 (Figure 8). In Figure 8, the magnitude of the relative error (square root of
variance divided by average) varies depending on the spatial heterogeneity of the LSHCs.
As shown in Figure 8, on the whole, the relative error over homogeneous underlying
surfaces was smaller than that over moderately heterogeneous underlying surfaces, and
the relative error over highly heterogeneous underlying surfaces was the largest. Over
homogeneous underlying surfaces, ET_EC represents the ground truth ET at the satellite
pixel scale with the smallest relative error, 4.74%, which was immediately followed by
those of the P-M-EnKF and P-M-SCE_UA mechanism-driven methods and then followed
by the GPR, RF, ANN, and DBN data-driven methods with relative errors of approximately
7–9%. In addition, the BLR method had a relative error greater than 11%. Over moderately
heterogeneous underlying surfaces, the GPR data-driven method had the smallest relative
error, 11.07%, which was followed by those of the P-M-EnKF and RF methods, with relative
errors of 12.57% and 14.15%, respectively, and then followed by P-M-SCE_UA, ANN, P-T,
and DBN, with relative errors of approximately 15–20%. Similarly, the BLR method had a
relative error of 21.10%. Over highly heterogeneous underlying surfaces, the GPR and RF
data-driven methods performed well, with the slight relative error of 14.89% and 17.24%,
which was followed by the ANN methods, and the P-T method performed relatively poorly
compared to the others, with a relatively large relative error of 34.66%.

Remote Sens. 2021, 13, x FOR PEER REVIEW 20 of 40 
 

 

4.3.2. Cross-Validation with the Three-Cornered Hat Method 
A cross-validation method, the three-cornered hat (TCH) method, was used for an 

intercomparison of the different upscaling methods at three superstations in the period 
from 2012 to 2016 (Figure 8). In Figure 8, the magnitude of the relative error (square root 
of variance divided by average) varies depending on the spatial heterogeneity of the 
LSHCs. As shown in Figure 8, on the whole, the relative error over homogeneous under-
lying surfaces was smaller than that over moderately heterogeneous underlying surfaces, 
and the relative error over highly heterogeneous underlying surfaces was the largest. 
Over homogeneous underlying surfaces, ET_EC represents the ground truth ET at the 
satellite pixel scale with the smallest relative error, 4.74%, which was immediately fol-
lowed by those of the P-M-EnKF and P-M-SCE_UA mechanism-driven methods and then 
followed by the GPR, RF, ANN, and DBN data-driven methods with relative errors of 
approximately 7–9%. In addition, the BLR method had a relative error greater than 11%. 
Over moderately heterogeneous underlying surfaces, the GPR data-driven method had 
the smallest relative error, 11.07%, which was followed by those of the P-M-EnKF and RF 
methods, with relative errors of 12.57% and 14.15%, respectively, and then followed by P-
M-SCE_UA, ANN, P-T, and DBN, with relative errors of approximately 15–20%. Simi-
larly, the BLR method had a relative error of 21.10%. Over highly heterogeneous under-
lying surfaces, the GPR and RF data-driven methods performed well, with the slight rel-
ative error of 14.89% and 17.24%, which was followed by the ANN methods, and the P-T 
method performed relatively poorly compared to the others, with a relatively large rela-
tive error of 34.66%.  

 
Figure 8. Intercomparison of eight upscaling methods and ET_EC based on the TCH method. 

Before conducting further analysis of the results of the TCH method, a comparison 
was made between the relative error from the TCH method and RMSE results obtained 
by direct validation (compared with the LAS measurements) (Figure 9). As can be seen 
from Figure 9, the results of the TCH method for ET_EC and different upscaling methods 
were consistent with the results obtained when taking the LAS measurements as the ref-
erences. In addition, the results also corresponded to the spatial heterogeneity discussed 

Figure 8. Intercomparison of eight upscaling methods and ET_EC based on the TCH method.

Before conducting further analysis of the results of the TCH method, a comparison
was made between the relative error from the TCH method and RMSE results obtained by
direct validation (compared with the LAS measurements) (Figure 9). As can be seen from
Figure 9, the results of the TCH method for ET_EC and different upscaling methods were
consistent with the results obtained when taking the LAS measurements as the references.
In addition, the results also corresponded to the spatial heterogeneity discussed in Section
4.1; in other words, overall, when the heterogeneity was small, the relative error was
also small, and when the direct validation errors in the upscaling methods were large
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(small), the relative errors in the cross-validation were also large (small). Therefore, this
also indicated that both the direct validation (compared with the LAS measurements)
and cross-validation (with the TCH method) can optimize the upscaling method more
comprehensively and can further explain the reliability of the preferred upscaling method.
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Figure 9. Comparison of relative error derived from the TCH method and RMSE derived from the
comparison among LAS measurements, ET_EC, and eight upscaling methods over homogeneous,
moderately heterogeneous, and highly heterogeneous underlying surfaces. The r, p, and red shaded
area represent correlation coefficient, confidence level, and 95% confidence interval, respectively.

