
remote sensing  

Article

Hyperspectral Image Super-Resolution Based on Spatial
Correlation-Regularized Unmixing Convolutional
Neural Network

Xiaochen Lu 1 , Dezheng Yang 1 , Junping Zhang 2 and Fengde Jia 1,*

����������
�������

Citation: Lu, X.; Yang, D.; Zhang, J.;

Jia, F. Hyperspectral Image

Super-Resolution Based on Spatial

Correlation-Regularized Unmixing

Convolutional Neural Network.

Remote Sens. 2021, 13, 4074. https://

doi.org/10.3390/rs13204074

Academic Editors: Weijia Li, Lichao

Mou, Angelica I. Aviles-Rivero,

Runmin Dong and Juepeng Zheng

Received: 8 August 2021

Accepted: 7 October 2021

Published: 12 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information Science and Technology, Donghua University, Shanghai 201620, China;
lxchen09@dhu.edu.cn (X.L.); dezheng.yang@mail.dhu.edu.cn (D.Y.)

2 School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China;
zhangjp@hit.edu.cn

* Correspondence: fdjia@dhu.edu.cn; Tel.: +86-0136-9944-1635

Abstract: Super-resolution (SR) technology has emerged as an effective tool for image analysis
and interpretation. However, single hyperspectral (HS) image SR remains challenging, due to the
high spectral dimensionality and lack of available high-resolution information of auxiliary sources.
To fully exploit the spectral and spatial characteristics, in this paper, a novel single HS image SR
approach is proposed based on a spatial correlation-regularized unmixing convolutional neural
network (CNN). The proposed approach takes advantage of a CNN to explore the collaborative
spatial and spectral information of an HS image and infer the high-resolution abundance maps,
thereby reconstructing the anticipated high-resolution HS image via the linear spectral mixture
model. Moreover, a dual-branch architecture network and spatial spread transform function are
employed to characterize the spatial correlation between the high- and low-resolution HS images,
aiming at promoting the fidelity of the super-resolved image. Experiments on three public remote
sensing HS images demonstrate the feasibility and superiority in terms of spectral fidelity, compared
with some state-of-the-art HS image super-resolution methods.

Keywords: convolutional neural network; deep learning; hyperspectral; super-resolution; unmixing

1. Introduction

Hyperspectral (HS) remote sensing images always suffer from the deficiency of low
spatial resolution and mixed pixels, which seriously deteriorate the performance of target
detection and recognition in Earth observation areas. Therefore, the demand for potential
spatial resolution enhancement has generated considerable interest in the area of remote
sensing. Currently, HS image super-resolution (SR) techniques can be divided into two
categories, namely single image super-resolution and image fusion techniques. In practice,
the fusion of an HS image with a higher-resolution panchromatic (PAN) or multispectral
(MS) image is the prevailing technology, which has been extensively studied since the
beginning of this century. This technology is also known as hyper-sharpening in the area
of remote sensing image processing [1]. Thus far, numerous hyper-sharpening approaches
have been investigated that can be roughly summarized into the following categories:
(1) extensions of MS pan-sharpening approaches [2,3], (2) Bayesian-based approaches [4,5],
(3) matrix factorization or tensor-based approaches [6–9], (4) deep learning (DL)-based
approaches [10–13], and (5) others [14–16]. Detailed analyses of HS image fusion techniques
can be found in [17–19].

In general, hyper-sharpening techniques require an auxiliary higher-resolution co-
registered image, which is not always available in practical applications. For this reason,
most current studies utilize synthetic data sets to demonstrate the effectiveness of their
approaches, which means that the higher-resolution PAN or MS image is commonly
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synthesized by band averaging of the HS image. In such situations, only a few studies
have taken account of the effects of different platforms or acquisition conditions [20,21].
Therefore, this is a major obstacle in the hyper-sharpening field.

On the contrary, the single image super-resolution technique [22,23] has the ability to
convert a low-resolution (LR) HS image into a high-resolution (HR) one without supple-
mentary sources, which has also become a fascinating topic in related areas. Single image
SR techniques aim at exploiting the abundant spectral correlations among the spectral
bands of the HS images and predicting the spatial distribution of pixels under higher
resolutions. Perhaps one of the earliest HS SR approaches was the linear deterministic
model of the HS image acquisition process proposed in [24]. Although the reconstruction
process seems to be relatively rough nowadays, it still has great theoretical significance in
the HS SR field. Motivated by this attempt, a number of SR approaches have been proposed
for HS images based on either conventional or, in later years, on deep learning-based tech-
niques. Patel et al. [25] presented a wavelet transform-based SR method, where the novelty
lies in designing an application-specific wavelet basis. Considering the inherent sparse
property of HS images, sparse representation also became a popular approach to model
the SR problem. Li et al. [26] proposed an HS SR framework utilizing spectral mixture
analysis and spatial–spectral group sparsity by simultaneously combining the sparsity
and the nonlocal self-similarity of the images in the spatial and spectral domains, thus
providing excellent spectral consistency performance. Dong et al. [27] proposed an HS SR
method by formulating the estimation of an HS image as a joint estimation of dictionary
and sparse codes based on the prior knowledge of the spatial–spectral sparsity of the HS
image. Furthermore, Irmak et al. [28] proposed a Bayesian super-resolution algorithm
that converts the SR reconstruction problem in the spectral domain to a quadratic opti-
mization problem in the abundance map domain and yields high quality in preserving the
spectral consistency.

During the past five years, with the rapid development of deep learning techniques,
convolutional neural networks (CNNs) have been extensively researched and applied in a
range of image-related works [29]. Naturally, a series of image SR methods based on CNN
have been proposed successively. For instance, the Laplacian Pyramid Super-Resolution
Network (LapSRN) was proposed in [30,31] to predict the sub-band residuals in a coarse-
to-fine fashion. It outperforms a number of state-of-the-art methods in terms of speed and
accuracy. The main deficiency of LapSRN is the increment of network depth regarding
different upsampling scale factors and the limitation of upsampling scales for training.

In particular, for HS images, Hu et al. [32] presented a deep spectral difference CNN
(SDCNN) with the combination of a spatial-error correction model, which automatically
selects and super-resolves the key band, and learns the spectral difference mapping between
LR and HR images. In [33], a 3D full CNN architecture was designed to directly learn
an end-to-end mapping between low-spatial-resolution and high-spatial-resolution HS
images. It also designs a sensor-specific mode to adapt to a different scene but acquired by
the same sensor. The experiments demonstrate its higher quality both in reconstruction
and spectral fidelity. Arun and Hu et al. [34,35] also proposed two additional 3D CNN-
based SR methods. Arun et al. [34] utilized a convolution–deconvolution framework and
hypercube-specific loss functions. Moreover, the spatial–spectral accuracy of the super-
resolved hypercubes, in terms of the validity of regularizing features and endmembers, was
explored to devise an optimal ensemble strategy. Hu et al. [35] utilized a multiscale feature
fusion and aggregation network with 3D convolution, and proposed a spectral gradient loss
function to prevent spectral distortion. Inspired by the unmixing idea of [6], a deep feature
matrix factorization (DFMF)-based SR method was proposed in [36], by incorporating
a CNN and nonnegative matrix factorization strategy. Zou et al. [37] presented a deep
residual CNN and spectral unmixing-based SR method, which shows good performance
in preserving the spatial and spectral information of HS images. Li et al. [38] placed the SR
process in a generative adversarial network (GAN), and incorporated the band attention
mechanism into the network to explore the correlation of spectral bands and avoid spectral
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distortion. Hu et al. [39] presented an intrafusion network for HS image SR, which consists
of a spectral difference module, parallel convolution module, and intrafusion module [40].
These three modules show generalization capacity and effectiveness on both CNN and
residual networks. Jiang et al. [41] focused on the adaptation of a deep learning-based
single gray/RGB image SR method for HS images, and introduced a spatial–spectral prior
network (SSPN). To tackle the small sample problem, SSPN proposes a group convolution
and progressive upsampling framework. Experiments demonstrate its superiority in
enhancing the spatial details of the recovered image. Based on the recurrent neural network
(RNN), Fu et al. [42] proposed a bidirectional 3D quasi-RNN that combines both CNN
and RNN for single HS SR work, and they achieved improvements in terms of both
restoration accuracy and visual quality. Shi et al. proposed super-resolution approaches by
incorporating attention modules [43] and a generative adversarial network [44,45], which
achieves better visual quality over some state-of-the-art approaches. A brief analysis and
comparison of recent HS image SR methods can be found in [46].

Generally, HS images with high and low resolutions reflect the spectral characteristics
of the same ground objects from different scales. Hence, some instinctive property remains
invariable. From the perspective of the spectrum mixture, it is characterized by the spectral
endmembers. Naturally, taking account of the spectral mixture model is definitely beneficial
to preserve the overall spectral characteristics for single HS image super-resolution tasks.
Unfortunately, only a few efforts have been made so far. Recently, we proposed an HS and
MS image fusion method based on CNN and spectral unmixing models [47], which fully
exploits the characteristics of high spectral and spatial resolution of HS and MS images,
respectively, and aims to better estimate the abundances for HR HS images. The fusion
method achieves state-of-the-art performance in terms of spectral fidelity. Nevertheless, this
method still needs MS images to provide auxiliary HR spatial information. To overcome
this deficiency, inspired by the existing single HS SR methods [26,36] and the unmixing-
based fusion method [47], in this paper, a CNN-based single image super-resolution
approach is proposed, via the classical linear spectral mixture model, to spatially improve
the resolution of HS images without auxiliary image sources. The proposed approach,
named the unmixing CNN (UCNN) SR approach, assumes that the differences between
high- and low-resolution HS images concentrate on the abundances of endmembers for the
same scene, thereby employing a CNN to solve the HR abundance maps. Furthermore,
since the LR HS image is the degraded version of HR HS image, the spatial correlation
between the HR and LR image can be formulated by the spatial spread transform matrix.
Therefore, we propose a spatial correlation-regularized CNN to refine the prediction of
abundance maps. The main contributions of this work are summarized as follows.

1. A CNN-based single HS image SR framework is proposed, which incorporates the
linear spectral mixture model to fully exploit the intrinsic properties of HS images,
thereby improving the spatial resolution of HS images, without auxiliary sources.

2. The correlation between the high- and low-resolution HS images is characterized
by the spatial spread transform function, which helps to preserve the spectra of the
super-resolved image.

3. A loss function regarding the spectral mixture models and spatial correlation regular-
ization is defined to effectively train the proposed network.