To further analyze the characteristics of the relative errors in upscaled ET from the
perspective of their spatial distributions (Figure 10), at the Arou superstation (homogeneous
underlying surface), the underlying surface (subalpine meadow) in the area was relatively
single and uniform, and the relative error distributions of the various upscaling methods
were also relatively uniform (Figure 10a). Additionally, the relative error of the P-M-EnKF
method was the smallest, while the relative error of the BLR method was the largest over
the underlying surface of the subalpine meadow. The possible reason is that the factors α
and β in P-M-EnKF had good representativeness over the homogeneous underlying surface.
At the Daman superstation, the relative error difference between the GPR method and the
P-M-EnKF method was small over the cropland underlying surface, while in the relatively
fragmented underlying surface of villages (i.e., ellipse areas in Figure 10b), the relative
error of the P-M-EnKF method was significantly greater than that of the GPR method.
The possible reason is that on the one hand, the GPR method considered the regional
distribution characteristics, to a certain extent, thus reducing the error of the area, and on
the other hand, EC was installed on the cropland underlying surface, while in the village
area, the representativeness of the factors α and β in P-M-EnKF were significantly affected,
increasing the relative error of the method in this area. At the Sidaoqiao superstation, the
underlying surface was cracked, and its relative error distribution was also relatively messy.
Thus, the distribution of the relative error had a good relationship with the distribution
of the underlying surface types. The relative errors of various upscaling methods on the
Tamarix underlying surface were smaller than those on the other underlying surfaces, and
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the relative error of each method was larger on the bare land underlying surface (i.e.,
rectangular regions in Figure 10c) than on other surfaces. This is because these upscaling
methods were mainly based on flux observation stations, which represent small areas and
covered single surface types, and the upscaling method applied based on the observed data
over this underlying surface had better applicability, while the prediction effects for other
surface types were naturally worse. This was also consistent with the previous analysis
result, further demonstrating the importance of heterogeneity in influencing the accuracy
of upscaled results.
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Figure 10. Distribution of relative errors derived from the TCH method with a 30 m resolution
at three superstations. (a–c) represent homogeneous underlying surfaces in the upstream region
(Arou), moderately heterogeneous underlying surfaces in the midstream region (Daman), and highly
heterogeneous underlying surfaces in the downstream region (Sidaoqiao), respectively. The ellipse
areas in Figure 10b represent village areas, and the rectangular regions in Figure 10c represent bare
land areas.

Combining the results in this paper with the research in the literature [18,19,24,25,36,37],
it can be seen that if the pixel where the site is located is homogeneous, the ET observed
value can be used as the ground truth ET at the pixel scale. If the pixel where the site is
located is heterogeneous, it is required to obtain the ground truth ET at the pixel scale
by using the upscaling method that takes the LSHCs into account. Over moderately
heterogeneous surfaces, the data-driven methods, such as GPR and RF, and the mechanism-
driven methods, such as P-M-EnKF and P-M-SCE_UA, can be used to obtain the ground
truth ET at the pixel scale. Over highly heterogeneous surfaces, data-driven methods such
as GPR and RF can be used to obtain the ground truth ET at the pixel scale.