Experiments on several public HS images demonstrate the effectiveness and perfor-
mance of the proposed approach. The remainder of this paper is organized as follows.
Section 2 elaborates the proposed CNN-based SR method. Section 3 describes the experi-
ments and results. Finally, the conclusions are drawn in Section 4.

2. Methodology
2.1. Observation Models

Suppose that the desired high-resolution HS image is denoted by Y ∈ RΛ×N , where Λ
is the number of spectral bands, and N denotes the pixel number. According to the linear
spectral mixture model [47], we have
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Y = EYAY + NY, (1)

where EY ∈ RΛ×D and AY ∈ RD×N are the spectral endmember matrix and abundance
matrix, respectively. D is the number of endmembers, which can be determined by either
empirical criteria [6,7] or endmember estimation methods, e.g., thresholding ridge ratio
criterion [48], agglomerative clustering [49], saliency-based autonomous endmember detec-
tion [50], etc. NY ∈ RΛ×N is the residual. Correspondingly, the observable low-resolution
HS image is denoted by X ∈ RΛ×n, where n denotes the pixel number of the LR HS image.
r =
√

N/n stands for the resolution ratio. In many cases, the LR HS image will be upscaled
to the size of the HR HS image, via a bilinear or bicubic interpolation method. In other
words, X has the same pixel number as Y, namely X ∈ RΛ×N , and we have

X = EXAX + NX . (2)

EX ∈ RΛ×D, AX ∈ RD×N and NX ∈ RΛ×N are defined similarly as aforementioned,
but at lower resolution. In general, we have EY = EX = E, which reflects the overall spectral
attributes of ground objects for the same scene. Accordingly, the abundance matrices AX
and AY describe the spatial distribution of ground objects at different resolutions. Suppose
that S ∈ RN×N denotes the spatial spread transform matrix (SSTM) [6,10] that is used to
formulate the transformation between each pixel of X and the corresponding pixel, with
its neighbors, of Y. For instance, a Gaussian low-pass filter [6] can be used to simulate the
degradation of resolution and applied to each pixel with its neighbors for the HR image.
Then, each column of SSTM is the vectorization of the Gaussian filter at proper locations.
In other words, S represents the spatial degradation function between the high-resolution
image and its counterpart for each pixel. Consequently, we have X = YS, and obviously,
we also have

EYAYS = EXAX . (3)

Therefore, the LR abundance matrix is given by

AX = AYS. (4)

The spatial spread transform matrix S is a sparse matrix, as well as the abundance
matrices AX and AY. Moreover, (4) suggests that the spatial correlation between LR
and HR HS images can also be characterized by the spatial spread transform function
between the LR and HR abundances. Therefore, in this paper, an HS image SR approach is
proposed, which employs a CNN to resolve the high-resolution abundance matrix, thereby
reconstructing the anticipated HR HS image.

2.2. HS Image Super-Resolution via UCNN

The main framework of our proposed UCNN SR approach is shown in Figure 1. First,
the primal HS image is upsampled by the factor r using a bicubic interpolation method,
to keep the same size as the HR HS image. Then, the initial endmembers are extracted
by vertex component analysis (VCA), which is a widely used endmember extraction
method [6,36], from the HS image. Instead of feeding the entire HS image into the network,
small pieces of patches are obtained by partitioning the HS image into sub-images of p× p
size, in a pixel-by-pixel manner [33,39,41].

The architecture of our proposed network is composed of a series of convolutional
layers, which can be imitatively divided into two stages, feature extraction and abundance
prediction. The first stage consists of 6 convolutional layers, with each followed by a batch
normalization (BN) layer and a leaky rectified linear unit (ReLU) function with α = 0.2,
successively. Each convolutional layer involves Cout filters, resulting in Cout intermediate
feature maps. Afterwards, the last Cout feature maps are split into two groups (the maps
with red and blue boundaries in Figure 1) and fed into a two-branch prediction stage.
In our preliminary works for this paper, we found that the number of Cout actually has
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a limited influence on the super-resolution results. According to the existing works, a
typical number of 64 is used in the experimental section. The 64 feature maps are then split
into two groups, with each group containing Cout/2 = 32 maps that are fed into the two
branches, respectively. Here, we suggest a bisection of feature maps, since, in this manner,
the upper branch and lower branch have the same time and space complexities, which
simplifies the development of implementation programs.

Figure 1. The main framework of the proposed HS image super-resolution approach.

Both branches employ 4 convolutional layers to predict the LR and HR abundance
maps individually. The first 3 convolutional layers of each branch contain 64 filters,
and are also followed by the BN and leaky ReLU layers, individually, whereas the last
layer contains D filters, corresponding to the D abundance maps. Here, D is the preset
endmember numbers. Finally, an output layer with the Softmax function is appended to
constrain the nonnegativity and sum-to-one property of abundances. Thus, the desired HR
HS image is obtained by multiplying the endmembers, and the HR abundance matrix that
is acquired by the lower branch, according to (1). Likewise, the LR HS image can also be
reconstructed by multiplying the endmembers and LR abundance matrix acquired by the
upper branch in Figure 1.