4.4. Acquisition of ET at the Pixel Scale over the Main Surface Types in the HRB

Based on the analysis results in this paper, the comprehensive method for obtaining
daily ground truth ET data at the satellite pixel scale over typical underlying surfaces in
the HRB is as follows: for homogeneous underlying surfaces, the daily ground truth ET
data at the satellite pixel scale were obtained by the ET_EC; for moderately and highly
heterogeneous underlying surfaces, the daily ground truth ET data at the satellite pixel
scale were obtained using the GPR data-driven methods. Figure 11 shows the daily ground
truth ET data at three superstations, and we used the bar to represent the maximum and
minimum of the ground truth ET. It can be found that the ET value and variation trend
are relatively consistent with those of the LAS observations, while, with an increase in the
surface heterogeneity, the consistency slightly decreases from the Arou to the Daman to
the Sidaoqiao superstations. From the precipitation data of the three superstations shown
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in Figure 11, the annual precipitation varies greatly in the HRB, and the precipitation
totals from the upstream to the midstream to the downstream region are approximately
400–500 mm, 100–160 mm, and 30–40 mm, respectively. The water sources of ET differ
among the three superstations. The Arou superstation is located in the runoff generation
area, and abundant precipitation provides the main water source for ET. The Daman and
Sidaoqiao superstations are located in water consumption areas; irrigation and ground-
water recharge provide the main water source for ET, respectively. For example, during
the irrigation period, there was a significant increase in ET. At the Sidaoqiao superstation,
changes in the groundwater table were also related to changes in ET. The groundwater table
dropped from 1 m at the beginning of the vegetation growth period to 3 m at the end of the
vegetation growth period. In general, the annual average ET at the Daman superstation
was higher than those of the Arou and Sidaoqiao superstations. There was no significant
difference in the seasonal changes in ET among the three superstations, with high values
appearing in summer (July or August) and low values appearing in winter. There was no
significant variation in the interannual variation in ET at the Arou superstation. In addition,
the ET at the Daman superstation showed a slight decline in 2016, which may be due to
the changes in the irrigation method that occurred in this area from flooding irrigation to
drip irrigation [46]. Moreover, the ET at the Sidaoqiao superstation rose slightly during
2015–2016, which could have something to do with the rising groundwater table.
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Figure 11. Daily ground truth ET at the satellite pixel scale (2 × 1 MODIS pixel) at the Arou
(a), Daman (b), and Sidaoqiao (c) superstations (the error bar indicates the maximum and minimum
value in the ground truth ET at the satellite pixel scale; the gray shadows represent irrigation periods).
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Based on the above methods, we calculated the ground truth ET at the satellite pixel
scale over twelve typical underlying surfaces in the HRB (Figure 12). In Figure 12a, on the
one hand, it can be found that the trend of the ground truth ET at the satellite pixel scale
can be captured well over time at every surface type, and the seasonal and interannual
variations of ET among all surface types are generally consistent. The high values of ground
truth ET appear in summer, and lower values appear in winter. On the other hand, due
to the different types of underlying surfaces, the variation ranges in the ground truth ET
were also different among the stations. For example, at the DSL station with a marsh alpine
meadow, the lowest and highest ET values were 0.14 mm/d and 5.50 mm/d, respectively.
At the LZ and YK stations with maize, the lowest and highest ET values were 0.07 mm/d
and 9.23 mm/d, respectively. At the HHL station with Populus euphratica and Tamarix, the
lowest and highest ET values were 0.03 mm/d and 6.49 mm/d, respectively. As shown in
Figure 12b, overall, the seasonal variation in ET over different underlying surface types
is generally consistent, showing a single peak distribution trend that first increased and
then decreased. The larger ET values were mainly concentrated from May to September,
with the smallest ET in January and December and the largest ET in July. After April, the
ET values over different underlying surfaces began to rise rapidly, among which the ET
values over the maize underlying surface rose the fastest and reached a maximum in July;
then, they began to decline, with no significant change from November to February of the
following year. The ET over the wetland underlying surface was higher than those of the
other underlying surfaces almost every month. The seasonal variation range in the maize
underlying surface was larger than those of the other surfaces, while that of the Reaumuria
desert underlying surface was the smallest. From May to September, there were significant
differences in ET among different underlying surface types due to large differences in
plant transpiration and soil evaporation during the growing period, but no significant
differences were observed from October of a given year to March of the following year. This
mainly results from the fact that from May to September is the growing season for various
types of vegetation, with relatively high temperature, sufficient sunshine, and abundant
rain, all of which provide sufficient conditions for ET, especially plant transpiration; thus,
ET increased and the difference was significant; after September, the plants withered,
precipitation decreased, the conditions changed and were not conducive to ET, and the
difference decreased. Figure 12c shows that the multiyear average ET values were closely
related to the underlying surface types, and there were great differences observed among
different underlying surface types. Among them, the multiyear average daily ET was the
largest over the wetland underlying surface (3.41 mm/d); this value greatly exceeded those
of the other underlying surface types, which was followed by the maize underlying surface
(2.56 mm/d), and the smallest ET was found over the Reaumuria desert underlying surface
(0.21 mm/d).
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In addition to accuracy validation of the ET at the satellite pixel scale, it is also impor-
tant to quantify the uncertainty of the upscaled ET for the validation of remotely sensed
ET products. To characterize the uncertainty of the ground truth ET at the satellite pixel
scale, the method of Beyrich et al. [23] was used to quantitatively evaluate the ground
truth ET derived from ET_EC over a homogeneous underlying surface, and the gPC
method was used to quantitatively evaluate the ground truth ET derived from the upscal-
ing method over moderately and highly heterogeneous underlying surfaces (Figure 13).
Violin plots are an effective method for reflecting data dispersion. Figure 13 shows the
uncertainty of the ground truth ET at three superstations and twelve ordinary stations
with typical surface types. For the three superstations, the uncertainties ranged from 0.10
to 0.14 mm/d, 0.19 to 0.36 mm/d, and 0.31 to 0.49 mm/d, and the average uncertainties
were 0.11 mm/d, 0.24 mm/d, and 0.39 mm/d, respectively. From the Arou to Daman
to Sidaoqiao superstation, it can be found that the uncertainty of the ground truth ET
gradually increased, which is the same trend as that seen in the comparison with the LAS
observations and the intercomparison with the TCH method among the relative errors
in Section 4.3. The relative accuracy (RA) (see Appendix D) at the Arou, Daman, and
Sidaoqiao superstations were 93.23%, 89.23 %, and 82.18%, respectively. For the ordinary
stations, the Populus euphratica and Tamarix underlying surface at the HHL station had
the largest uncertainty (approximately 0.41 mm/d), and the Reaumuria desert underlying
surface at the Desert station had the smallest uncertainty (approximately 0.02 mm/d). In
addition, the uncertainty distribution of the marsh alpine meadow underlying surface at
the DSL station was relatively scattered, while the uncertainty distribution of the Qinghai
spruce underlying surface at the GT station was relatively concentrated. Combined with
the analysis in Figure 13, generally speaking, it can be found that with an increase in the
heterogeneity of the surface, the uncertainty of the ground truth ET also increases. The
average uncertainties of the ground truth ET at stations with homogeneous surfaces, such
as the Arou, BJT, Desert, and HZZ stations, were 0.11 mm/d, 0.04 mm/d, 0.02 mm/d, and
0.06 mm/d, respectively, and the RA was 93.23%, 92.57%, 90.57%, and 92.62%, respectively.
At moderately heterogeneous surface stations, such as the Wetland station, the average
uncertainty was 0.32 mm/d, and the RA was 90.58%. At the stations with highly hetero-
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geneous surfaces, such as the HHL, P.E and Sidaoqiao stations, the average uncertainty
was 0.41 mm/d, 0.38 mm/d, and 0.39 mm/d, and the RA was 81.12%, 82.18%, and 81.25%.
This may be related to the heterogeneity of the underlying surface. Heterogeneity has a
significant effect on the ground observation ET and the accuracy of input variables retrieval
by remote sensing data. In addition, heterogeneity will also make the atmospheric forcing
data more uncertain and reduce the applicability of parameters in the model. Therefore,
an increase in heterogeneity may contribute to greater uncertainties in the ground truth
ET at the satellite pixel scale. Based on the above analysis, it can be concluded that the
accuracy of the daily ground truth ET at the satellite pixel scale obtained in this paper was
relatively reliable and therefore could meet the requirements of validating the remotely
sensed ET products.
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5. Conclusions

The validation of remotely sensed ET products is challenging due to the spatial-scale
mismatch issue between site observations and remote sensing pixels over heterogeneous
underlying surfaces. Therefore, in response to this challenge, this paper proposes a compre-
hensive framework for obtaining ground truth ET at the satellite pixel scale to resolve the
spatial-scale mismatch issue. Based on the dataset from the Heihe integrated observatory
network and high-resolution satellite remote sensing data in the HRB, eight upscaling
methods were compared and combined with ET_EC. Then, the ground truth ET at the
satellite pixel scale over fifteen typical underlying surfaces in the HRB was obtained by an
integrated method, and the uncertainty of the ground truth ET was analyzed.

A comparison with LAS measurements showed that over homogeneous underlying
surfaces, the ET_EC was slightly superior with an RMSE of 0.34 mm/d, which was followed
by the P-M-EnKF method. Over moderately heterogeneous underlying surfaces, the GPR
data-driven method and P-M-EnKF mechanism-driven method performed slightly better
than the other methods, with small RMSEs of 0.51 mm/d and 0.54 mm/d, respectively.
Over highly heterogeneous underlying surfaces, the GPR and RF data-driven methods
performed slightly better than the other methods, with small RMSEs of 0.60 mm/d and
0.67 mm/d, respectively. The results of the cross-validation were consistent with the results
of comparison with LAS measurements and showed that the relative error increased with
an increase in the heterogeneity of the underlying surface. In addition, the results also
indicated the retrieval accuracies of LST and Rn, and the heterogeneity of the underlying
surface was the predominant influencing factor for all of the upscaling methods.
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The ground truth ET at the satellite pixel scale was obtained by the proposed integrated
method (namely, using the ET_EC for homogeneous underlying surfaces and the GPR
method for moderately and highly heterogeneous underlying surfaces) over fifteen typical
underlying surfaces, and the results showed that the ground truth ET at the satellite pixel
scale had good accuracy and could capture the variation trend in the ET data over time
well; this also indicated the universality of the framework proposed in this paper to a
certain extent. The ground truth ET at the wetland underlying surface (Wetland station)
had the largest value, and the multiyear average daily value is 3.41 mm/d. Meanwhile,
that of the Reaumuria desert (Desert station) had the smallest value, and the average daily
value is 0.21 mm/d. The ground truth ET for maize (YK station) had a large variation
range, from 0.07 to 9.23 mm/d, while that at the Reaumuria desert (Desert station) had
a small variation range, from 0.01 to 3.46 mm/d. The uncertainties in the ground truth
ET at the satellite pixel scale were calculated, and the results showed that the Populus
euphratica and Tamarix underlying surface at the HHL station had the largest uncertainty
(approximately 0.41 mm/d), and the Reaumuria desert underlying surface at the Desert
station had the smallest uncertainty (approximately 0.02 mm/d). In addition, with an
increase in the heterogeneity of the underlying surface, the uncertainty of the ground
truth ET obtained by the upscaling method also increased from 0.02 to 0.41 mm/d. In
addition, on the whole, the RA of the ground truth ET at the satellite pixel scale over the
homogeneous underlying surface was relatively larger, about 90–93%, and it was relatively
smaller over the moderately and highly heterogeneous underlying surfaces, about 81–92%,
which is relatively reliable.

The above results demonstrated that the framework of acquiring the ground truth ET
at the satellite pixel scale (Figure 2) is necessary, reasonable, and effective. In this paper,
based on the results of this study and previous research results, an integrated method was
proposed; that is, over the homogeneous underlying surface, the ET_EC can be used to
obtain the ground truth ET. Over the heterogeneous underlying surfaces, the ground truth
ET should be obtained by upscaling methods. Specifically, over moderately heterogeneous
surfaces, the data-driven methods and the mechanism-driven methods can be used to
obtain the ground truth ET at the pixel scale; over highly heterogeneous surfaces, data-
driven methods can be used to obtain the ground truth ET at the pixel scale. In the future,
the framework of acquiring the ground truth ET at the satellite pixel scale needs to be
further validated in other climates and other land surface type regions.
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Appendix A

Appendix A shows the details of the eight upscaling methods used in this study.
Artificial neural network (ANN) method:

http://data.tpdc.ac.cn/en/
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Artificial neural network (ANN) is a type of algorithm model that imitates the behav-
ioral characteristics of the human brain or biological neural networks and performs dis-
tributed parallel information processing. Among them, the backpropagation (BP) artificial
neural network is a multilayer feedforward network trained by an error backpropagation
algorithm and is a popular neural network model. The neural network topology includes
the input layer, hidden layer, and output layer [67]. The neurons between the layers are
connected, and the connection between every two neurons can be called a weight, here
representing the strength of the connection between the auxiliary variable and ET. Through
the weight adjustment process of the forward propagation of signals and backward propa-
gation of errors, the weights are continuously adjusted until the output error of the network
is reduced to an acceptable range. In this paper, the input layer includes three neurons,
namely, Rn, LST, and NDVI; there are three hidden layers in the network, each layer con-
tains 10 neurons, and the ReLU activation function is used; and the output layer includes
only one neuron, namely, ET, which is obtained using a linear activation function.

Bayesian linear regression (BLR) method:
Bayesian linear regression (BLR) is mainly used in the maximum likelihood estimation

process, and it is difficult to estimate the complexity of some models. A regression model
can be approximated as the addition of the prior distribution of the model parameters
based on ordinary linear regression so that the model becomes the maximum a posteriori
estimation obtained from the maximum likelihood estimation. The Bayesian linear regres-
sion method introduces the prior distribution of the parametersω and σ2. The conjugate
prior distribution of the parameter ω is the normal distribution p(ω) ∼ N (µ, S0) with
mean µ and variance S0. Knowing the model y = Xω+ ε, the posterior distribution of the
parameters is as follows:

p(ω|y) ∝ p(y |ω )p(ω). (A1)

Since the prior distribution and the posterior distribution of the parameters are conju-
gated and the prior distribution obeys a normal distribution, the posterior distribution also
obeys the normal distribution. The specific form is as follows:

p(ω|y) ∼ N (µn, Sn) (A2)

whereµ is the mean of the posterior distribution and S is the variance of the posterior distribution.