Moreover, in this proposed network, the sizes of convolutional filters are commonly
set to 3 × 3, and the mirror padding mode is applied to preserve the original size of the
patches. The network can be easily trained by adaptive moment estimation (ADAM) with
the back-propagation method [32,51]. Suppose that the training sample patches are also
represented by the aforementioned symbols, e.g., X, Y, A, etc., for convenience. Let ÃX and
ÃY be the predicted LR and HR abundance matrices, respectively. Considering (1) and (2),
the aim of each branch is to minimize the prediction errors as follows:

minL1 = min
ÃX

||X− EÃX ||2F, s.t.||ÃX ||0 ≤ ε,

minL2 = min
ÃY

||Y− EÃY||2F, s.t.||ÃY||0 ≤ ε,
(5)

where || ||F and || ||0 are the Frobenius and L0 norms, respectively. ε is used to control the
sparsity of abundances E = EY = EX .

As shown in Figure 1, the correlation between the LR and HR abundance maps can be
described by (4). Therefore, a spatial correlation-regularized loss function is defined for the
entire network as follows:

L = 1
2 ||X− EÃX ||2F +

1
2 ||Y− EÃY||2F

+ 1
2 ||ÃX − ÃYS||2F + η · 1

2
(
||ÃX ||22 + ||ÃY||22

)
,

(6)
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in which η is the balance parameter that controls the approximation and the sparsity of
abundances. In this work, we use || ||2 instead of || ||0 to promote the generalization
ability of the network [44,52]. Note that the SSTM defined in (6) S ∈ Rp2×p2

is actually a
local transform matrix with p2 × p2 elements, which transforms each pixel from the HR
image patch to the LR patch, rather than the global transform matrix in (3). In this paper,
we employ a Gaussian low-pass filter with (2r − 1) × (2r − 1) elements to simulate the
transformation between HR and LR pixels. Then, each column of S corresponds to the
vectorized filter at proper locations. Afterwards, the derivatives of the loss function with
respect to the output abundances of two branches, ÃX and ÃY, can be computed by

dL
dÃX

= ET(EÃX − X
)
+
(
ÃX − ÃYS

)
+ ηÃX

dL
dÃY

= ET(EÃY − Y
)
+
(
ÃYS− ÃX

)
ST + ηÃY.

(7)

Moreover, the derivates of network weights can be calculated accordingly. In addition,
we also prefer to fine-tune the endmember matrix during the network training phase by
using the multiplicative update rule to ensure that it can converge to local optima under
the nonnegativity constraints:

E← E.× XÃT
X + YÃT

Y

EÃXÃT
X + EÃYÃT

Y

(8)

where .× and ./ denote the elementwise multiplication and division, respectively. Thus,
E will be updated during each epoch of the network training until a maximum epoch
number is met. It should be also pointed out that the LR abundance prediction branch will
only be implemented during the training stage. Once the network is trained, only the HR
abundances are required to eventually obtain the HR HS image.

3. Experimental Data Sets and Results
3.1. Experimental Setup

In order to demonstrate the effectiveness and superiority of our proposed approach,
the following widely used HS data sets were utilized to conduct super-resolution experi-
ments.

The first HS image was collected by the Reflective Optics System Imaging Spectrometer
(ROSIS) over the University of Pavia, Italy. It consists of 610× 340 pixels and 103 spectral
bands, with a spatial resolution of approximately 1.3 m. The second image was collected
by the compact airborne spectrographic imager sensor (CASI) with a spatial resolution of
2.5 m, over the University of Houston, USA. There are 1905× 349 pixels and 144 spectral
bands, with a pixel resolution of 2.5 m. The last image is a low-altitude Airborne Visible
Infrared Imaging Spectrometer (AVIRIS) image collected over the North Island of the U.S.
Naval Air Station in San Diego, CA, USA. It has 400× 400 pixels and 189 bands with
a spatial resolution of 3.5 m, after removing noisy bands. Two subsets of each image
were selected as the training and testing areas for our experiments, which are shown in
Figure 2. The training and testing sub-images in this paper have the same spatial sizes.
The former two data are 240× 240, and the last data are 200× 200, respectively. Moreover,
all the HS images were degraded to lower resolutions by Gaussian blurring and nearest
downsampling with scale factors of 2 and 4 (namely r = 2 and r = 4). The super-resolved
images had the same resolutions as these original images, so that the original HS images
could be used to evaluate the quality of the different super-resolution approaches.

In our experiments, we compared the proposed approach with several state-of-the-art
HS image super-resolution methods, including the 3D full CNN (3DFN) method [33],
the deep feature matrix factorization (DFMF) method [36], the intrafusion network (IFN),
and residual IFN (RIFN) [37], as well as the bicubic interpolation (denoted by Bicubic)
method. For the compared methods, most of the parameters were set according to the
corresponding references, including the patch sizes, network architectures (namely the
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convolutional layers and filters), batch sizes, etc. Specifically, the patch size of IFN and
RIFN was set to 15× 15 for our experimental data sets, so that they could yield relatively
optimal results.

Figure 2. Experimental data sets. (a) Training image of University of Pavia; (b) Testing image of University of Pavia;
(c) Training image of University of Houston; (d) Testing image of University of Houston; (e) Training image of San Diego air
station; (f) Testing image of San Diego air station.

The number of training epochs was 200. The learning rate of our approach was set to
0.01, and the decay rates of ADAM β1 and β2 were set to 0.9 and 0.999, respectively. They
are basically the same as the above methods. According to the related works (e.g., [6,36],
etc.), the number of endmembers was empirically set to 40. Moreover, we also conducted
comparison experiments when the patch size was set to 33× 33 and 15× 15, respectively.
We found that the results appeared to have little difference in practice. Thus, in the
following experiments, the patch size was arbitrarily set to 15× 15, without exception.
The intermediate convolutional feature maps Cout were set to 64, including the last layer
of the feature extraction stage, and the last convolutional layers of both prediction stages
contained D output feature maps, individually. The balance parameter η was set to 0.2,
0.4, and 0.2 for the three data sets, respectively, as seen in the following sub-section, and a
detailed discussion will be presented in the last sub-section.

For model training, in this work, the pending LR images were first interpolated to the
original HS image size by the bicubic method. Then, the training sets were constructed by
selecting each pixel and its p× p neighbors in the images with 5× 5 striders. Moreover,
the SSTM S in this paper was a p2 × p2 matrix, with each column corresponding to a
vectorized Gaussian blur kernel with (2r − 1) × (2r − 1) elements [6]. After model
training, the testing images were reconstructed in a pixel-by-pixel fashion. The 3DFN,
IFN, RIFN, and our UCNN approaches employ the same strategy for sample construction,
whereas the DFMF approach employs the transposed convolutional operations instead of
interpolations. Moreover, in our experiments, the endmembers were extracted from both
the low-resolution training and testing images simultaneously. To this end, the training and
testing images were merged first along the spatial dimension, and a single VCA processing
was applied jointly on the two images.

Table 1 presents an overall comparison of the parameter numbers for the aforemen-
tioned CNN-based SR methods, which briefly shows the spatial complexity of each method.
In brief, the convolutional layers contain the majority of parameters for the raised networks,
and for each convolutional layer with Cout convolutional filters and K1 × K2 × . . . filter
size, the number of parameters is calculated by

NPara = Cout ×
(

Cin ×∏i Ki + 1
)

, (9)

where i = 2 or 3, for 2D and 3D convolutional layers, respectively. Cin is the number
of input channels. Thus, the parameter number of the entire network can be calculated
by the summation of all convolutional layers. From Table 1, it can be seen that the IFN
and RIFN approach have 3 branches, with each involve 3 and 20 regular convolutional
layers, respectively. Thus, they both occupy much memory space, while 3DFN uses fewer
3D convolutional kernels instead of more 2D convolutional kernels, so that it has the
minimum number. The proposed UCNN approach actually has 14 2D convolutional layers
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with smaller kernel sizes (3× 3), which requires less memory space than IFN and RIFN.
Although the numbers of network parameters may vary in a small range, according to the
band number of images or some other “hyper-parameters”, the overall difference can still
help us to analyze the complexity of the network architecture.

Table 1. Comparison of parameter numbers.

Method Number of Parameters (M)

3DFN 0.08
DFMF 0.16

IFN 3.71
RIFN 4.72

UCNN 0.95

The experiments were conducted on the Windows 10 operating system with the Matlab
software platform. An NVIDIA GeForce RTX 2060 GPU card was utilized to train the
networks. For the raised CNN-based approaches, five spatial and spectral measurements,
including the spectral angle mapper (SAM), relative dimensionless global error in synthesis
(ERGAS), universal image quality index (UIQI), peak signal-to-noise ratio (PSNR), and
structural similarity (SSIM), were computed according to (10)–(14), and the average values
of five independent Monte Carlo runs are listed in the following sub-sections, by random
initialization of network weights.

SAM =
1
N ∑N

i=1 arccos

(
xT

i yi
||xi||·||yi ||

)
, (10)

ERGAS = 100
h
l

√
1
Λ ∑Λ

i=1

(
RMSEi

µi

)2
, (11)

UIQI =
1
Λ ∑Λ

i=1

(
σXiYi

σXi σYi

2µXi µYi

µ2
Xi
+ µ2

Yi

2σXi σYi

σ2
Xi
+ σ2

Yi

)
, (12)

PSNR =
1
Λ ∑Λ

i=1 20 log10

(
MAXi
RMSEi

)
, (13)

SSIM =
1
Λ ∑Λ

i=1

(
2µXi µYi + C1

)(
2σXiYi + C2

)(
µ2

Xi
+ µ2

Yi
+ C1

)(
σ2

Xi
+ σ2

Yi
+ C2

) , (14)

x and y denote two spectral vectors of the super-resolved image and reference im-
age, respectively. X and Y denote the bands of the super-resolved and reference image,
respectively. h and l denote the spatial resolutions of the high- and low-resolution images,
respectively. RMSE is the root mean square error of two image bands, and µ is the mean
value of the reference band. µ, σ, and σXiYi denote the mean value, standard deviation, and
the covariance of two image bands. MAX is the maximum value of the reference band. C1
and C2 are constants.

3.2. Results and Analyses

In this work, the experiments were conducted under resolution scales of 2 and 4. The
numerical results are tabulated in Tables 2 and 3, where the bold type signifies the best
value in each column. By comparing the performance under different downsampling ratios,
we could obtain a comprehensive evaluation of the different super-resolution methods. It
can be seen that the CNN-based super-resolution approaches generally show higher image
fidelity and quality, since, in all cases, the super-resolved images yield lower absolute
reconstruction errors (ERGAS) and higher image similarities in both spectral and spatial
(PSNR, UIQI, and SSIM) aspects. The bicubic method sometimes has the lowest SAMs (e.g.,
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the San Diego data set). This probably occurs in those scenes with large flattened areas,
where the CNN-based super-resolution approaches will lose their advantages in exploring
the spatial structure features. Nevertheless, from the following figures, we can also see that,
compared with the bicubic method, the CNN methods always have certain advantages in
protecting the edges and small objects.