S−1
n = S−1

0 + βXTX (A3)

µn = S
(

S−1
0 µ0 + βXTy

)
(A4)

For the convenience of calculation, the prior distribution of the parameterω is defined
as an isotropic normal distribution of a function with a mean of 0 and a variance of α. The
mean and variance are as follows: S0 =

(
1
α

)
I, µ0 = 0. Substituting these values into the

mean and variance values of the posterior distribution yields the following equations:

µn = βSnXTy (A5)

Sn = αI + βXTX. (A6)

The optimal solution of the parameter is the mean µn of the posterior distribution.
The required mathematical expression can be used to obtain the required µn. The values
of α and β must be obtained first. The values of α and β are iteratively obtained by the
Markov chain Monte Carlo algorithm.

More details of BLR can be found in [71].
Deep belief network (DBN) method:
The deep belief network (DBN) was originally proposed by [68]. Its essence is to learn

more essential features by building a neural network learning model, which has some
hidden layers and a large amount of training data, thereby improving the accuracy of
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the network. From a structural point of view, a DBN is composed of several layers of an
unsupervised restricted Boltzmann machine (RBM) network and a layer of a supervised
BP network. The learning process of DBN can be divided into two stages: pretraining and
fine tuning [68]. In the pretraining stage, the RBM output of the lower layer is used as
the RBM input of the upper layer to complete the unsupervised training of the RBM layer
by layer. In the fine-tuning phase, the error between the actual output and the expected
output is back-propagated, and the top-level BP network is trained using supervised
learning to tune the model parameters initialized in the pretraining phase. Therefore, the
pretraining process of RBM can be considered as the initialization of the weight parameters
of a deep BP network, which allows the DBN to overcome the shortcomings that the BP
network is prone to fall into involving the local optimization and training time due to the
random initialization of the weight parameters. More details regarding the DBN can be
found in [68].

Gaussian process regression (GPR) method:
Gaussian process regression (GPR) is used to combine data, the sampling and non-

sampling variance in the data, and other information in terms of model parameters into a
single final set of estimates. It is based on the Bayesian framework, and it is efficient for
hyperparameter optimizations; namely, GPR is a nonparametric kernel-based probabilistic
model [69]. The Gaussian process (GP) can be defined as a distribution over function f ,
where f is a mapping function, which can map the input space X to R. The GP consists
of its mean function m(x) and covariance function Kij = k

(
xi, xj

)
such that the following

condition is satisfied:
f (x) ∼ GP

(
m(x), k

(
xi, xj

))
(A7)

where rows of the design matrix X are input vectors, f is a vector of the function values,
and K(X, X) indicates the n-by-n matrix of covariance such that Kij = k

(
xi, xj

)
.

In GPR, a GP was introduced prior to the target function value. The relationship
between the function f (x) and the observed y with Gaussian noise ε is specified as follows:

y = f (x) + ε, ε ∼ N
(

0, σ2
n

)
. (A8)

The joint distribution of y and f∗ with a zero-mean function is as follows:[
y
f∗

]
∼ N

(
0,
[

K(X, X) + σ2
nI K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
(A9)

where X and X∗ denote design matrices for the training data and test data; y and f∗ are the
training and test outputs; Conditioning f∗ on the observed y, the predictive distribution
can be calculated as follows:

f∗|X, y, X∗ ∼ N
(
f∗, V(f∗)

)
(A10)

where f∗ = K(X∗, X)
[
K(X, X) + σ2

nI
]−1

y (A11)

V(f∗) = K(X∗, X∗)− K(X∗, X)
[
K(X, X) + σ2

nI
]−1

K(X∗, X). (A12)

The prior mean was assumed to be zero (in the normalized data), and the kernel
function used was the squared exponential, as follows:

k
(

x, x′
)
= σ2

f exp

(
−|x− x′|2

2l2

)
(A13)

where x and x′ are two input points and the parameters σ2
f and l are the variance and

characteristic length scale, respectively. Thus, the unknown parameters (i.e., σ2
f , l, and σ2

n)
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can be solved through the maximum a posteriori estimation (MAP) method. The marginal
likelihood can be represented by the following expression:

p(y|X) =
∫

p(y|f, X )p(f|X)df. (A14)

Given the likelihood y|f ∼ N
(
f, σ2

nI
)

and the prior GP over the function f, this integral
can be analytically solved, which is caused by the log marginal likelihood as follows:

log p(y|X, θ ) = −1
2

yT
(

K(X, X) + σ2
nI
)−1

y− 1
2

log
∣∣∣K(X, X) + σ2

nI
∣∣∣− n

2
log2π (A15)

where θ is the unknown parameter, and the optimal solution can be estimated using a
gradient descent algorithm. More details regarding GPR can be found in [69].

The integrated Priestley–Taylor equation (P-T) method:
The potential ET can be determined by the following Priestley–Taylor equation [81]:

LEP−T = α
∆

∆ + γ
(Rn − G0) (A16)

where LEP−T is the LE for saturated surfaces; α is the Priestley–Taylor parameter; ∆ is the slope
of the saturation vapor pressure to the air temperature; and γ is the psychrometer constant.

In this paper, the P-T method can be divided into three steps. First, the α was computed
through the Priestley–Taylor equation using the observation data obtained at a given station.
Second, the equation between α and the difference between the land surface temperature
and air temperature (Ts-Ta) was built, and it was assumed that this equation was suitable
for the relatively small area (1 × 1 or 2 × 1 MODIS pixel area). Third, the ET at the
corresponding pixel was computed by the Priestley–Taylor equation combined with the
Ts-Ta derived from the satellite data and atmospheric forcing data. More details can be
found in [18,19].