By contrast, in most cases, the proposed UCNN approach achieves the best perfor-
mance in terms of both spatial and spectral fidelity. For instance, it achieves the lowest
SAM values (3.81 and 4.72) in the first two experiments, and the highest PSNR/UIQI/SSIM
values (32.87/0.9665/0.9472, 33.00/0.9570/0.9446, and 37.56/0.9682/0.9856, respectively)
in all three experiments under r = 2. Likewise, the lowest ERGAS also indicates the
smallest reconstruction error. Similar results can also be clearly observed under r = 4. This
indicates that the super-resolved images of the proposed UCNN are generally closest to
the original HS images.

Table 2. Numerical evaluation of HS image super-resolution experiments under resolution ratio of 2 (r = 2).

Dataset Method SAM ERGAS PSNR (dB) UIQI SSIM Time (s) (Training/Testing)

University of
Pavia

Bicubic 4.84 12.60 28.06 0.8969 0.8904 -/0.0101
3DFN 4.12 8.33 31.79 0.9611 0.9260 45,938.5/2492.9
DFMF 4.99 10.05 30.62 0.9430 0.9249 1351.7/21.8

IFN 4.35 10.24 29.97 0.9346 0.9189 1439.1/97.2
RIFN 3.84 7.84 32.50 0.9651 0.9386 10,385.8/622.7

UCNN 3.80 7.64 32.74 0.9660 0.9465 2944.5/104.4

University of
Houston

Bicubic 6.01 11.90 30.69 0.9323 0.9157 -/0.0150
3DFN 6.17 9.86 32.17 0.9538 0.9271 66,296.3/3637.2
DFMF 5.87 9.88 32.20 0.9518 0.9274 1225.7/33.5

IFN 6.13 11.04 31.26 0.9372 0.9272 1744.8/113.1
RIFN 5.45 9.47 32.67 0.9481 0.9309 10,740.5/592.2

UCNN 4.83 9.07 32.85 0.9556 0.9444 2979.4/110.3

San Diego

Bicubic 1.96 7.00 35.21 0.9426 0.9760 -/0.0143
3DFN 2.34 6.25 36.16 0.9525 0.9811 61,342.4/3172.3
DFMF 2.38 5.62 37.17 0.9643 0.9823 891.7/24.6

IFN 2.07 6.81 35.46 0.9467 0.9767 1408.6/109.2
RIFN 2.42 5.62 37.13 0.9656 0.9827 7665.0/447.1

UCNN 2.58 5.50 37.33 0.9675 0.9849 2446.6/81.3

Table 3. Numerical evaluation of HS image super-resolution experiments under resolution ratio of 4 (r = 4).

Dataset Method SAM ERGAS PSNR (dB) UIQI SSIM Time (s) (Training/Testing)

University of
Pavia

Bicubic 6.48 8.29 25.64 0.7998 0.8412 -/0.0089
3DFN 6.28 7.26 26.81 0.8673 0.8629 44,057.7/2394.0
DFMF 6.77 7.69 26.43 0.8448 0.8603 1138.0/21.4

IFN 6.07 7.66 26.38 0.8376 0.8563 1469.3/100.3
RIFN 5.72 7.32 26.76 0.8649 0.8650 10,387.5/563.0

UCNN 5.57 6.95 27.25 0.8815 0.8772 2976.3/107.7

University of
Houston

Bicubic 8.31 7.87 28.34 0.8759 0.8851 -/0.0125
3DFN 9.16 7.87 28.28 0.8998 0.8794 66,506.2/3413.2
DFMF 8.05 7.28 28.92 0.8901 0.8972 1186.0/21.8

IFN 8.55 7.84 28.38 0.8796 0.8870 1771.4/116.6
RIFN 7.87 7.52 28.86 0.8974 0.8987 10,715.7/577.6

UCNN 7.21 6.84 29.37 0.9042 0.9071 2964.8/112.8

San Diego

Bicubic 2.59 4.57 32.91 0.8974 0.9652 -/0.0118
3DFN 3.33 4.42 33.18 0.9132 0.9673 61,124.9/3191.6
DFMF 2.90 4.37 33.29 0.9119 0.9666 818.5/15.2

IFN 2.79 4.45 33.14 0.9037 0.9660 1413.4/109.6
RIFN 2.76 4.30 33.45 0.9146 0.9676 7688.1/477.3

UCNN 3.10 4.23 33.58 0.9230 0.9703 2387.0/80.0
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In order to compare the efficiency of these methods, the implementation times of
a single run for the raised methods are listed in Tables 2 and 3. It is widely recognized
that the deep learning-based SR methods inevitably take a rather long time for model
training. From Tables 2 and 3, it can be seen that the 3DFN approach is definitely time-
consuming, due to its 3D convolutional operations and large patch sizes. RIFN has a very
deep residual architecture with 20 convolutional layers. Thus, it also takes hours to train
relatively advisable models. It should also be noted that, in our experiments, except for
the DFMF method, all the images are first interpolated to the original HS image sizes,
before partitioning into sample patches. Therefore, for different resolution ratios, e.g., r = 2
and r = 4, the training sets always have the same numbers of samples, and the running
times are approximate on the whole. DFMF, however, employs transposed convolutional
operations for upscaling, which means that the samples are selected under the degraded
scales, resulting in different running times. Essentially, the implementation times of our
proposed method are also acceptable among the considered CNN-based methods.