Random forest (RF) method:
The basic classification unit of the random forest algorithm is the decision tree. The

essence of the method is a classifier that contains many decision trees, and its output
category is determined by the mode of the output category of the decision tree. The
algorithm requires few mediation parameters and has high computational efficiency and
the ability to process high-dimensional (multi-feature variables) data. The training speed
is fast without overfitting. The random forest algorithm has good robustness to feature
selection and high accuracy without feature screening; thus, it is suitable for an ultrahigh-
dimensional eigenvector space. At the same time, the random forest algorithm has high
tolerances for outliers and noise and has good data generalization and generalization
ability. More details can be found in [70].

The Penman–Monteith equation combined with shuffled complex evolution method
developed at the University of Arizona (P-M-SCE_UA) method:

The Penman model combines the energy balance term with the principle of mass
transfer and proposes a formula for calculating the evapotranspiration of saturated under-
lying surfaces (such as open water surfaces and wet grasslands). Then, considering the
Penman formula, Monteith [64] introduced the surface impedance to calculate the actual
evapotranspiration. The P-M equation is defined as follows:

λE =
εA +

(
ρaCp/γ

)
DaGa

ε + 1 + Ga/Gs
(A17)

where E is the actual evapotranspiration; λ is the latent heat of vaporization; ε = ∆
γ is

the slope of the relationship between the saturated water vapor pressure and the tem-
perature; ρa is the air density; Cp is the specific heat of air at a constant pressure; γ is
the psychometric constant; Da is the saturated water vapor pressure difference at the
reference height (es − ea; es and ea are the saturation and actual vapor pressures); and A
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is the available energy, where A = Rn − G0; Ga and Gs are the aerodynamic and surface
conductances, respectively.

According to [65], the formula for calculating surface evapotranspiration is defined
as follows:

λE =
εAc +

(
ρaCp/γ

)
DaGa

ε + 1 + Ga/Gc
+

f εAs

ε + 1
(A18)

where Ac and As are the energy absorbed by the canopy and soil, and Ac
A = 1− τ, As

A = τ,
τ = exp(−kA), and τ is the transmittance of the canopy; kA is the attenuation coefficient of
the available radiation; Gc is the canopy conductivity; and f is the soil evapotranspiration
coefficient. The degree of soil moisture can be determined by model calibration.

The parameterization scheme of the canopy conductance Gc was calculated based
on the maximum stomatal conductance gsx above the canopy and the LAI, which was
proposed by [65] as follows:

Gc =
gsx

kQ
ln
[

Qh + Q50

Qh exp(−kALAI) + Q50

][
1

1 + Da
D50

]
(A19)

where kQ, kA are the attenuation coefficients of the shortwave radiation and available
radiation, Qh is the visible radiation flux above the canopy (Qh= 0.8 A), and Q50 and D50
are the visible radiation flux and water vapor pressure difference, respectively, when the
maximum stomatal conductance gsx = gsx/2 (gsx is the maximum value of gs).

The aerodynamic conductance Ga is calculated by the aerodynamic impedance ra. For
ra, the formula is as follows:

ra =
1

k2uz

[
ln
(

Z− d
z0m

)
− ψm

(
Z− d

L

)]
[ln
(

Z− d
z0h

)
− ψh

(
Z− d

L

)
(A20)

where k is the Von Karman constant (0.4); uz is the wind speed at a given altitude; d is the
zero plane displacement, d = 2h/3; h is the vegetation height; L is the Monin–Obukhov
length; and ψh and ψm are the correction functions of the heat transfer and momentum
exchange stability, respectively. Here, z0m and z0h are the dynamic roughness and ther-
modynamic roughness, respectively. According to previous studies, the parameterization
schemes used for the reference are as follows: z0m = 0.13 h and z0h = z0m

exp(kB−1)
. For a bare

underground cushion surface, kB−1 = B(Re∗)0.45, where B = 0.13, Re∗ = u∗Z0m/v is the
Reynolds number for the roughness, u∗ is the frictional wind speed, and v is the coefficient
of viscosity of air. For a vegetation underlying surface, kB−1 = 52

√
Iu∗/LAI− 0.69, and I

is the characteristic height of the canopy, which can be fitted based on the observed data;
and for a mixed underlying surface, kB−1 = kα(8Re∗)0.45Pr0.8, α = 0.52, Pr = 0.7.

There are six parameters, kQ, kA, Q50, D50, gsx, and f , that must be optimized by the
model parameters. Using meteorological data and remote sensing data, evapotranspiration
can be estimated according to the formula shown in A18. In this paper, the six key
parameters of the model are optimized by using the SCE_UA algorithm [66], and the
parameter range is set by referring to the method of [65].

The Penman–Monteith equation combined with Ensemble Kalman Filter (P-M-
EnKF) method:

The Penman–Monteith equation has a solid physical foundation and is currently
recognized as a method for estimating evapotranspiration with strong adaptability, high
calculation accuracy, and reliability. Studies have shown that evapotranspiration predic-
tions are sensitive to the canopy resistance and aerodynamic resistance values and radiation
in the Penman–Monteith formula [82–84]. Therefore, this data assimilation method can
add the adjustment factors α and β before the energy balance term (Rn − G0) and the
vegetation impedance term rs/ra (ra and rs are the aerodynamic resistance and canopy
resistance, respectively) and improve the prediction of the Penman–Monteith formula by
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optimizing these two factors. Therefore, ET can be expressed using the following formula
based on the Penman–Monteith formula:

λE =
∆α(Rn − G0) + ρaCp(es − ea)/ra

∆ + γ
(

1 + β rs
ra

) (A21)

where α and β are adjustment factors used to adjust the energy distribution term and the
vegetation canopy impedance term. The assimilated evapotranspiration observations are
EC data.