Figures 3–5 show the R/G/B color composited images of super-resolved results under
r = 2. Obviously, compared with the references in Figure 2, it can be seen that the bicubic
interpolated images commonly have vague edges and blurred details. Undoubtedly, using
CNN-based super-resolution approaches indeed enhances the visual details. For instance,
we can clearly observe the boundaries and textures of some buildings in the local enlarge-
ments. In other words, the spatial resolutions of the HS images have been truly enhanced.
From Figure 4, we can also see some subtle differences from the local enlargements, e.g.,
the second boundary inside the white building can only be observed in Figure 4b,d,f, which
indicates that that 3DFN, IRFN, and UCNN have preferable performance in terms of spatial
clarity as well.

Figure 3. Super-resolved images of University of Pavia data set. (a) Bicubic; (b) 3DFN; (c) DFMF; (d) IFN; (e) RIFN;
(f) UCNN.

Figure 4. Super-resolved images of University of Houston data set. (a) Bicubic; (b) 3DFN; (c) DFMF; (d) IFN; (e) RIFN;
(f) UCNN.

Figure 5. Super-resolved images of San Diego data set. (a) Bicubic; (b) 3DFN; (c) DFMF; (d) IFN; (e) RIFN; (f) UCNN.
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The overall error maps for different methods are displayed in Figures 6–8, which show
the absolute values of errors between the super-resolved images and reference images and
plot the band average values via the pseudo-color images. For convenience, the values are
normalized by the same maximum number for each data set. From these figures, it can
be seen that the bicubic method always suffers from large errors, especially at the edges
of ground objects, as expected. In contrast, using deep learning techniques, especially the
proposed UCNN approach, can effectively reduce the reconstruction errors, as Figures 6–8
show, and more importantly, it can enhance the spatial resolution of the images, thereby
presenting better appearance and clarity of objects.

Figure 6. Band averages of absolute errors of University of Pavia data set. (From left to right: Bicubic, 3DFN, DFMF, IFN,
RIFN, UCNN).

Figure 7. Band averages of absolute errors of University of Houston data set. (From left to right: Bicubic, 3DFN, DFMF, IFN,
RIFN, UCNN).

Figure 8. Band averages of absolute errors of San Diego data set. (From left to right: Bicubic, 3DFN, DFMF, IFN,
RIFN, UCNN).

Finally, aside from the comparison of spatial clarity in Figures 6–8, a brief comparison
from the band dimension is exhibited in Figure 9, in which we plot the PSNRs for each
band of these super-resolved images. It can be seen that, essentially, the proposed approach
has the highest PSNRs for most bands, and RIFN achieves the second-best results, as
Tables 2 and 3 suggest. For the University of Pavia and the University of Houston (under
r = 2), the bicubic method has extremely low PSNRs, resulting in inferior visual effects. In
addition, from Figure 9, it can also be seen that some of the spectral bands have relatively
higher PSNRs, and the others are much lower. This is mainly caused by the differences
in variations between neighboring pixels in different bands. To better illustrate this fact,
we plot the average gradient (AG) of each band, for the three reference HS images, in
Figure 10. For better comparison, each band is individually normalized to 0~1. AG
reflects the differences between neighboring pixels. Therefore, we can see that, for some
bands, AGs are much higher than the others, which means that the neighboring pixels are
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quite different from each other. Hence, the spatial structure information is complicated,
and the reconstruction is relatively difficult. A simple example is that, for the bicubic
interpolation method, the large difference between neighboring pixels leads to obstruction
in the prediction of the center pixel. Moreover, the PSNR is found to be lower accordingly.
Combining Figures 9 and 10 can help us to better understand this point.

Figure 9. PSNRs for each band of the super-resolved images. (The upper line is under r = 2, and the lower line is under r =
4. From left to right: University of Pavia, University of Houston, and San Diego air station).

Figure 10. Average gradient of each band for the reference images. (From left to right: University of Pavia, University of
Houston, and San Diego air station).

Nevertheless, the quantitative results and visual effect both demonstrate the effective-
ness and superiority of our proposed method over these state-of-the-art works.

3.3. Discussion of Parameter and Ablation Experiments

In this sub-section, we focus on analyzing the unique parameters and the ablation
experiments. In our proposed approach, most of the parameters are determined according
to the published references and empirical research, such as the patch size p, number of
endmembers D, learning rate, etc. Therefore, we mainly discuss the results with respect
to the balance parameter η. To this end, Figures 11 and 12 exhibit the ERGAS and UIQI
values of the super-resolved and reference images of the testing data, under resolution
ratio r = 2, regarding different η and D, respectively. It can be seen that, with the increment
of η from 0 to 1, the ERGAS essentially declines slightly to the minimum values and then
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rises continuously. Conversely, the UIQI climbs to the relative maximum values first, and
then drops. A smaller η is generally more satisfactory than a larger one. We believe that a
relatively optimal η that minimizes the spectral distortions and maximizes the performance
of image super-resolution is around 0.2 in our presented experiments. Therefore, in this
work, we set η to 0.2, 0.4, and 0.2, for the three data sets, respectively, in the previous
sub-section. Likewise, Figure 12 shows the results with respect to different numbers of
endmembers D. It can be seen that satisfactory results can be achieved when D ≥ 40.
The relatively optimal values are achieved when D is around 50~60. When D < 40, the
super-resolved results seem to be unacceptable, especially when D < 20. For the sake of
fairness and generality, in this work, we set D = 40 in the previous sub-section. The results
under r = 4 in Tables 2 and 3 demonstrate that the two values are also feasible to some
extent, and can achieve acceptable results. Nevertheless, we should also point out that the
selection of the two η and D in this work actually depends on our empirical knowledge
with extensive experiments and tests. However, we have not developed adaptive rules to
automatically determine these two parameters. Therefore, our following work will focus
on the automatic determination of η and D—for example, using the automatic estimation
approaches of endmember numbers in [48–50].

Figure 11. The ERGAS and UIQI values with respect to η of UCNN. (From left to right: University of Pavia, University of
Houston, and San Diego air station).

Figure 12. The ERGAS and UIQI values with respect to number of endmembers D. (From left to right: University of Pavia,
University of Houston, and San Diego air station).

Aside from the above analysis of parameters, we also present a brief discussion of the
ablation experiments to analyze the mechanism of our proposed approach. To this end,
we considered four demoted versions of our proposed approach. In the first case, which
is denoted by Case 1, the network was employed to directly predict the HR abundance
maps, only by the lower branch of Figure 1, with the same parameters (i.e., η, D, etc.) as the
proposed approach. The spatial correlation was also omitted. In the second case, the entire
network of Figure 1 was used to simultaneously predict the LR and HR abundance maps.
However, unlike Case 1 and the proposed method, the endmember update operation in
(8) was not applied, which means that the endmember remained invariant in the training
and testing stages. The parameters were also set the same as in UCNN. This is denoted
by Case 2. The third case was almost the same as the proposed method, but we arbitrarily
set η to 0 during the training stage, which is the same case as the first points in Figure 11.
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This is denoted by Case 3. In the last case, which is denoted by Case 4, the training manner
was almost the same as in UCNN, but in the testing phase, the entire LR HS image with
the original size was input into the network to directly predict the abundance maps with
the original size, instead of using partitioned patches. Obviously, this method requires
much less time for the testing phase, since only a single forward propagation operation
is implemented.

The experimental results of the three above-mentioned cases are reported in Figure 13,
as well as the proposed approach. Obviously, from Figure 13, we can see that the pro-
posed UCNN remains the best one in terms of both spectral fidelity and image quality.
By comparing Case 1 and UCNN, it is apparent that incorporating the spatial correla-
tion between HR and LR HS images into network learning indeed provides a favorable
outcome, i.e., relatively lower ERGASs and higher UIQIs in all cases, with a limited in-
crement in computation. Moreover, in the testing stage of HR abundances, in the upper
branch of Figure 1, the prediction of LR abundances is no longer needed, which further
reduces the computation time. Second, it can be inferred that the update of endmembers
is indispensable, since the results of Case 2 deteriorated severely, e.g., in the left upper
and right lower figures, Case 2 has a very high ERGAS value, with a much lower UIQI,
compared with UCNN and the others. Fortunately, the update of endmembers requires
much less time than the backward propagation in network training. Third, combing the
results in Figures 11 and 13, it can be seen that the involvement of abundance sparsity
will also have a minor effect on the performance. A proper sparsity η can further reduce
the errors, enhance the image quality, and benefit the fidelity of super-resolved images,
without any additional computation requirements. Lastly, by comparing the results of Case
4 and UCNN, it can also be concluded that predicting small pieces of patches provides
more accurate results than the entire LR HS image with the original size, although more
time may be needed for forward propagations.

Figure 13. Comparison of ERGAS and UIQI values with respect to different structures of the proposed methods. (The upper
line is under r = 2, and the lower line is under r = 4. From left to right: University of Pavia, University of Houston, and San
Diego air station).

In summary, the experiments demonstrate that the update rule of endmembers is
crucial to the accuracy of image reconstruction. Meanwhile, the regularization of spatial
correlation between LR and HR images, namely the prediction of LR abundances, will
truly benefit the inference of HR abundances and HS images. Furthermore, it is also worth
noting that the quantity and diversity of samples are also quite important to the CNN-based
super-resolution approaches. In our future work, we will also aim to promote the quality



Remote Sens. 2021, 13, 4074 15 of 17

and quantity of samples so that we can train more robust and effective networks to handle
various scenes.

4. Conclusions

In this paper, a super-resolution approach based on a convolutional neural network
is proposed, aiming to spatially enhance the resolution of HS images, without the aid of
auxiliary sources. The proposed method takes advantage of the spectral mixture model
and the spatial spread transform model. It thus employs the spatial correlation-regularized
CNN to predict the desired high-resolution abundance maps, thereby reconstructing the
high-resolution HS image. Experimental results on three public HS images demonstrate
that the proposed approach can effectively enhance the spatial details and exhibit high
spectral fidelity, compared with several state-of-the-art SR methods, from both visual effects
and quantitative evaluations. The ablation experiments also demonstrate that the proposed
network architecture and spatial correlation regularization can further improve the spectral
quality of super-resolved images. Meanwhile, in this paper, we have also analyzed the
influences of two important parameters, namely the balance parameter η and number
of endmembers D. However, it should be pointed out that, in this work, the selection of
parameters essentially depends on our empirical knowledge and extensive experiments.
Therefore, our next work will focus on enhancing the adaptability of our approach by
automatically determining the parameters. We will also make efforts to improve the quality
and quantity of training samples to handle various scenes, and expedite the network
training procedure.
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