We define the model parameter matrix X as follows:

X = (α,β). (A22)

(1) Model initialization
First, the initial values of the model parameters Xa

0 and the background field error
covariance matrix P0 are defined according to prior knowledge. Then, the parameter vector
in the ith set at the initial moment is expressed as follows:

Xa
i,0 = Xa

0 + ui ui ∼ N(0, P0) (A23)

where ui is the noise of the background field, which corresponds to a Gaussian distribution
with a mean of zero and a P0 standard deviation.

(2) State update
As the model continues to integrate forward, the model’s predicted value at k + 1 is

updated to the following state:

ET f
i,k+1 = M

(
Xa

i,k+1, Dk+1

)
+ wi wi ∼ N(0, Q) (A24)

where M(.) is the model operator, namely, the Penman–Monteith formula; the superscripts
‘a’ and ‘f’ refer to the analytical and predicted values of ET, respectively. ET f

i,k+1 is the
predicted value of the ET of the model in the ith collection at time k + 1; and Dk+1 is the
meteorological data and vegetation data variables at time k + 1. Here, wi is the model
error vector, which complies with a Gaussian distribution with a mean of zero and a Q
standard deviation.

(3) Measurement update
In the assimilation algorithm, the observation operator can be defined as follows:

ETi,k+1 = H
(

ET f
i,k+1

)
+ vi vi ∼ N(0, R) (A25)

where H(.) is the observation operator, and the model state variables can be projected
onto the observation variables through the observation operator. In this paper, the model’s
observation operator is the identity matrix. The term ETi,k+1 is the observation value at
time k + 1 in the ith ensemble member. R is the observation error covariance, and vi is the
observation error vector, which complies with the Gaussian distribution with a mean of
zero and an R standard deviation. When new observations are added, the predicted values
in the ensemble member are updated by the following formulas:

ETa
i,k+1 = ET f

i,k+1 + Kk+1

(
ETo

k+1 − H
(

ET f
i,k+1

)
+ vi

)
(A26)

Kk+1 = P f
k+1HT

(
HP f

k+1 + R
)−1

(A27)

P f
k+1 =

1
N − 1

N

∑
i=1

(
ET f

i,k+1 − ET f
k+1

)
·
(

ET f
i,k+1 − ET f

k+1

)T
(A28)
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P f
k+1HT =

1
N − 1

N

∑
i=1

[
ET f

i,k+1 − ET f
k+1

]
·
[

H(ET f
i,k+1)− H

(
ET f

k+1

)]T
(A29)

HP f
k+1HT =

1
N − 1

N

∑
i=1

[
H(ET f

i,k+1)− H
(

ET f
k+1

)]
·
[

H(ET f
i,k+1)− H

(
ET f

k+1

)]T
(A30)

where Kk+1 is the Kalman gain matrix at time k + 1; P f
k+1 is the predicted background error

covariance matrix at time k + 1; ET f
k+1 is the predicted state variable mean of ensemble

members at time k + 1; and ETo
k+1 is the observation value at time k + 1, namely, the EC

observation value. More detailed information about the EnKF method can be found in [63].
In this paper, the ensemble Kalman filter algorithm is used to adjust the two factors

α and β in the assimilation method to optimize the energy balance term and the surface
impedance term. Since the sources of model errors are diverse and change with time and
space, this article mainly determines the average model error by the following formula:

R =

√√√√ 1
N

N

∑
i=1

(Pi −Oi)
2 (A31)

where R is the model error; Pi and Oi are the simulated value and observed value, respec-
tively; and N is the number of samples in the time series.

When new observation data are added, the model continuously uses the observation
data to modify the model prediction. After using the EnKF to determine the two factors α
and β, it is assumed that the two factors are also applicable to the corresponding MODIS
pixel area; then, the meteorological raster data and remote sensing data are input into the
P-M formula, and finally, the ground truth ET at the satellite pixel scale is acquired.

Appendix B

In the TCH method, it is assumed that the products to be evaluated ({Xi}, i = 1, 2, 3, . . . , N.)
can be expressed as the sum of the true values T and εi, as follows.

Xi = T + εi, ∀i = 1, 2, 3, . . . , N (A32)

A reference dataset is randomly selected from the N datasets to be evaluated, and
the remaining N − 1 datasets are subjected to a different operation from that used for the
reference dataset. Assuming that the time series length of these datasets is M, one matrix
of size M× (N − 1) can be obtained to accommodate these difference sequences.

Based on these difference sequences, the corresponding covariance matrix C can
be calculated. An unknown matrix R of size N × N is introduced here to represent the
covariance matrix in the random error sequence matrix of the different datasets. The
diagonal elements of the R matrix are the variance of the random error sequence of the
dataset, in other words, the variable to be sought. To calculate these unknown variables, R
and C are related by the following expression:

C = K·R·KT , K = [I,−U] (A33)

where I is an identity matrix of size (N − 1)× (N − 1), and U is a vector [1 1···1]T of size
(N − 1). Thus far, the number of equations is less than the number of quantities to be
calculated. Based on formula (A33), the target quantity still cannot be calculated. To add
more constraint expressions, the constrained minimization issue using the Kuhn–Tucker
theorem in such a way that the objective function is minimized was introduced to obtain a
set of free parameter solutions.

Combining formula (A33) to calculate other unknown elements in R, the main di-
agonal elements of the R matrix are the error variances that correspond to the surface
evapotranspiration products. We square the result of the error variance and divide the
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result by the average value of each product to obtain the relative error among each product.
More details regarding the TCH method can be found in [72].

Appendix C

We assume a model that can be written as follows: y = f (x), where x = [x1, x2, . . . , xi]
is a model input parameter, and y is the model output. Then, the total variance in y can be
obtained by performing a Fourier analysis:

V(y) = 2
+∞

∑
j=1

(
A2

j + B2
j

)
(A34)

where Aj and Bj are the Fourier coefficients on the integer frequencies, Aj = 1/(2π)
∫ π
−π

∫
(x)

cos(jx)dx and Bj = 1/(2π)
∫ π
−π

∫
(x) sin(jx)dx.

The variance in the unique frequency of parameter xi (and the harmonics of this
frequency qωi) Vi can be estimated as follows.

Vi = 2
+∞

∑
j=1

(
A2

qωi
+ B2

qωi

)
(A35)

We decompose the model sensitivity into a first-order index (representing the individ-
ual impact of each model parameter when considering changes in the model output) and
a total order index (representing the overall impact of each parameter when considering
changes in the model output), including the interactions between this parameter and all of
the other parameters.

Then, the first-order effects index Si and the index of the total effect STi are calculated
as shown in the following equations:

Si =
Vi

V(y)
(A36)

STi = 1− V∼i
V(y)

(A37)

where V∼i is the sum of all of the variance terms except for i.

Appendix D

To evaluate the uncertainty of ET_EC as the ground truth ET at the satellite pixel scale
over a homogeneous underlying surface, the following formula is used to calculate the
uncertainty of the ground truth ET according to the method of Beyrich et al. [23]:

∆ET = max(σr, abs(ET_EC− ETLAS)) (A38)

where ∆ET represents the uncertainty of the ground truth ET, ET_EC represents the ET
observed by EC, ETLAS represents the LAS observed value, and σr represents the er-
ror of the EC observation, which can be calculated according to the EC data processing
software (EddyPro).

For the ground truth ET at the satellite pixel scale obtained by the upscaling method,
the gPC method is used to quantitatively evaluate its uncertainty. The gPC method is de-
scribed in detail below. For the original model Y = f (ξ) with N independent random vari-
ables, according to the polynomial chaos expansion theory, f (ξ) can be expanded with the
orthogonal polynomial chaos corresponding to the input variables in the following form:
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Y = f (ξ) = c0Φ0 +
∞
∑

i1=1
ci1 Φ1

(
ξi1
)
+

∞
∑

i1=1

i1
∑

i2=1
ci1i2 Φ2

(
ξi1 , ξi2

)
+

∞
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1
ci1i2i3 Φ3

(
ξi1 , ξi2 , ξi3

)
+ . . .

=
∞
∑

i=0
ciΦi(ξ)

(A39)

where Φn
(
ξi1 , . . . , ξin

)
represents the n-order polynomial chaos, which is a function of

multidimensional random variables
[
ξi1 , . . . , ξin

]
and ci and Φi(ξ) are the gPC expansion

coefficient and the orthogonal polynomial basis function, respectively, which correspond
to ci1i2 ...ip and Φn

(
ξi1 , . . . , ξin

)
in the formula.

Generalized polynomial chaos is composed of tensor products of univariate orthogo-
nal polynomials that satisfy the following orthogonal relation:

E
[
ΦiΦj

]
= δijE

[
Φi

2
]

(A40)

where δij is the Kronecker operator and E[.] is the mathematical expectation. The selection
of orthogonal polynomial basis functions is related to the distribution of random variables
ξ. When the random variable types are different, different types of Askey orthogonal
polynomials should be selected as the basis functions, such as Gaussian distribution
for Hermite orthogonal polynomials or uniform distribution corresponding to Legendre
orthogonal polynomials. The basic functions corresponding to other typical variable types
are detailed in [74].

The coefficients of the polynomial chaotic expansion can be determined by the orthog-
onal relationship as the following expression:

ci = E[YΦi]/E
[
Φi

2
]

(A41)

When performing actual numerical calculations, it is essential to use a polynomial
chaos of an order no higher than p for the truncated approximation:

Ỹ = ∑p−1
i=0 ciΦi(ξ). (A42)

The polynomial chaos retained by the truncation approximation has a P term, which
can be determined by the following formula:

P =

(
N + p

p

)
=

(N + p)!
N!p!

. (A43)

After the polynomial chaos expansion model is constructed, the coefficients of the
polynomial chaos expansion term are calculated; these coefficients generally include the
stochastic Galerkin method (SGM) for intrusive algorithms and the stochastic collocation
method (SCM) for nonintrusive algorithms. The SCM treats the original model as a
black box and finally obtains the coefficients of the polynomial chaotic expansion term by
repeatedly solving the selected collocation points in the input variable; this method has the
characteristics of a simple principle and fast solving speed. In this paper, the SCM is used
to solve the coefficients of the polynomial chaotic expansion term.

Finally, the mean value and variance of the model can be directly calculated from the
expansion coefficient in the following form:

E
[
Ỹ
]
= c0 (A44)

Var
[
Ỹ
]
= ∑p−1

i=1 ci
2E
[
Φi

2
]
. (A45)
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In addition, to facilitate the evaluation of the accuracy of the ground truth ET, the
relative accuracy (RA) index is defined to evaluate the accuracy of the ground truth ET,
which can be determined by the following formula:

RA = 1−
(

U
ETgt

)
∗ 100% (A46)

where U represents the uncertainty of the ground truth ET obtained by the uncertainty
quantization methods, and ETgt represents the average value of the ground truth ET.
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